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The temperature-dependent contribution to the linewidth of the antiferromagnetic resonance in MnF,
at low temperatures is shown to arise from four-magnon scattering processes. The scattering amplitudes
associated with the exchange and anisotropy interactions are comparable but of opposite sign, leading to
an "anisotropy-narrowed" linewidth. As the temperature increases the anisotropy decreases and the
exchange scattering becomes dominant. The theory provides a quantitative fit to high-field experimental
data up to T~/4. Above this temperature six-magnon scattering appears to dominate,

Magnetic resonance is characterized by a uni-
form precession of magnetic moments. In an or-
dered magnetic material this corresponds to a
long-wavelength spin wave. The lifetime associ-
ated with this excitation is determined by the man-
ner in which the energy is transferred into other
modes of the system. The classic ferromagnetic
system is yttrium iron garnet (YIG). Its relaxa-
tion has been exhaustively studied' and it has been
established that the energy of the uniform preces-
sion is first transferred to short-wavelength spin
waves and subsequently to phonons. In this paper
we show that this sequence occurs in the antiferro-
magnet MnF2 and argue that it should be a general
feature of antif erromagnets.

Manganese fluoride is the classic antiferromag-
net with a Nd'el temperature of 68'K. MnFz owes
its unique position to several facts. First of all,
the manganese ion is in the divalent state which is
an orbital singlet (g=2. 001). This removes hard-
to-calculate spin-orbit contributions to the anisot-
ropy and magnetoelastic energies and makes MnF2
attractive from a theoretical point of view. On the
experimental side, both Mn' and F' possess nu-
clear moments so that nuclear magnetic resonance
can be used to probe both local environments.
Furthermore, the neutron scattering cross sec-
tions are such as to make elastic and inelastic
scattering possible. And, finally, large single
crystals are relatively easy to grow. As a result
of these advantages, the basic magnetic properties
of MnF~ have been thoroughly studied. In particu-
lar, the magnetic excitation spectrum is well
known as a function of temperature and applied
field.

One of the disadvantages of MnF& arises from its
tetragonal structure. As a result the magnetic di-
polar interaction gives rise to a relatively large
anisotropy, which drives the antiferromagnetic-
resonance (AFMR) frequency up into the far infra-
red. For studying relaxation phenomenon, this is

a difficult region in which to work: tuneable elec-
tromagnetic sources are not available and neutron
scattering does not have high enough resolution.
However, in the presence of a strong (80 kOe)
magnetic field one of the AFMR modes is driven
down into the millimeter-wave region where it can
be studied.

The first AFMR study on MnFz was carried out
by Johnson and Nethercot. They observed that the
linewidth broadened as the temperature approached
the Noel point. This could be understood in terms
of fluctuations in the exchange field. They were
not able, however, to explain the residual low-
temperature linewidth. There have been estimates
made of various mechanisms that might be respon-
sible for this linewidth. Genkin and Fain obtained
a linewidth of 12 Qe at 6 'K associated with four-
magnon exchange scattering in zero applied field.
Similarily, Upadhyaya and Sinha' estimated the
linewidth associated with a one-phonon two-magnon
process to be 10 Oe at 10'K. However, Kotthaus
and Jaccarino have recently identified this line-
width as arising from two-magnon imperfection
scattering. When this contribution is subtracted
from the measured linewidth it leaves a small
thermally induced relaxation rate which is only of
the order of 10 sec ' at 4 'K but increases rapidly
with temperature. The fact that this linewidth is
smaller than that predicted by the magnon-phonon
mechanism suggests that the magnon-phonon cou-
pling constant is smaller than originally thought.
On the other hand, the Genkin-Fain estimate of the
four-magnon exchange mechanism is two orders of
magnitude larger than the data of Kotthaus and
Jaccarino. However, the anisotropy interaction
provides an additional four-magnon scattering am-
plitude which must also be considered. As we
shall see below the anisotropy scattering amplitude
interferes with that from the exchange to give a
much smaller linewidth.

The Hamiltonian for MnF2 consists of exchange,
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magnetic dipole, and Zeeman terms. The dipolar
interactions introduce ellipticity into the spin-wave
modes which can be important under certain cir-
cumstances. However, for the case we are con-
sidering here it is sufficient to represent the di-
polar interaction by a phenomenological anisotropy
term,
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where i and j refer to the two sublattices. The
phenomenological constant K has the value of 0.41 'K
at 4 'K and decreases according to K(T)/K(0)
= [M(T)/M(0)]'. The exchange Hamiltonian has
the isotropic Heisenberg form
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FIG. 1. Wave-vector dependence of the normal-mode
transformation coefficients for k II [001].
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where I J&l =0. 32'K and J~=1.76'K. The sum
over 6' is a sum over the eight next nearest neigh-
bors on the opposite sublattice while that over 5 is
over the two nearest neighbors on the same sublat-
tice.

Spin-deviation operators are introduced in the
usual manner,
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with
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S;. = v'3S fgag,

S) ——V 2S ag fg,
S' = S —a&a&,

where

s; = v' 2s 5)f;,
S) = 42S f~b~,

S,'=-S+ btb, ,

Because of their importance to our subsequent dis-
cussion we have plotted these transformation co-
efficients in Fig. 1. These values are relatively
insensitive to the variation of (d with tempera-
ture. Under this transformation the quadratic part
of the total Hamiltonian takes the form

fi = (I —a~a~/3S)"' .
These, in turn, are related to spin wave operators
by

x"'= E (en' .' -+an'-'j'. p-)

where
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where N is the number of Mn ions per sublattice
per unit volume. Due to the intersublattice ex-
change these spin waves are not the normal modes
of the system. That is, when the Hamiltonian is
expanded to second order in these operators, we
observe coupling between a„- and b„-. The normal
modes of the system may be obtained by diagonal-
izing these quadratic terms. The resulting trans-
formation is

0;"'=(d- ~ ya, (11)

and y=ga~/h. It is interesting to note that the
transformation in which the minus signs associated
with the vl-, 's in Eq. (5) are replaced by plus signs
also diagonalizes the Hamiltonian with the same
eigenvalues. The choice of this phase is deter-
mined by noting that the minus sign gives the same
mode configuration for the uniform precession
found by Keffer and Kittel from the classical equa-
tion of motion. Therefore by the correspondence
principle this is the sign that must be used in Eq.
(5). One also arrives at the same conclusion from
an approach based on the quantum-mechanical
equations of motion. As we shall see below this
phase is important in determining the relaxation
of the uniform precession.

The temperature dependence of spin-wave fre-
quencies and spin-wave rates depend on nonlinear-
ities, that is, terms in the spin-wave expansion of
the Hamiltonian that are higher than second order.
Due to the antiferromagnetic symmetry there are
no third-order terms in this expansion. Therefore
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the lowest-order nonlinear processes in antiferro-
magnets arise from four-magnon terms. Two
most important classes of such terms are illus-
trated in Fig. 2. The contributions of the terms
shown in Fig. 2(a) to the temperature dependence
of the spin-wave frequences have already been
computed. This gives very good agreement with

FIG. 2. Schematic representation. of the two general
classes of four-magnon processes: (a) those contributing
to renormalization of the spin-wave frequencies, and (b)
those contributing to relaxation.

the spin-wave dispersion relation obtained from
inelastic neutron scattering. An additional test of
this renormalization is the calculation of the de-
pendence of the spin-flop transition in MnF2. If
one characterizes this transition as the point at
which the spin-wave frequency goes to zero then
the resulting phase boundary has the form indicated
by the solid line in Fig. 3. These successful ap-
plications of nonlinear spin-wave theory give us
confidence that such an approach may also describe
relaxation phenomena. In fact, the relaxation of
zone-boundary magnons in MnF2 has already been
investigated. '

Since the relaxation measurements of Kotthaus
and Jaccarino were carried out in a very large
magnetic field the high-frequency modes should
have little effect on the results for low tempera-
tures (T(20'K). We therefore consider only those
four-magnon terms in the Hamiltonian involving
the low-f requency modes. The four-magnon terms
arising from the exchange are
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Similarily, the anisotropy interaction gives the
terms

associated with the four-magnon scattering illus-
trated in Fig. 2(b) is derived in a manner similar
to that for the three-magnon process. " The re-
sult is

i)i, = ~k[exp(hQg, /ks T) —li 4 I
C

I exp(ffQ„, /ks T)-
k2k3k4

+Vi73 ipf44(kg —ki —k4)5(Qi +Ql, —Q„" —Ql-, ),
(1~)

where

Notice that the exchange contribution involves a
complicated combination of the transformation co-
efficients u and v, the majority of the terms con-
taining an odd number of v's. The anisotropy con-
tribution on the other hand is dominated by terms
involving products of four u's. The fact that v is
less than u and is accompanied by a minus sign as
we discussed above leads to the result that the
four-magnon scattering amplitudes associated with
the anisotropy are comparable to but opposite in
sign to those associated with the exchange. Con-
sequently both must be retained in the calculation.

The general expression for the relaxation rate
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FIG. 3. Comparison of theory (solid line) and experi-
mental data for the spin-flop field in MnH& (after Timbie,
Ref. 9).
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FIG. 4. Comparison of theory {solid line) and experi-
mental data for the linevridth of the antiferromagnetic
resonance i n M nF 2.

g»„2g3g» + g~j» j3f» + f»g~g»f3 + Cog»~f3 . (17)

This expression mas evaluated numerically for k,
=0. The sums over the six coordinates associated
with the two independent wave vectors in Eq. (16)
mere carried out by dividing the range from k = 0
to k = k ~ into approximately 50 points and weigh-

ing the contribution of each to the sum appropri-
ately. This corresponds to (50)6 operations which

took about one hour and a half to run on a CDC

«g (ex)
ex ky k2k3k4 ky k2 k30 k4

he k2

where

x n(k» —k2 —k3+k») (18)

6600. The 6 function was handled by testing if I Qk.

+Ok —Qk —Ak I were less than some value &b,B.
k2 k3 k4

D so, the contribution of that term was weighted
by 1/nQ. A range of mesh sizes and AQ's were
found that made the answer independent of these
quantities. The resulting relaxation rate as a
function of temperature is indicated by the solid
line in Fig. 4. The points are the data of Kotthaus
and Jaccarino. The point to keep in mind is that
there are no adjustable parameters in this relaxa-
tion calculation. Therefore the excellent fit to the
experimental data, in the low-temperature region
where spin-wave theory is valid indicates that
four-magnon scattering is the dominant relaxation
mechanism.

In order to demonstrate the relative roles of the
exchange and anisotropy the dot-dashed curve in
Fig. 4 shows the relaxation rate associated with
exchange scattering only. We notice that without
the interference from the anisotropy scattering
amplitude the linewidth is an order of magnitude
larger than what is observed.

We notice that the experimental points break
away from our theoretical curve about 15' indicat-
ing that another relaxation channel may becoming
important. Since the energy of the high-field
branch is at 22 'K we might suspect that internode
scattering is now becoming important. The Hamil-
tonian for the confluence of an n and a P mode giv-
ing rise to a new e and a new P mode is

(" ~2&2D =
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The corresponding relaxation rate is given by Eq.
(16) where the symmetrized coefficient C is now

replaced by the expression given in Eq. (19). Since
two input and two output modes are not identical
this coefficient is not symmetrized as was done in

Eq. (17). On the other hand Eq. (16) must be mul-
tiplied by a factor of 2 to account for the fact that
the two output magnons are not identical. The re-
sult of this calculation is indicated by the appro-
priate dashed line in Fig. 4. We see that the sum
of the two processes does improve the agreement
with the experimental data somewhat. But there
is still a significant departure at high tempera-

tures. Another feature neglected in this calcula-
tion is the wave-vector dependence of the anisotro-
py in MnF2 arises primarily from the magnetic di-
pole-dipole interaction, this should be used in
place of the single-ion interaction given in Eq. (1).
This has several consequences. First of all, it
introduces quadratic terms of the form aka „- which
require a 4&&4 transformation instead of the 2&2
transformation of Eq. (5). This lifts some of the
degeneracy of the spin-wave spectrum. Secondly,
the four-magnon terms associated with the dipole-
dipole interaction have a different coefficient than
that given for the single-ion anisotropy in Eq. (15).
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The wave-vector dependence enters both the qua-
dratic and quartic terms through expressions of
the form

1 3Z;
R; RE

The dipolar sum converges when R; is of the order
of five lattice constants. Therefore when the
wave vectors start to become of the order of $ks~
we might expect to see effects from the "soften-
ing" of the anisotropy constant. This would tend
to reduce the interference and enhance the relaxa-
tion rate. Although this might account for some of
the observed increase in 2 H above 20 'K it is clear
from Fig. 4 that even the curve associated with
four-magnon exchange scattering only will eventu-
ally fall below the data.

When our numerical results are plotted on a
logarithmic scale, they display a T dependence,

while the experimental data begin to show a
stronger dependence at temperatures above 15 'K.
The reason that the four-magnon process is not as
effective at these temperatures has to do with the
fact that the large field at which these experiments
were carried out has pushed the uniform preces-
sion frequency to a relatively low value. Therefore
the four-magnon process indicated in Fig. 2(b)
looks like a three-magnon process for which ener-
gy and momentum cannot be satisfied with an anti-
ferromagnetic dispersion relation. We verified
this conclusion by computing the relaxation rate
for a field of 1 kOe and found the four-magnon pro-
cess to continue to be important at higher temper-
atures.
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