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Stopping power of fast protons under channeling conditions
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For fast channeled protons the electronic stopping power S, is investigated in an impact-parameter

treatment, where, for single inelastic atomic collisions, the proton moves on a classical straight-line

trajectory. The electrons of the crystal atoms are described by hydrogenlike wave functions. In the

MeU-energy range, the Born approximation can be applied. An average over all impact parameters

yields a mean electronic excitation energy per collision that is twice the binding energy. Using this

average for each impact parameter separately, we obtain S,, , slowly varying and finite for close
collisions and with a long-range part corresponding to distant collisions. The results are in good
agreement with experimental data in Si and Ge.

INTRODUCTION

In the MeV-energy range, protons passing
through matter rapidly with respect to the atomic
electrons suffer small-angle deflections by nuclear
collisions, have a negligible chance to pick up an
electron, and lose kinetic energy F. by electronic
excitation and ionization. The average energy loss
per unit path length, the electronic stopping power
S„=—dE/dx, is well described by the Bethe-Bloch
formula, ,

' as long as the proton moves through a
random arrangement of atoms. In a crystal, how-
ever, protons can be injected in low-index crystal-
lographic directions, moving along open axes or
planes and avoiding close collisions with the crys-
tal atoms (Fig. 1). For such a channeling situation,
the Bethe-Hooch treatment no longer applies, since
small-impact parameters b « —,'n (Fig. 1) are
avoided.

To account for the channel stopping power S„
Lindhard referred to his dielectric approach for
the energy loss of protons in a free-electron gas.
This model yields, for fast protons, equipartition
of S„ into collisions with small momentum transfer,
or plasmon excitation, and those with large mo-
mentum transfer, or single-particle excitation.
For a channeling situation with only dista. nt colli-
sions, Lindhard excludes single-particle excita-
tion, since he assumes this to be proportional to
the local electron density n(r)~0. Then the stop-
ping power $, for fast cha. nneled protons should be
reduced to one half of the random Bethe-Bloch val-
ue, in contradiction to the expe r ime ntal re suits in
Ge.

In Bloch's impact-para. meter treatment, the
inelastic energy loss is calculated in a first Born
approximation for the model of single collisions
with hydrogenlike atoms. An energy- and impact-
parameter-independent excitation energy is as-
sumed equal to the binding energy ~ qo~ of the elec-
tron shell under consideration. The average en-
ergy loss b,E(b, E), due to a collision with the

crystal atom m (Fig. 1), is calculated in the dipole
approximation, valid for lj &~ fio, where ao is the
scaled Bohr radius. For impact parameters 6 «ao,
ZE(b, E) is extrapolated, supplying unphysically
large values for small b with a 1/b' divergence at
5=0. This is corrected artificially by introducing
a cutoff impact parameter 5, so that the integral
over b ~ 6 yields the random Bethe-Bloch value

S„/p, where p is the density of atoms.
Our approach is based on the same atomic colli-

sion model as Bloch's. In contrast to his calcula-
tion we avoid the dipole approximation, so that
small-impact parameters also are included, which
occur for protons with large oscillation amplitudes
in Fig. 1. The wavelength of the trajectories is al-
ways many lattice constants so that a straight-line
assumption for each individual collision is valid
even for large oscillation amplitudes. Like Bloch,
we keep the first Born. approximation and an ap-

proximatelyy

impact-parameter -independent exc ita-
tion energy. But this is calculated self-consistent-
ly and results in 2)po~ for large proton velocity.
Compared with former results 6 we obtain, for
5& ao, a larger energy loss of shorter but still long
range, while AE(b & no) is slowly varying and stays
finite at b=0.

We apply our results to proton channeling in Si
and Ge and obtain good agreement with the experi-
mental data. In particular, we explain quantita-
tively the different ratios 8 = S,/S„ for Si and Ge.

II. THEORY

The stopping power of the channeled proton in
Fig. 1 is

S,(x) —.——=-Q~E[b. (x), v],
dE 1

dx a

where b,E(b, v) is the average energy loss due to
the collision with the crystal atom ~r~ at a distance
z from the surface, when the proton of velocity v

pass'es with impact parameter 5 . The sum ex-
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(1) is reduced to evaluating the average inelastic
energy loss for a proton-hydrogen collision in the
impact-parameter treatment with scaled charge g,

Considering only one electron in the following,
we drop for convenience the index i. The average
inelastic energy loss is

b.E(b, U) = h Q ((u„—~o)P„(b, v), h(u„= q„,
fI&0

(4)

where P„(5, v) is the transition probability for ex-
citing the electron to a state In) in the collision of
Fig. 2. The cross section for this process is

o„=fP„(b, v)d'b .
The transition probability can be calculated by

P.(b, ~) = I/. (5, ~)
I

', y. =- (.
I
~(/- ")),

(5)

(8)

C", hanneled proton trajectory {schematic for
axial channeling in a simple cubic lattice with lattice con-
stant, a).

tends over all lattice sites y~& in a plane perpendicu-
lar to the particle trajectory, and a is the lattice
constant. The random-stopping power $„results
from (1) by averaging S, over the channel cross
section F = g'..

S„=— df S, = —g ' rA b,E(b, v)
1 "

1

F .p ' Fn

=p d b&Eb, v (2)

In (2) p is the density of atoms in the crystal, and
the last integral extends over all b. We calculate
AE(b, v) in the model of Fig. 2.

The proton p moves with impact parameter b and
velocity v on a straight-line trajectory R(/) = b+v/
past an atom of atomic number Z. The curvature
of the trajectory can be neglected for each atomic
collision, since the wavelength of the trajectory in
the channel extends over many lattice consta. nts.
Each electron j of mass rp~ and charge —e is de-
scribed by a hydrogen model and assumed to be
bound by an effective Coulomb potential V, = —Z, e /r
in a. hydrogenlike ground state IO),. with the energy

The binding energy - &o is the ionization poten-
tial of electron i and determines the effective Z, .
The time-dependent Coulomb interaction V (r
= Ir —R(/))) = —e /r causes transitions of i from
)0),, to excited or ionized states )n), with energie. s

&„' corresponding to energy losses &„' —po of the
proton. The average energy loss DE' due to elec-
tron i can then be summed incoherently to yield

f = —(i/j7) f d/ e' n~(0~ V(/)
~
g(/)) . (8)

Since we are dealing with fast protons, we have
v»vo for the outer electrons, vo=h/aom being the
orbital electron velocity. Then the collision time
is short and V(/) can be considered as a small per-
turbation applied to ~0). The inner electrons are
strongly bound, and V is small compared with V, ,
so that again a perturbation treatment is sufficient.
We therefore evaluate f„ in (8) in a first Born ap-
proximation, replacing $(/) by the unperturbed
ground state, a.nd obtain

y„=-(i/h) f „d/e*'" o"(~l V(/)~-0) . (9)

Introducing (9) and (6) into (4) yields a sum over n,
which is hard to perform exactly. We therefore
approximate ~„—~0 by ~(v), which is independent
of n and is calculated self-consistently by averag-
ing over all impact parameters 5 with (2) and (5).
The sum can then be performed by the closure re-

1

I

/
/

where ji(t) is the electronic state at time /, devel-
oping from the initial state I g(/- —~)) = )0)e '"o'

according to the Schrodinger equation

H~g) =/h~ g), H=- (0'/2m)V + V(r) V(r —R(/)) .
(7)

After some operator algebra' one obtains for the
amplitude

~E(/~, v) =g ~E*(h, r) . (8)

By (3) the calculation of the channel stopping power
FIG. 2. Hydrogenlike model for a proton-atom colli-

sion.
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lation with the result

r4E(b, v) ~ AE-„(b, v),

~E-„=(&/I) {(ol I
v(~, b)

I

'I o& -
I
(o I v(~ b)

I
0&

I

'/
r f t4)f

V((pr b) =
(

dt e'"'V(t) = —e' dt
)r -vt-5]

2 2
I( (n/)nr(ff (() [Z2+(, b)2]i/2

V
0 )

and (p(v) is determined by the random stopping
power S„due to one electron:

S„=p 1 db 2)ibt4E(b, v) = p f db 2)Ib/2E (b, v) -. (11)

In (10) we have introduced Cartesian coordinates
r =Ix, y, z/ with the x and y axes parallel to v and b

(Fig. 2) and K„are the modified Bessel functions. '
In our model we have (r (0& = [I/()Iapp))/ ]e "/'o where

Qp —Qg I/ Z, is the scaled Bohr radius a ~. In the mo-
mentum representation, the matrix elements in

(10) are

'l7 = (d/I!r II = 2/ap .
The k integration in (12) has to be performed in

the plane perpendicular to v. Similarly we have

J k +rt k +7) [(ki —k2) +II ]
(i 3)

For the following the space repre sentation of
(13) will be useful also. With (10) we obtain

4 4

&o
I
v{~)l'-I o& = "»2 d-"-'"/ pA-2p(&[z2+(y-b)2]) ')

m apV

4
n'.* n( ).!(, ."—

l

',— nl) (14)
7|'V K

The integration area in (14) is the y, z plane.
For the determination of (d according to (10) and

(11), we have to square (12) and integrate it as well
as (13) over all impact parameters. This yields a
f) function in k, which reduces the two k integra-
tions to only one:

S„=(4p~e'/kv')/I, —I,j,
&olv(~) o&= —

2 b(~-k v)
16e~ d k e-ik b

IIap k (k +x )

16e' " d A
e'"

IIa()v - k'+r)2 (k2+r12+x')2 '

where

(12)

where

1 l (k2+~2)2 ~R r 2 8 (k2+~2)2(k2+~2++2)4 r

substituting 1/x= 1+k2/q2 in j2 results in

dx x' 4(rt/x) 2+ 10(rt/It)4+ ~2 ())/it)2 + 1 4r/2
' q'.. ( +x~ /2") 4 (r/2/x +I2) 2

K
8

5 yp

K—«].
n

1+ 2 ln z, —»1.
'g K K

(16)

With (16) one obtains for the random stopping pow-
er (15)

~ p p

f„=—
~ k—, 5(t)(d„—k v)F„(k)e '"

~r
(i9)

4me4

fv (v) P

4)ie m(v(v) 2 4v

V &&(r)(V)ap

v»(v(v)ap . (I'7)

with

Then we obtain with (6) and (5),

On the other hand, using (11), {4), and (5) S„ is F ' „4 6(4(d k'v}IF„%)l
4e4 "dk

{2o)

S„=Ip cr)(r„{v)d!r),
0

(18)

where the cross section for energy transfer 5& is

Averaging over the magnetic sublevels, the ( F„$)l
are isotropic in k and the angular integration in
(20) can be performed

+(dn)+n! +")n ("n (~p

4

(a„&=„, 2
~

—,e(I-(~~„/kv)')( F„(k)l'& (21)

After Fourier-transforming the Coulomb poten-
tial and performing the time integral, (9) can be
written

with the step function

1, q&0
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Introducing (21) into (18) yields

a„=„,, l

—„, e(I —(,/kv)')s(k, d)
87te4

~

dk
(22)

with the inelastic structure factor

S(k, w) =&5(~ —dw„)
l
F„(k)l' . (23)

S is the probability for transferring the energy
S~ to the bound electron after a momentum trans-
fer hk. With the closure relation one can easily
prove the following sum rules:

=Sf( /Zm

J S(k, td)CId =1,
hk

(dS(kq Q3)dQ3 = ((d)y = (24)

jQ3 S(k Q) )de) = (K )y = (Cd)2(I + 4/3a2k )

Using (22) we obtain from (18),

S„= q p 3 91- — Sk, ~. 25

l=2 me/n

I'IG. ~. Energy and momentum transfers contributing
to S„(25).

In Fig. 3 we have plotted the k~ plane together
with the integration limit ~ = kv and the parabola
(&u)2= hk /2m, around which the integrand in (25) is
concentrated. The parabola intersects the line
= kv at Sk =2mv, the maximum momentum trans-
fer to a free electron, where with (24) for v» vo

=k/mao the fluctuations of &u are small. Then mo-
mentum transfers k&k are negligible for v» vo.
The minimum momentum transfer occuring in (25)
is k, =du, /v (Fig. 3), corresponding to the small-
est energy transfer fi~(d, to the first excited state
of the atom. With the fluctuations of v in (24) one
can easily see, that for v» v() energy transfers
~ & kv are negligible and can be included in the (d

integration in (25). The exact but tedious calcula-
tion by Bethe' shows that this induces for hydrogen
atoms a change of 30% in the argument of the loga-
rithm in (26) which is negligible for v» vo. There-
fore we can integrate in (25) over the shaded area
of Fig. 3. This results with (24) in

Sme4 "& dk
"

S„= 2 p
—&S(k, (u)d(u

hv „k
1

k(d (v » vo) = )2 /mao = 2 (27)

( )= " " = " =J d (28)
f2, a~d(d kpag~

In the third term of (28) we have used (18) and in-
troduced the total inelastic cross section 0„for
one electron. This can be calculated for v» vo

from (22) in the same way as S„. Simila. rly to the
derivation of (26) we obtain with (23), (24),

S~e4 )«dk ""
+in —

2 2 I 2 S(k, K)dK
"5td1 1

Since we have no low-velocity approximation for
(22), (26), we confine ourselves in the following to
fast protons v» vp In contrast to Bloch's h ~ '

Eq. (27) shows that the ~ approximation in

(10) is consistent with twice the ionization energy.
We shall see later that this changes S, substantial-
ly.

The factor two in can also be obtained by a dif-
ferent approach. We define the average inelastic
excitation energy by

47t e 2mv
z pinv' h~~,

(26)
4 "~m dk

„—(I — Fo(k)
l

') .

The random stopping power S„ in (26), calculated
here by averaging the semiclassical channeling
stopping power S, for one electron over all impact
parameters, is identical with the full quantum-
mechanical Bethe-Bloch formula. ' This justifies
our approach describing the proton motion by a
classical trajectory.

Comparing the high-velocity formula (17) with

(26) we obtain

4pe z Smv(7„= z z aoln
V +401

With (28), (26), and (27), this yields

(cu) = 8/ma, ' = (u, (30)

Introducing the hydrogenlike ground state (r) 0)
= [I/(mao)'~2]e "~'o in F2(k) = (0) e'"'"10) one obtains
after straightforward integration,
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so that k(d can be considered as the average inelas-
tic excitation energy.

We now turn back to the explicit b dependence
AE(b, v) in (10) and (12)-(14). Performing the
angular integration in (12) we have

&oI v(~)I0) =-
map4v

' '

+K() —,b» ap
C

2

-=Rlc, l(~ (-,'w'-)), ) «.,
82 1

0 0 0 2 2 2 0

(36)

2e
(OI V(m)IO)~ — Ko(bt)), b»ao, v» vo

v
(32)

and for small impact parameters b«gp, expanding

Kpy

(0(lv( )lo&= —.(l» — ~ )) ~ 0()*), ) -, ~-e' t'

v II K
(33)

Similarly we discuss the integral in (14) for
large and small b. For b»ap we expand Kp for
small x. The linear term drops out because of
spherical symmetry. The integrals over x are
str aightforward with the recurrence relations for
the K„. The result is, for b»gp:

&o I I
v(~)

I
'I 0) —(4e'/v')(Ko(nb)

+ (4t)'/~')[K', (qb)+ K', (r)b)]}, b» a, .
(34)

For b «ao we drop b in (14) and expand the Bessel
function Ko for small argument r)/g «1 or v» vo.
The integra. ls over g are eva. luated in the Appendix.
Then we obtain for

&oI
I
v(~)I'Io)~ ', in'"-+in"-+'—

v K K 12

+O(b ), b«a(), v»vo . (36)

With (32)-(35) we obtain from (10) for the average
energy loss per electron with binding energy t&0)

as a function of impact parameter b

dk k Jo(kb)
(k'+t)2)(k'+t)'+((') '

where Jp is the zeroth-order Bessel function. ' The
denominator can be rewritten with the Feynman in-
tegral'

kJo(kb)
( ))8 [ 2(1 ) ka 2]2

The 4 integration can be performed, ' supplying a
modified Bessel function K„which can be inte-
grated over x after a straightforward substitution,
with the result

i, = —2w8„2(l/~ )(Ko(bq) Ko(b-(K +t)')'i')}. (31)

For fast protons we can neglect ri in (31). Then
we obtain for bK»1 or b»gp, dropping the second
term in (31),

where we have introduced the Bohr velocity v~ and
a critical impact parameter b„v/b, = vo/ao having
the intuitive meaning of equal angular velocity of
the passing proton and the electron in the orbit.

For the high velocities under consideration
(v»v, ) we have b, »ao. Therefore the large-im-
pact-parameter result in (36) can be expanded:

v 4v
AE(b»a„v»v, ) BI&, I

-(t —' +, a, «b«b,

b»b, »a, . (31)

Compared with Bloch's result the small-impact-
parameter formula (36) does not show an unphysi-
cal divergence at b= 0, but stays finite. The inte-
gral over all b supplies the Bethe-Bloch formula
without an artificial cutoff at small b. The critical
impact parameter b, is a factor of 2 smaller than
Bloch's b„reducing the range of b,E(b) by one-half,
while the magnitude of b E(a, & b & b, ) is increased
by a factor of 2.

The important feature of (36) and (37) is that tor
high proton velocity v» vp the ma, in contribution to
the b-integrated energy loss is supplied by large
impact parameters ap «b - b„corresponding to
protons traveling at a large distance from the elec-
tron distribution. This is because of the small
1/b decrease, which in the total stopping is
weighted with 2gb and provides the log term in the
Bethe-Bloch formula. The long-range behavior is
due to the Coulomb potential V, which leads to a
long-range inelastic dipole interaction of the pass-
ing proton with the target atom. Therefore the
stopping of fast ions in matter is not related to the
local electron density, which as shown in the fol-
lowing has drastic consequences for the reduction
of S, as compared to S„.

Breaking the k integration in (26) in one part
from k, to k2= 1/ao and a second from k2 to k„, one
obtains equal contributions for small (k & 1/ao) and

large (k & 1/ao) momentum transfers, which rough-
ly corresponds to excitation and ionization. A

similar equipartition occurs in Lindhard's dielec-
tric approach for the energy loss of fast protons in
a free-electron gas, corresponding to plasmon and
single-particle excitation. It has been argued that
in a channeling situation, where the ion explores
only low electron densities, the single-particle ex-
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citations or ionization processes are suppressed
and hence the energy loss in the high-energy limit
is reduced to one-half by equipartition. This pic-
ture uses the local electron density as the basic
quantity for single-particle excitations and infers
that the large momentum transfers or ionization
processes are supplied by b ~aa contributing one
half to S„. In contrast to this, (36) shows that not
only excitation but also ionization processes cor-
respond to a long range. However this is enhanced
by the & approximation (10), (27), and (30), which
overestimates b, E(ao & 5 & 5, ) O. n the other hand,
the adiabacity criterion supplies critical impact
parameters b~ a v/h&u„& ao for ionization to states
of energy h~„& hv/ao. This supports the long-range

!

behavior of (36), leading to the prediction

R(v--) =(S./S„)(v--) o--,' . (38)

In order to test (38) by a channeling experiment the
protons have to be fast enough to meet the require-
ment 5, » ao and 5, » n (Fig. 1) for all electron
shells which can be excited by random impact.
This is discussed quantitatively in Sec. IV for pro-
tons channeled in Si. Electron shells contributing
to S„with 5, «a are not or hardly excited under
channeling conditions, so that R(v) &R(v- ~).

For the intermediate impact parameter range
b mao, the explicit 5 dependence of b, E(b, v) must
be obtained numerically. Equations (10) and (12)-
(14) can be put into the form

32gg 'U
p

1r 5 eo

AE(b, v) = ' 'p K( np)dp IKolf(p~ @).9 dQ —
2 2 p Ki(yp)dp Ko[f(p, Q)]dp (39)

where

f(p, 4)=(p' P+'-2Ppc ops) ', o =2v/v„

P=b/v y =I+o

and &s = e2/2as is the Rydberg constant for hydro-
gen (13.6 eV).

Numerical evaluation of (39) used Gaussian quad-
rature methods for both inner and outer integrals.
The results are plotted in Figs. 4 and 5, which
show the slow decrease of AE(b, v) with 5 for
v» v0. From Fig. 4b, one sees that for each b

there is a small and a large velocity with the same
energy loss. This is also shown by the intersec-
tions of two p curves at a single b in Fig. 4a.

III. APPLICATION TO STOPPING POWER

MEASUREMENTS IN Si AND Ge

In Sec. III the theory of Sec. II is applied to the
stopping-power measurements of Clark et al. "for
4-MeV protons in different axial channels of Si and
Ge. In either case the lattice type is diamond
structure with nearly the same lattice constant of
about 5. 5 A, and with four outer valence electrons
supplied by each lattice atom. We confine our-
selves to the best channeled particles, which move
along the channel center and can be selected ex-
perimentally by the leading edge of the channeled
energy-loss spectra. " In a first approximation we
neglect oscillations of the protons around the chan-
nel axis, so that the impact parameter for the
atomic collisions does not change w ith pe netr ation
depth.

The outer four valence electrons are described
in the hydrogen model of Sec. II by a binding energy
&~ =8 eV and a scaled Bohr radius a„=0.69 A cor-

responding to the first ionization potential of Si and
Ge or the half-width of the valence band plus band

gap. For 4-MeV protons v/vr - 16.4 and the criti-
cal impact parameter b~ =—16.4a~ —11.3 A. Since
the maximum channel radius is x&»0&

——2 A (Fig.
6) belonging to the (110) channel, we have br» r
(any channel) and many atoms around the trajectory
contribute with their valence electrons to the en-
ergy loss of 4-MeV channeled protons. They
therefore supply the random value S„{26), as dis-
cussed in Sec. II, so that only the binding energy
&~ and not the wave functions of the valence elec-
trons enter in the channel stopping power. Hence
our simplified model, describing the hybrid struc-
ture of the valence electrons by hydrogenlike
ground states, is not reflected in the stopping pow-
er value. We shall see below, that for 4-MeV the
core electrons have b, values too small to be ex-
cited by the best channeled particles in (110) chan-
nels. With the atomic density p ~ 5 && 10 2 (4. 4
&:10 )/A for Si (Ge) (26) yields therefore with four
valence electrons for the stopping power in (110)
channeling

S " '=4$„~0.84(0. 74) eV/A

for Si (Ge) in reasonable agreement with the ex-
perimental result 0. 68(0. 70) (eV/A).

The next inner shell contains in Si 8 I. electrons
bound with about 100 eV and in Ge 18 M electrons
bound with 50-150 eV. The hydrogenlike model
and the theory in the preceding section are too
crude to aim at an accuracy of more than 10%.
Hence it is sufficient to use an average &~&» ~ 100
eV for the L (M) shell in Si (Ge), since the results
discussed below are not sensitive with respect to

Then the scaled Bohr radius is g~&» = 0.2
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FIG. 4. Average energy loss for a proton-atom collision. The dashed curve shows the asymptotic 1jjb~ dependence
for ao «b «b, for the case e/vo = 10.

A, vjv~&„&
=—4. 7, and the critical impact parameter

b«» —=0.9 A. This is half the value following from
Erginsoy's adiabaticity criterion which is identical
with Bloch's b, . We neglect the innermost shells,
the E shell in Si a.nd the K and L shells in Ge, since
they contain fewer and more tightly bound electrons
than the two outer shells.

The random contribution due to the 8 (18) L (M)

electrons in Si (Ge) is, with (26),

8 (18) Sf&"&~ 1 (2. 1) eVjA .
The most open channel is in the (110) direction with
a cha. nnel radius r&&,o&

-—2 A & b~&„& (Fig. 6).
Therefore the best-channeled 4 MeV-protons in
the (110) direction do not excite the L (Af) electrons
in Si (Ge) and we have

$ |,'110& 4$'
R&„,&(4 MeV) = &„,&(4 MeV) =,",

&„& =0.46(0.$„

in excellent agreement with the experimental values

R&„o&=0.43(0. 28) for Si (Ge) by Clark et al. " Us-
ing for EL &» 50 or 150 eV instead of 100 eV the the-
oretical result for gffyo& changes only by 10$&
This is due to the weak log dependence of $„' in

(26) on ez &„&
~ Kb, &d, . Clearly the asymptotic value

(38) is not yet reached for 4-MeV protons. since

the core electrons with f&«»(4 MeV) ~ 0. 4 r&»o& do

not contribute to $," ' for the best-channeled pro-
tons. The difference of R&»o& for Si a.nd Ge con-
tradicts Lindhard's equipartition rule. In our ap-
proach the difference R is explained quantitatively
by the different electron numbers in the I. shell of
Si and M-shell of Ge.
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er, the difference for Si and Ge being due to the
different numbers of electrons in the Si-L and Ge-
M shell. The poor hydrogenlike wave functions are
not reflected in the results mhere we apply them,
since in all channels the valence electrons supply
the random Bethe-Bloch value and the best-chan-
neled particles excite the L(M) electrons in Si (Ge)
only for 5 ~ b, , where the details of the wave func-
tions do not enter. Also the &d approximation (10)
influences hE mainly for b«b, , which can be
achieved by the best-channeled protons and the L
(M) shells of Si (Ge) only with substantially higher
energies. A promising experiment to investigate
R(v- ~) would be the channeling of about 160-MeV
protons in Si, where the L,-shell energy i.s E~ —100
eV and the corresponding critical impact parameter
b~- 5A8 A. This is 4. 3 x&yoo, so that the L shell of
the Si atoms should be excited for (100) channeling
with an efficiency comparable to random conditions.
Further calculations to improve the 5 approxima-
tion are in progress.

10
0 1 2 5 4 5 6 7 8

A/eA, IMPACT PARAMETER

FIG. 5. Normalized average energy loss for a proton-
atom collision.
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APPENDIX

The channel radius r(gyes }
~ 1 A is determined by

the smaller dimension of the (111)channel so that
the L (M) shell of Si (Ge) with bA&„I a 0. 9 A should
slightly be excited by the best-channeled particles
in the channel. The experimental data of Clark"
show an increase of 0. 2(0. 4) eV/A for S&""with
respect to S&110

The ratio of the different increase in Si and Ge
0. 2/0. 4 ~ 8/18 is again roughly determined by the
8 (18) electrons in the L (M) shell. With DE(b, v
—4. 7vA&») of (86) we have with 0. 42 atoms/A ow-
ing to the two nearest rows of atoms contributing
in the smaller (111)cha. nnel dimension

8&""(4MeV) ~ 48P(4 MeV) +0. 42&& 8(18)

x 0. 23 +g ++()

Dx( ,'e") = f x ln —(—,
' xe")K (x)dx, K=1, 2, (A 1)

where the expansion of Ko(x) for small argument
has been used:

K,(x) ~ —ln(-,' xe") + O(x'),

where y=0. 577 ~ ~ ~ is Euler's constant. The es-
sential step in evaluating (Al) is to note that

dK
Dx(c&) = lim x &x'G(z),

8 0

where

(A2)

The evaluation of E&ls. (10) a.nd (12)-(14) for im-
pact parameter b =0 requires evaluation of the two

integrals

The observed increase of 0.2(0. 4) eV/A is supplied
by the second term in (40) for b ~1.2'&„I~ 1 A,
which corresponds to the trajectory along the cen-
ter of the (111)channel.

IV. CONCLUSIONS

The theory of Sec. II, based on the impact pa-
rameter treatment of an inelastic proton-hydrogen
atom collision, has been scaled to Si and Ge and

yields good agreement with the experimental re-
sults. In particular, it accounts well for the ob-
served ratio R of channel to random stopping pow- FIG. 6. Cross sections of axial channels in Si and Ge.
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C(z)=- j x"'Z, (x)dx.

Introducing the integral representation

(AS) Eq. (A5) may now be differentiated as indicated in

(A2) and the limiting results are

D&(n) = 1 + 2 ln2+ —2y,

K, (x) =-,' x1 (u' —1)'i'e "du, (A4)

and reversing the order of integration, it is easily
shown that

D2(a) = +~a+'2 ln22n, —2(2y —1)1n2n —2y(1 —y) .
(A7)

Now, with the value u= —,'e", these expressions re-
duce to the desired results

C(z) =-', r(-', )r(z+4) r ',
r(-;(, +2))
r —,

' z+5 (A5)
D, (-', e") = 1,
Da(2 e") = ~6~' ~

(A8)
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