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Perturbation Methods in the Calculation of Zeeman Interactions and
Magnetic Dipole Line Strengths for d' Trigonal-Crystal Spectra
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Using a perturbation expansion based on a strong cubic-Geld zeroth-order approximation, we have ob-
tained analytical expressions for the g values of the t2', A2, and 'E terms for d' impurity ions in trigonal
crystal Gelds. We have compared these expressions whth the results of a numerical calculation in which the
magnetic dipole operator was transformed to the basis of eigenvectors of the zero-6eld Hamiltonian com-
puted within the complete d con6guration, and we Gnd them to be a very good approximation. This is not
true of the published g-value expressions which are currently available. Absolute magnetic dipole absorption
cross sections and nonlinear g values are also calculated. This the Grst time such a detailed calculation of
these quantities has been made for transition-ion impurity systems. For levels derived from cubic terms
other than tP, 4A 2, and 2E, the analytical-perturbation techniques are not satisfactory and numerical methods
must be used. We present an analysis of the g values of the nominally t23 terms, 4A2, 'A, 'T&, and ~T&, for
emerald, ruby, ZnA1204. Cr'+, MgO:Cr'+, and ZnO:Co'+, and of magnetic dipole absorption cross sections
for centrosymmetric ZnA1204..Cr'+ and MgO:Cr'+. These systems were chosen because there are quite
extensive experimental data available on them. The model parameters were determined from the zero-field
energy levels, and very good agreement with experiment was obtained in our calculation of the g values
and absorption strengths. This provides con6dence in the validity of the crystal-field model to predict the
magnetic properties of at least the tP levels, which couple weakly to phonons.

I. INTRODUCTION

HE response of a magnetic impurity in a dia-
magnetic host, to either an applied Zeeman field

or an oscillating-radiation field, gives important infor-
mation about the nature of the zero-field eigenstates of
the impurity ion and forms a useful starting point for
understanding the behavior of the corresponding mag-
netically concentrated materials. This response has been
measured for many d' ions present as impurities in
crystals, as these have sharp optical and microwave
spectra arising from transitions between electronic
states which interact only weakly with the lattice. By
far, the largest body of data has been obtained on the
R line transitions ('As~'E) and the ground state
(4As) EPR. For this reason, we will tend to concentrate
on these in our analysis.

Ke report here a numerical calculation of g values,
nonlinear Zeeman coefficients, and magnetic dipole

(MD) line strengths for some d' (and, incidentally, dr)

electronic systems in cubic and trigonal crystal fields.
The calculation is exact within the usual crystal-field
approximation, i.e., that the impurity orbitals trans-
form like d orbitals under operations of the site sym-

metry group, and matrix elements between these orbitals
and p-like or charge transfer states can be neglected for
energy calculations. This static model is a realistic one,
as we are primarily interested in levels which are very
weakly coupled to the lattice, viz. , the nominally t2'

* Work at Stanford University supported by the Army Research
Ofhce (Durham} under contract No. ARO-D(208).

t Present address.
' Sometimes also called the ligand-6eld approximation. For a

full discussion of this model, see J. S. GriKth, The Theory of
Transition Meta/ Ions {Cambridge University Press, Cambridge,
England, 1961).
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levels (Fig. 1). The numerical calculations emp]oy a
perturbation expansion based on eigenstates of the
complete d' zero-magnetic field Hamiltonian, as zeroth-
order states. The perturbation is then truly small, viz. ,
the electromagnetic (EM) radiation magnetic field or
the static-applied magnetic field. We transform the
matrices of I. and S to this zeroth-order basis and,
hence, obtain linear or nonlinear g values and MD line
strengths in a straightforward manner. However, being
a numerical method, it requires a new calculation of the
zeroth-order eigenstates for each new physical system.
Some exploration of the parameter dependence of g
values has been carried out, and the whole problem has
been programmed for computer processing. The exact
numerical solutions have also been used to test the
validity of currently used analytical perturbation
expressions for g values2 and MD line strengths. '4
In almost every case, they have been found to be
inadequate. These analytical expressions use, as zeroth-
order states, eigenstates of the cubic-crystal-field term
in the Hamiltonian (the so-called "strong-field"
approximation). In the case of the 'As and '8 g values,
we point out why these expressions are inadequate and
extend the previous analytical calculations to provide
reasonably accurate working formulas, which show the
parameter dependence of the g values explicitly, and
which are valid over a reasonably wide range of param-
eter values (and, hence, physical situations). This com-
plernents an analysis of d', t2s zero-field splittings (ZFS)

' S. Sugano and Y. Tanabe, J. Phys. Soc. Japan 13, 880 {f958).
3 S. Sugano, A. L. Schawlow, and F. Varsanyi, Phys. Rev. 120,

2045 {1960).
4 G. F. Imbusch, A. L. Schawlow, A. D. May, and S. Sugano,

Phys. Rev. 140, A830 {1965).
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a2T2 2
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Eb piete background to a recent analysis of the R-line
spectrum of Cr'+ in spinels. ~

II. DEFINITIONS AND NOTATION

For the case of a d" impurity ion in a crystal, the
zero-field Hamiltonian BC( ) can be written

-Eb

K"&=A/ —sr (70)'"Us' —2(Vs' —U s')j
)63

+Q (49++7C)c;(s c '(s)+~ —C ~c;(4' c.(4)

i)j'

+sL —(1/&) (&0)'"~o'+ (4/21) P0)'"U'o'

—s (Us' —U-s') j+~'L(4/&) (~5)'"U'o'

+ (4/&) (3~)'"L'o' —(2)'"(Us' —&—s') 3

+l'P s;.l,

—=Xi(4)+3'.s(B,C)+aCs(v, t ')+ae4(P),

4A
2 -E

-2D
2A

Fro. 1. Schematic energy-level diagram (splittings not to scale)
showing to ZFS of the nominally t23 terms.

which was recently carried out. ' For other cubic terms,
it is not practicab1e to obtain analytical expressions,
and one must carry out a detailed numerical calculation.
The results of such a calculation are given in Sec. V.

Most of the activity in analyzing d' crystal spectra
has been concentrated on zero magnetic-held-energy
calculations. Sugano and Tanabe' were the first to
systematically set down perturbation expressions for g
values of the t2' terms. Their expressions omit large
contributions and were obtained using an unsatisfactory
way of dealing with zeroth-order degeneracy. The
apparent agreement they obtain in analyzing the ruby

g values appears to be fortuitous. Sugano and Peter'
carried out a numerical calculation for ruby based on a
diagonalization of the most important part of the d3

energy matrix. They chose a fixed ratio between the two
trigonal-field parameters (s'=sv2s), which is acciden-

tally satisfied in ruby but not in most other d~ systems.
We have extended all these g-value calculations and
included nonlinear Zeeman interactions and MD line

strengths. The present paper also provides a more com-

' R. M. Macfarlane, J. Chem. Phys. 47, 2066 (1967).
' S. Sngano and M. Peter, Phys. Rev. 122, 381 (1961).

+OZa gaPa+a') (2)

where the g tensor is referred to principal axes and p,

is the MD operator. For H&& c axis, the unitary opera-
tions form the subgroup C3 or C3;, i.e., the possible
magnetic symmetry groups' are Dsz(Cs;), Cs;(Cs,),
Ds(Cs), Cs, (Cs), and Cs(Cs). The Zeeman components
of the zero-field Kramers's doublets (for H~~ c axis)
can, therefore, be labeled by the irreducible representa-
tions of the unitary double group C3*, i.e., E+, E, and

(or I'4, I' s, and I's in Koster's" notation). In the
absence of the held, E+ and E are degenerate and the
A levels are degenerate in pairs. The E+, E states are

~ D. L. Wood, G. F. Imbusch, R. M. Macfarlane, P. Kisliuk,
and D. M. Larkin, J. Chem. Phys. 48, 5255 (1968).

8 The operators c(2) and c( ), their reduced matrix elements, and
the parameters 8 and C are dered by G. Racah, Phys. Rev. 62,
438 (1942). For the other parameters, see Ref. 17 and M. H. L.
Pryce and %. A. Runciman, Discussions Faraday Soc. 26, 34
(1958).

~ In the notation of J. O. Dimmock and R. G. Wheeler, J. Phys.
Chem. Solids 23, 729 (1963).

"G. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,
Properties of the 2hirty-two Point Groups (The M.I.T. Press
Cambridge, Mass. , 1963).

which includes cubic crystal field, single-ion Coulomb,
trigonal crystal field, and spin-orbit terms, respectively.
The sums over i and j are over individual d-like elec-
trons, and the parametric dependence is shown in the
usual notation. s BC&" has the same form for any of the
trigonal site groups, viz. , D3~, C3;, D~, C3„, or C3. This
is because the Hamiltonian is time-reversal invariant,
and we assume that impurity orbitals transform in the
same way as d orbitals under operations of the site
group. When an external magnetic Geld H is applied to
the crystal, it acquires a net moment, and time reversal
by itself is no longer a symmetry operation of the site
group which will now be one of the magnetic point
groups. The Hamiltonian is then
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composed of linear combinations of
I
d'aSL JM)

basis states with M—=+is, ——', (mod 3). The A. states
have M—:s (mod 3).

A. g Values

The g value describes the erst-order splitting of the
E and 2A Kramers' doublets by an external magnetic
field. For consistency, it is best defined in terms of an
effective spin 5'=2, although for the 432 term this
may not be quite as convenient as taking 5'= ~. We
have for the E doublets,

g„(E)= 2((oE+
I
kL„+g,S,

I
oiE+), (3a)

g, (E)=2( E IkI.,+g,S,
I E~), (3b)

where ~~E+ ) are the zero-field eigenstates of %to', o~

is a label to distinguish different E levels, k is the
orbital-reduction factor, and g, is the free-spin g value
of 2.0023. The sign of g&l is defined to be positive if the
E+ component has a higher energy than E . No sign is
associated with g& since the Zeeman components for
H, c axis transform according to the same representa-
tion of the group C~*, and the optical and microwave
transitions have no polarization properties. The relative
sign of the spin and orbital contributions to g, is of
course, fixed.

For the 2A doublets, we have a slightly more com-
plicated situation as the two components are labeled by
the same representation of C3*, so that, in general, the
computed eigenvectors of K "&, say nA and pA. , are not
eigenstates of L, and 5,. Thus,

7,= 2(~,oA IkL,+g,S,
I
cv,nA ), (4a)

ps=2(cv, nA IkI.,jg,S,Ioi,PA), (4b)

g (2A)=(~:+. )", (4c)

g, (2A) =0 (by symmetry). (5)

The states labeled nA, PA. are arbitrary orthonormal
linear combinations of the two components of 2A.
There is no straightforward way of attaching a sign to
g«(2A), except perhaps in certain cases by a study of the
eigenvectors of (kL,+g,S,). We will take it to be
positive. Whereas L, and 5, are simultaneously diagon-
alized within E by the eigenvectors of the X"&, this is
not true within 2A. This is because the noncommutation
of L, and S, introduced by spin-orbit coupling does not
guarantee simultaneous eigenstates for L, and 5,.
However, for 3d ions, the spin-orbit interaction is
quite small, and it is still possible to separate the con-
tributions of L and 5 to the g values, to a good approxi-
mation. In Sec. V, where the orbital and spin contribu-
tions to g are listed separately, it is indiacted that this
separation is not rigorous.

B. Nonlinear g Values

In general, g values are only useful for describing
first-order Zeeman sects. However, in some simple

TABLE I. Selection rules for components of the MD operator in
trigonal symmetry. Alternative representation labels are given
and these are de6ned in the text.

F4 E+
r, E
r6A

r4
E+

cases we can describe nonlinear splittings due to inter-
action between different Kramers' doublets (it being
assumed that all Kramers' doublets are separated by
the crystal field) by one or two nonlinear g values
denoted here by G. Such a nonlinear Zeeman effect has
been observed in ruby" and emerald' using high pulsed
magnetic fields. We will consider here the case where
only two Kramers' doublets interact via the external
field, as this is the situation which has so far been
encountered experimentally. For more complicated
interactions, it is better to diagonalize a submatrix of
the Zeeman interaction. Table I shows which compo-
nents of p=kL+g, S couple the different substates of
the Kramers' doublets. We identify a nonlinear G
value by the levels which are interacting, e.g. ,
Gii(nE+.

I pE~) = Git(oE I pE ) is the nonlinear G value
describing the interaction between two E doublets for
H» c axis. For this orientation of the external field,
nonlinear interactions are only important when two
levels belonging to the same zero-field representation
have a separation comparable to the magnetic field
energy. This could arise, for example, within 'T~, 'T~,
'T~, or 4T& terms, but not in 'E or 432. The cases of most
interest, since they are the only ones measured so far,
involve the interaction between E and 2A doublets for
H& c axis. This can be described by

G, (E I
2A) = 2 (E+ I

p,
I
A') = 2 (E I tu, I

A"),
where A' and A" are linear combinations of the corn-
ponents of 2A, such that each one interacts with only
one component of E For the tss'E. term, g, (E) is small
and can usually be neglected for energy calculations.
In this case, we can write the energies of the two doubly
degenerate levels as"

E, ,=~ i {ass+LG, (E
I
2A )PIIps) i ts

where As is the ZFS between E and 2A. If g, (E) cannot
be neglected, the Zeeman matrix must be numerically
diagonalized within the four substates, and four
nondegenerate components are obtained. Thus, although

g, (2A. ) is zero, the 2A level may still split via a n.onlinear
interaction with components of E. Although they do
not make the distinction, this is in fact what Sugano
and Peter' calculated when they reported a nonvanish-

"K.Aoyagi, A. Misu, and S. Sugano, J. Phys. Soc. Japan IS,
1448 (1963).

& D. L. Wood, J. Chem. Phys. 42, 3404 (1965).
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ing g& for the 2A level of u 'E. Nonlinearity in the 4A&

Zeeman splittings for H, c axis is very pronounced
because the ZFS are small ( 1 cm '). However, for
3d' ions, the departure from the free-spin g value is
small, and we have the approximate relationship

G, (E
~
2A) =v3g&(E) for 'A s. (8)

For a typical 3d' ion, this relationship is good to 1 part
in j.o', and must be satisfied if the EPR spectrum is to
fit an 5=2 spin Hamiltonian with a single g value.
When orbital admixture into 'A2 is relatively large, as,
for example, in Sd ions or tetrahedrally coordinated
Cos+, Eq. (8) may no longer hold and two independent

g values will be required. For example, for Re4+

(i = 2000 cm '), we find approximately a 20% departure
from the relation (8).

C. MD Intensities

MD transitions are usually only observed in cases
where the impurity ion is at a center of symmetry, as
there is then no odd-parity crystal-held component to
allow the stronger ED transitions. We will, therefore,
be concerned with the zero-phonon lines of impurity
ions in Oy„Dad, or C3; sites as, for example, for Cr'+
in MgQ, spinels, or garnets, respectively. Since MD
transitions are parity-allowed within d" configurations,
absolute intensities can be calculated in a relatively
straightforward manner. At most, we need only take
account of spin-orbit mixing in order to get a non-

vanishing transition matrix element. In addition, in

paramagnetic systems, MD intensities are not subject
to uncertain effective field corrections. The quantities
which we directly calculate are line strengths. These
can be defined by analogy with corresponding free-ion
quantities. " Thus, we have, for transitions between
nondegenerate components,

3( nIS' ~Ir,nS'I"I'r'yr')
=

I
(nSI'I'rvr lou'. In'S'I"I'r'»'& I' (9)

where sc labels the components of the MD operator
p=(kL+g, S) and e is the unit vector expressing the
polarization of the radiation, (i.e., we define the transi-
tion line strength for a particular component of the
incident radiation field). For transitions between unsplit
Kramers' doublets I'z, it is useful to define

S.(nsrr, ;n ST'I",')

S„(uSI'I'rjr,u'S'I"I'r'jr'), (10) .

&H'r'

or, for transitions between cubic terms,

S„(nSI';n'ST') = P S„(nSI'I'r,u'ST'I'r') . (11)
Fy* Fy"

Six other quantities involving pairs of the labels
y~, I'~, and SF can be defined in a similar way. Which
one is appropriate to use depends on which degeneracies
have been lifted and whether component lines are
resolved.

For many purposes, it is convenient to define a line
strength in which the Bohr magneton (ek/2mc) has
been factored out, i.e.,

(12)

so that &,
' comprises just matrix elements of L and S,

which for allowed transitions are of the order of unity,
in units of h. It remains to relate the line strengths
dined above to quantities which are directly measured,
for example, the integrated absorption coe%cient per
ion, the oscillator strength, and the radiative lifetime.
These relationships are explored further in Appendix A.
We give here useful expressions for the case of MD
E lines (tss'E~ eAs), in which the ground-state com-
ponents are optically resolved (i.e., there are four R
lines). We also assume here that the ground-state
splitting is much smaller than kT, so that the two
components of 'As have equal populations (for cases
when this is not true see Appendix A). The integrated
absorption coeKcient per atom for one of the 8 lines,
for a given polarization ~, is

( k do ('EI'r 'Asl'r )=2.6/5)&10—
»rig

K

X&.'(' Erl,' Asl'r ) cm, (13)

where 0. is the energy of the transition in cm, k is
the absorption coefficient at the energy 0-, and g is the
refractive index of the crystal. Expressions for the other
three lines follow trivially by substituting an 5' with
the appropriate I'~, Fg. If the ground-state splitting
is not resolved, a summation over the components can
be carried out. For the two most common line shapes,
we can set

l(2

4 dtr= k, ho cm (Gaussian),
2E ln2

4 d&= s&m Ao cm (Lorentzian),
2g

where k is the peak-absorption coefficient and 60. is
the linewidth.

Equations (13) and (14) summarize the important
expressions needed to relate the peak-absorption coeffi-
cient and half-width to the matrix elements of L and S.
The oscillator strength, a derived quantity of largely
historical interest, is given by

"E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England,
1935).

1
f 112NX10"—e '.=k. da),
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and the radiative lifetime 7 „at 0 K is given by

v„'=2 6971X10 "g'o-'

&&s g g„'('As,'El'p ) sec ', (16)

where I'p is the lower component of 'E. The lifetime
will change as a function of temperature if the line
strength from the upper 'E component (i.e., Es) is
different from the lower one (Ri). If we average over the
two R line lifetimes, a useful expression is

T 1(4A —2E) Q 75)(1Q-10rl202

1
k do ('E'As)&1Q" sec ' (17)S

QI. NUMERICAL CALCULATIONS

It will be convenient to outline here the steps in the
numerical calculation of both g values and MD line
strengths, as these are closely related. We start with
the time-independent zeroth-order zero-field Hamil-
tonian BC& & [Eq. (1)]which includes Coulomb, trigonal
crystal field, and spin-orbit terms. Matrix elements of
Xo were calculated in a "weak-field" InsLJM) basis
for the complete d' configuration, as described in an
earlier paper. '4 For a choice of real basis functions, the
matrix of X~'& factorizes into three blocks (labeled by
the epresentations E+, E, and 2A. ) for which M=—is

(mod 3), —rs(mod 3), and —', (mod 3), resPectively. For
C3„D3, or Dsz symmetries, the 2A block could be
further factored into two subblocks by choosing a
complex basis (which yields complex matrix elements),
but it was more convenient for computation to retain
the real form. In any case, the complex basis does not
diagonalize I., or S, and so is not a convenient choice
for g-value calculations. The transformation from the
"calculation basis" InsLJM) to the symmetry basis
for the problem, i.e., InsLJI'T f~) where I'rjr label
representations and components of C3*, is only a simple
change of phase. The zero-order Hamiltonian X& &

consists of six matrices of order 39 for each of E+ and
E and six of order 42 for 2A. These were made up of
three crystal-field matrices (coefficients of Ass, A&',

and A s, or, equivalently, 6, e, s'), two Coulomb matrices
(coefficients of the Racah parameters B and C), and one
spin-orbit matrix (coefficient of l').

We now outline the calculation of the magnetic-
perturbation terms. The MD operator p= (kL+g, S)
is diagonal in 5 and 1. and satisfies the triangular
selection rules (J,1,J') and (M, 1,M') on J' and M. It is
desirable to calculate matrix elements of L and S
separately rather than express L+2S=J+S, which
would otherwise be convenient, as the matrix of J is
diagonal in the quantum number J. One can then
evaluate the spin and orbital contributions to g values

"R.M. Macfarlane, J. Chem. Phys. 39, 3118 (1963).

separately and make allowance for partial quenching of
the orbital contribution by covalency or Jahn-Teller
eGects." Relatively simple closed expressions can be
written for the matrix elements of kL and g,S, where k
is the orbital-reduction factor and g, is the free-spin

g value=2. 0023. These expressions depend only on the
quantum numbers S, L, J, and 3E and, hence, are valid
for any /" configuration.

& SLJMIkL, +g,S,
I

SLJM)=[k+(g, k)E,]—M,
(nSLJM IkI.,+g,S.InSI.J 1M)—

=(g. k)E.-[(J+M)(J M)]-
(nSLJM

I
kI.,+g,S.InSI JM —1)

=-', [(g,—k)Ki+k][(J—M+1) (J+M)]'",
(nsLJM

I
kL,+g,S,

I
nsI J 1M 1)— —

= —-', (g, —k)Es[(J+M —1)(I+M)]'", (18)

(nSLJ —1M
I kLg+g, sg

I
nSLJM —1)

=-', (g, —k)Es[(J—M) (J—M+1)]'",
where

i

Ei=[I(/+1)+S ($+1)—L(I+1)]/2J(/+1),
Ks = [(S+L+J+1)(L+J S)($+J—L)—

y (L+S—J+1)]'ls/[4P (2J—1)(2J+1)]'"
We have used these expressions to calculate matrix
elements of kI., and g,S„for the E and 2A blocks, and
of kI. and g,S„for the E /E+ and E /2A blocks.

A 7090 FORTRAN Iv ploglam was written to carry out
the numerical steps as follows. A linear combination of
the six zero-field matrices with given values of 6, v,
v', B,C, and f, for each representation, was diagonalized
and the eigenvectors computed. The eigenvalue/eigen-
vector subroutine used the Jacobi algorithm, as it is
simple and readily gives orthogonal vectors for degener-
ate eigenvalues. The 2A matrix has the form

where 3 is a real symmetric matrix and 8 is a real skew
symmetric. No attempt was made to utilize this sym-
metry, although the Householder algorithm has been
adapted" to operate directly on the equivalent complex
Hermitian form A+iB. One compensation for our lack
of sophistication was that the double degeneracy of the
2A eigenvalues provided a check on the signi6cance of
the eigenvalues which was found to be eight figures.
The diagonal elements of the six zero-field matrices for
each representation were computed in a basis of the
eigenvectors of K(". This gave the first-order de-
pendence of the zero-6eld levels on the parameters
6, v, e', B, C, and l, and also provided an identification
label for the levels when components of different cubic
terms overlapped.

K. %. H. Stevens, Proc. Roy. Soc. (London) A219, 542
(1953);I'. S. Ham, Phys. Rev. 138, A1727 (1965).

'6 D. J. Mueller, Numerische Mathematik 5, 72 (1966).
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The second part of the program transformed the
matrices of 1.„5„1.„and 5, to the basis of the eigen-
vectors of X"&.The output consisted of eight matrices:
L, and S, for E and 2A, and L„S,for E /E+ and
E /2A. This provided all of the matrix elements re-

quired by Eqs. 3—6, (9), and (13).More recently, this

program has been run on a 360/91 computer using
double-precision arithmetic.

IV. ANALYTIGAL PERTURBATION
APPROXIMATION

Ideally, we would like analytical expressions for the

g values and MD line strengths in terms of the model

parameters. However, since the individual terms of X
LEq. (2)j do not commute, it is not possible to find a
basis which simultaneously diagonalizes them for
arbitrary values of the model parameters. The only way
to obtain analytical expressions (and these will be
approximate) is to use a perturbation expansion based
on a suitable zeroth-order Hamiltonian H"&. In the
numerical calculations of Sec. III, only the Zeeman term
was treated as a perturbation, i.e., H"&=—X('&. For
analytical expressions, however, (as we have pointed
out before in a discussion of ZFS') the best choice we
can make for H & & in situations of near-cubic symmetry
1S

a«& =x,(s)+x,.(B,c), (19)

TABLE II. Energy denominators in zeroth order.

where

D, =W(4T,) —W(4A, ) =~
Dm=W(a'T2) —W(4Am) =158+4C
Da = W (b 'T2) —W (4A g) = ran+98 +3C
D4 ——W (a 'T1)—W(4A2) =6+128
Dy ——W(a 'T2) —W(a 2E) =a+68
D8= W(b 2TI) —W(a 'E) =g+68
D, =W(b T,) —W(a2E) =~
D„=W(c T,) W(a E) —~
DII =W(c 2T2) —W(a'E) =2+108
DI2= W(b 'E) —W(a 'E) =~+148+3C

DIg = W(c 'E) —W(a 'E) =6+58
D&4=W(4') —W(a'L) =6 98 3C——

a 2E=t23 2

b 2E=t22(IA, )e 2E

c 2E= t 22 (1E)e 2E

a 2TI=—tp 2TI
b2TI= t22(~TI) e 2TI
c2TI=—t22('T2)e 2TI

a T2=—t2

b 'T2—=t'('T1) e 'T2
c 2T2=t22('T2)e 'T2

where X2N(B,C) is the diagonal part of the Coulomb
interaction in a basis which diagona, lizes Xi(A) (i.e.,
the strong cubic-field basis). This removes diagonal
Coulomb interactions from the perturbation and puts
into zeroth-order terms which would have occurred in
an infinite number of higher orders had we chosen

Xi(h) to be EI&'&. Our zeroth-order eigenstates are now

the cubic eigenstates j t~ (Siri)e"(S,P2)SI'M,y) and we

must express the matrix elements of 3C in this basis.
It is, therefore, convenient to express X LEqs. (1a)

and (1b)) in terms of cubic tensor operators, 'i rather
than the spherical tensors of Eqs. (1a) and (1b). The
techniques for calculating the matrix elements of X
in the strong cubic-field basis has been treated
thoroughly by Tanabe and co-workers' and by
Griffith. ' "Instead of using the full cubic-term labels,
we make the notational abbreviation introduced by
Sugano and Peter' and used by the author' (see
Table II).We use the Rayleigh-Schrodinger expansion"
of the eigenvalues of the perturbation Hamiltonian
E=X—H ('). The convergence of the perturbation
expansion depends, of course, on the relative sizes of
the parameters describing each term of X. We wish to
investigate whether good approximations to g values
and MD line strengths can be obtained by considering
a limited number of perturbation loops. Only the cases
of g('A~) and g(g'E) will be considered in detail, as
these are the ones most commonly measured and,
hence, for which most data are available. Ke note that
although there are no first-order ZFS of the half-filled
shell t2' cubic terms, there are first-order Zeeman
splittings.

A. Ground-Term g Values

The g values of the E component of the 432 ground
term deviate by a small, though accurately measur-
able, amount from the spin-only value g, =2.0023. The
g values of the 2A component gas defined by Eq. (3)j
follow the spin-only relationship

g~~(2A) =3g~~(E) (20)

and also Eq. (8), to about 1 part in 10' for octahedral
Cr'+ systems. As noted earlier, measurable departure
from these relationships occurs only in cases of large
spin-orbit coupling (e.g. , in 5d ions) or when the cubic
crystal Geld is very weak. We will, therefore, concen-
trate our discussion on g(E). Because the A2 term is
separated by about 10000 cm ' from the next excited
term, we have confidence that the convergence of the
perturbation expansion of its splittings will be good. In
fact, of all the ZFS of d' terms, that of 422 can most
reliably be approximated by perturbation expressions. '

We now enumerate the contributions to gl 1 and gi. All
perturbation loops to third order which give rise to a
magnetic-splitting linear in the applied field are shown
in Fig. 2. To first order (loop i), g is isotropic and spin-
only. The second-order contribution (loop ii) is
orbital, isotropic, and about two orders of magnitude
down on first order. In third order, there are two main
mechanisms: The first (loops iii ig) produces sma—ll
isotropic corrections to g, and the second and more
important (loops g xii) gives rise to an—isotropy in the

iv Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 753 (1954);
V. Tanabe and H. Kamimura, ibid. 13, 394 (1958}."J.S. GrifFith, The Irreducible Tensor 3IIethod for Molecular
Symmetry Groups (Prentice-Hall International, London, 1962).

"A. Messiah, Quantum 3EIechanics (North-Holland Publishing
Co., Amsterdam, 1962), Chap. 16.
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g value. The analytical expressions for these are

g„o)—g, (~) —
g

g() "& =gi&'& = —(8l/3Di)k,

g i i
"'—g&"' = (4)v/3Di2) k (442fv'/DiD4) —k,

( 2&' 4P 8g2
g»"' =

I

— (k+g.)+ {k—2g,)+ (k —2g, )3D' 9DP 9D'

4/2
-k+

3D]DQ

4V 4P
k+ k

9D~D, 3D,D,

8t v 842(v'
+ k — —k,

9Dg' 3DgD4
(2&)

where the energy denominators are given in Table II.
The part of gff") in large parantheses does not con-

tribute to the anisotropy of g (i.e., g, ~3& contains the

same terms) and for most pra, ctical purposes is negli-
gible compared to the second-order contribution. The
ratio of the g-value anisotropy to its departure from

g, is ~iL(3&2v'/D4) —(v/Di) j. This is independent of f
and k and, so, is a good quantity to compare from ion
to ion in an isoelectronic series, for example. The g-value

anisotropy is predominantly proportional to v', as is
the ZFS D (4A,). LWe have defined' D (4A 2) in such a way
that it is equal to —2D of the conventional spin Hamil-
tonian. j Thus, we can say qualitatively that, when the
2A component of 432 lies lowest, g» will almost always
be less than g&.

" The actual relationship between

(g~~
—gi) and D('A2) is rather complicated, as can be

seen by comparing Eq. (21) with Table I of Ref. 5.
Attempts to explain the approximate proportionality

For Cr~+, systems this is always observed to be the case,
experimentally. However, the difference (g&f

—
g&) is small, usually

less than 0.002, so there is a large uncertainty in its measurement.
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between (gi~ —gi) and D(42~) have been made before"
using a single-perturbation loop linear in v (i.e. ,

'T2—interactions only). However, this predicts a
proportionality constant which is too small, and it
gives the wrong sign for both (gii —gi) and D( A2).

B. a'E g Values

The four substates of 'E have the 3f, and y quantum
numbers +~1~, where I+, I are components of E in
trigonal quantization. Now —~N+ and ~u transform
irreducibly according to diferent one-dimensional
complex-conjugate representations of the double group
C3*, which is the appropriate symmetry group for H, ~

c axis. These two substates are, therefore, eigenstates
of I, and 5,. On the other hand, ~N+ and ——',I are
eigenstates of the crystal-field Hamiltonian X('), but
not of L, and S, )see the definition of 2A g values in
Eqs. (4) and (5)7.When His parallel to thee axis, there
is no interaction between E and 2A components and,
hence, no nonlinear Gll within 'E.

In first order, there is no orbital contribution to
g('E), so gi'"&(E) and g~~o&(22) both have the values

g, . In second and higher orders, the orbital contribu-
tions produce departures from g, which, for Cr'+
systems, are typically 25—50%, but they may be even
larger than this (as, for example, in ZnA1204. Cr'+).
Sugano and Tanabe' have given an expression for g by
considering second-order perturbations within the t2'

configuration. We show that the apparent agreement
they obtained with the measured g values in ruby
was fortuitious, and that it is, in fact, difficult to obtain
a strongly convergent analytical expansion for the

a 'E g values. The reason for this is that there is a
Zeeman interaction between the a 'E and u 'T~ terms
which are degenerate in zeroth order fzeroth order
being defined by Eq. (19)7. Sugano and Tanabe' got
around this by replacing the resonant denominator by
the experimental energy separation W(a 'Ti')
—W(a'E')," (the primes indicating that these are no
longer zeroth-order states) a procedure also used later
by Clogston" in his calculation of g, (E). However, this
method gives poor convergence as there is still a
quasidegeneracy between a 'E' and a 'T&', in the sense
that off-diagonal matrix elements of the Coulomb and
trigonal-field perturbations are comparable in magni-
tude (500—1000 cm ') to the separation W(a'Ti')
—W(a'E'). '4 In addition, by not considering inter-
actions outside of the t2' configuration, Sugano and
Tanabe neglected contributions to the g values which
are several times larger than those within t2'.

To deal with the zeroth-order degeneracy, we must
diagonalize the perturbations within the degenerate
a 'E, a 'T~ manifold. In general, this would give rise to
numerical solutions, but as we now show, we can get
useful, though rather clumsy, analytical expressions
which can be evaluated on a desk calculator.

We first of all break the perturbation Hamiltonian
X—H (" into zero-field and Zeeman parts. For the
orbital part of the g value, the important Zeeman term
is that connecting a 'E and a 'T~. We then compute the
matrix of 8=X—H "& within a '8, a 'T~ for E and 2A
to second order (denoted&2&) in the zero-field perturba-
tions, considering interactions with all d' excited states
~nSI'3f, y). This gives

(2r~,~~a~'r~, '~ )&'~—= —p
('m. ')~~ 8rE7,&)( srE7.&~a~ r ~, & )

W(r) —W(r)
(22)

where 'I', 'F' denote a 'E and/or a 'Ti and the W's are
diagonal elements of the zeroth-order Hamiltonian
H&'& (Eq. (19)7.

There are 52 perturbation loops contributing to the
diagonal and off-diagonal elements of Eq. (22). These
will not be shown explicitly because there are so many
and because the physical mechanisms corresponding to
the loops are not as apparent as in the case of the 432

g values. The individual matrix elements on the right-
hand side of Eq. (22) were calculated using standard
techniques" ' of the cubic tensor operator formalism.
The resulting nonvanishing zero-field matrix elements
on the left-hand side are designated in Table III by the
X's and I'."s and expressions for the latter are given in
Appendix S. An inspection of these expressions shows
that the dominant contributions arise from Coulomb

» See, for example, W. Low, Paramagnetic Resonance in Solids
(Academic Press Inc. , New York, 1960), where the expression
D= 6'f(gg —g~) is given.

and trigonal (via s') admixtures of /Pe, 'E, and 'Ti
terms. This contrasts with the t2' mechanism of Sugano

, and Tanabe 2

The next step is to diagonalize the E and 2A matrices
of the zero-6eld perturbation (i.e., the X and ~ part of
Table III), yielding eigenvectors ('F3f,y~'EE) and
('I'M, y~'E2A) with 'I' referring to the rows of the
matrices in Table III. The Zeeman matrix is then
transformed to this basis to yield g values in accordance
with the definitions of Eqs. (3)—(5). At this stage we
note two simplifications.

(i) The diagonalization of the 4X4 2A matrix can be
simplified by transforming it into two 2&&2's by taking

22 At best, this is equivalent to taking the energy denominators
to a higher order than the basis states in which the perturbation
matrix elements are expressed.

"A. M. Clogston, Phys. Rev. 118, 1229 (1960).
'4 This does not, of course, arise in the case of our exact numerical

solution, as the perturbation is then just the Zeeman term which
is truly small compared to this separation.
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TABLE III. Matrices of the perturbation operator X—B('& for
H. f j within the degenerate a E, a'TI manifold. Detailed expressions
for the X's and K's are given in Appendix B.The E matrix is equal
to that given for E+ and all are real Hermitian.

a 2T' (2)

gap

1—pl+
a1

2 1-

2ap
1

ggs

Z, +&2k f3+k ——,'g.
$6 ~6+ 2gs

g 2'(2)
1
&a+

a 2g (2)

2a1

1
2Q+

2N
1

1
pa+
a1

KI+qgs

0
K3+42k

KI ggs

K4

—Kg+&2k

K2+k+-,'g,
0 K2 —k ——,g,1

where y=u or a and tan28=K4/K3. After some algebra,
we find

g~, (2A) = 2{Isin28(2ig, cos2$ —k sin'P)7'

+Lcos28(—',g,+k sin'P)+&2k sin'p7')'I, (24)
where

tan2$ =
Ky —Kg

K4 K4

Ki cosI arctan —+K4 sin arctan—
Kg

and, in the trivial case Kg= K4= 0, g~ ~ (2A) = g, . To a good
approximation, at least for Cr'+ systems, a separation
into orbital and spin parts can be made as follows:

g„b(2A) = sgn(sin2$) 2kI (sin'P cos20+V2 sin2$)'

+ (sin20 sin'P) 7' ' (25)

g»,„(2A)= 2g, (4 cos'28+4' sin'20 cos2&)'" (26)

where p is usually small so that g,~; =g, .
(ii) For g~~(E), we can neglect interactions with

a T~~ao, i.e., set X4——X~
——0 in Table III, since )2 is

greater than X4 or X4. (The effect of doing this is shown
in Sec. V.) This enables us to reduce the order of the
E matrix from 3 to 2, which makes it easy to diagonalize
analytically. Again, after some algebra we find

g(((E) = —g,+2&2k sin28,

where tan25= 2X2/(Xi —X3). The separation into orbital
and spin parts is exact in this approximation.

For the calculation of g, (E), however, we cannot
neglect the small interaction with 'T~2ao, as otherwise
we find g, (E)=0. The most satisfactory way to calculate
g& is to diagonalize the zero-field 3)&3 matrix for E and

linear combinations of —,'I+ and —2N, and also -', a+
and —~a . Because of the form of the matrix, this
leaves the two diagonal blocks unchanged.

I
km+)'= cos0I km+)+»n0 I

—2v-),
I

—kv-)'= —»»
I 2v+)+cos0 I

—27-),

obtain eigenvector coefficients in the expansion

I
a'EE) =n,

I
a'E —-', u+)+n, I

a' T,——',a~)
+n3

I
a'Ti-,'ao) . (28)

Then,
(g,E)= 2(2nina —ning/&2)k. (29)

The definition of the order to which the g values have
been calculated must be considered a little carefully.
We are considering two perturbations on our zeroth-
order Hamiltonian; a larger zero-field part, including
off-diagonal Coulomb, trigonal field, and spin-orbit
interactions (100—1000 cin '), and a much smaller
Zeeman part ( 1 cm '). By definition, a g value
describes the linear part of the Zeeman splitting, i.e.,
it is of erst order in the Zeeman perturbation. We have
considered zero-field perturbations to second order —the
diagonalization within (a'En&, a 'Tin&) does not really
change the order, although we note that the admixture
of a'Ti into a'E for Cr'+ systems is only =1—20%
(i.e., sinb, sing is 0.1—0.4), so that almost another order
has been added to the calculation. However, strictly,
we should say that we have taken zero-field perturba-
tions to second order and the Zeeman perturbation to
first order. For those cases where it, e')f, one could
reasonably drop the contributions quadratic in g.

C. Other Cubic Terms

The other cubic terms of interest, e.g. , a'T~, a'T~,
and 4T&, interact with many more levels than 4A& and
a 'E and, consequently, analytical expressions for their
g values become very complicated. In view of the
limited number of systems for which these g values
have been measured, it is better to calculate them
numerically as described in Sec. III.

D. MD Intensities

The only MD transition from the ground state, which
is allowed between the zeroth-order cubic terms, is
43~ ~ 4T2. Thus, the dominant mechanism for allowing
transitions to other excited ' +'I' terms is the admixture
of 4T, into ' +'I'. In all cases except a' T, (where the
trigonal field can also produce this mixing), the only
perturbation which can produce the required admix-
ture is spin-orbit coupling. The most important case
to consider is the intensity of MD R lines (4A2 ~ a 'E)
for Cr'+ ions in centrosynimetric sites. In zero magnetic
field, there will in general be four R lines. This assumes
that the small ground-state splitting D('A ~) is resolved,
but if it is not a summation over these components
can be carried out. The above mechanism predicts
equal absorption cross sections for each of the four lines
when averaged over all polarizations

—', P I
iv k. dn (4A,I, E-I,')

K
K

1 27 X10"qaf'k'-
(30)
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We note that to this order the trigonal field has no
effect on the intensity. An equivalent expression was
first obtained by Sugano et al.' Lbut note the absence of
a factor h/m in their Eq. (9) and a factor of 3 in
Eq. (10)).In those cases where MD R lines have been
observed in trigonal symmetry and the ground-state
splitting resolved, ~ 25 the spectra are averaged over all
polarizations by the crystal geometry. It is observed
that the four components do not have the same in-
tensity Las would be predicted by the mechanism of
Eq. (30)7, the departure from equality being 20—30%.
The mechanisms contributing to this asymmetry are
numerous and of higher order than considered above.
A number of these were calculated, but a satisfactory
analytical expression could not be found. We, therefore,
rely on numerical calculations for details of the in-
tensity patterns. The absolute magnitude of the absorp-
tion cross section predicted by Eq. (30) is clearly very
sensitive to the value of the energy denominator D&4.

The zeroth-order value given in Table II can be up to
a factor of 2 less than that measured or given by the
exact-energy solution. If we take the latter value for
D&4, the absolute absorption cross section given by
Eq. (30) is still a factor of 2—10 higher than that given
by the numerical solution (see Sec. V).

The situation for the 8 lines ( As ~ a 'Ts) is not so
straightforward. As there are two E components in
a 'T2, the zero-field perturbations must be diagonalized
within a 'T~, leading to much more complicated expres-
sions than Eq. (30). We will not pursue this further
but again rely on numerical calculations of these line
strengths.

V. COMPARISON OF ANALYTICAL AND
NUMERICAL METHODS AND
RELATION TO EXPERIMENT

We will now compare the analytical solutions we have
obtained with the "exact" numerical procedure out-
lined in Sec. III (and to which the analytical expressions
are an approximation). To do this, we choose several
examples of important Cr'+ impurity systems on which
there are good optical data enabling the crystal-field
parameters 3,, 73, C, m, n', and t' to be determined. The
systems chosen are AlsOs. Cr'+ (ruby), HesA4(SiOs)s. .
Crs+ (emerald), ZnAls04. Cr'+ (spinel) and MgO:Cr'+.
The case of YsAlsOi2. Cr'+ (garnet) will be treated in
more detail in a future publication. In addition to the
above, we also brieQy consider tetrahedrally coordinated
{ o'+ to explore the validity of the analytical expressions
in a region where the Coulomb interaction is comparable
to the cubic-field strength. The convergence of the
perturbation expansion will clearly depend on the
extent of the departure from the zeroth-order (strong
cubic-field) approximation, i.e., it will depend on the
values of oQ-diagonal Coulomb and trigonal-field

"G. Burns, E. A. Geiss, B. A. Jenkins, and M. I. Nathan,
Phys. Rev. 139, A1687 (1965).

matrix elements relative to the diagonal energy dif-
ferences. The parameters describing most Cr'+ impurity
systems are such that the expansion parameter is
= 3. This means that the convergence in these cases is
reasonably good. The only really free parameters are
those describing the crystal-field strength, i.e., 6, ~,
and v', and 5 is fixed by the 4T2 energy. The Coulomb
(8 and C) and spin-orbit (f) parameters are positive
and are constrained to a small range about 20—30%
below their free-ion values. Our philosophy on the
orbital-reduction factor k is to use it as a slowly varying
measure of the amount of covalency, and for Cr'+
systems we have kept it fixed at 0.7.

A. g Values

An inspection of Table IV shows that the perturba-
tion expressions we have obtained for the g values of
'A~ and a '8 give a useful approximation to the numer-
ical solution for Cr'+ ions in a range of environments.
The values given by the analytical expressions t Eqs.
(20), (21), (24), (27), and (29)) are listed in the row
labeled "An." and the exact numerical solution is
listed under "Num. " In the case of gi~('EE), the result
of diagonalizing the 3&3Ematrix of Table III is given,
the approximation of Eq. (27) being shown in paren-
thesis. This demonstrates the effect of neglecting inter-
actions with a 'T~~ao. We see that, for the Cr'+ systems,
the analytical and numerical methods agree within

50%%uz in most cases, and the sign of the orbital con-
tribution to the 'E g va, lues is given correctly. This is
in contrast to the approximation of Sugano and
Tanabe, ' who considered only zero-field perturbations
within t2' and did not diagonalize these within a~A,
a'T~. For example, with the parameter values chosen
in Table IV, their expression gives (for the orbital and
spin contributions, respectively) g ~ ~ ('EE) for ruby
= —0.214—2.002 and, for Cr'+: spinel, gii('EE)
= —0.020—2.002. We see that the orbital contribution
for ruby is a factor of 3 low and for spinel is of the
wrong sign and about two orders of magnitude low.
Our present perturbation treatment has effected a
substantial improvement. It should be noted that the
sign of the orbital contribution to g~~('E) is different in
different materials so that one cannot generalize about
identifying the 2A or E component by the magnitude
of its g value. In Clogston's" calculation of g, ('EE), he
included most of the interactions with higher-lying
levels to the order we have taken them here, but again
did not diagonalize the perturbations within a 2E,
a 'T&. His results for ruby are about a factor of 2 larger
than ours and a factor of 4 larger than the exact solution.

For very large departures from the zeroth-order
approximation, the expansion parameter approaches
unity and the perturbation expressions become un-
reliable. For example, for tetrahedral Co'+, which is a
fairly extreme case in that the energy separation
between cubic terms is comparable with their coupling
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TABLE IV. A comparison of analytical and numerical calculations of g values and ZFS for some impurity systems, and a tabulation of
the corresponding experimentally observed quantities. The g values are given as a sum of spin (the coeificient of g„=2.0023) and orbital
(the coefficient of the orbital reduction factor k, taken as 0.7) parts. Only the A2 and a 'E terms are considered here. The ~ sign indi-
cates that the separation into spin and orbital components is not rigorous for the 2A g values.

An.

gl l 4A2, E Num.

Expt

An.

gg A 2)E Num.

Expt

Al203.Cr'+
Ruby'

0.9998g,—0.0270k
=1.9829

0.9998g,—0.0271k
=1.9829

1.9840+0.0006'

0.9998g,—0.0261k
= 1.9835

0.9998g,—0.0261k
= 1.9835

1.9867+0.0006f

Be~A12(Sio~) 6.Cr'+
Emeraldb

0.9995g,—0.0423k
= 1.9717

0.9998g,—0.0423k
= 1.9723

1.973+0.002g

0.9995g,—0.0341k
= 1.9776

0.9998g,—0.0335k
= 1.9784

1.97a0.01g

ZnA1204. Cr'+
Spinel'

0.9995g,—0.0333k
= 1.9781

0.9998g,—0.0315k
= 1.9789

1.9807+0.0001h

0.9995g,—0.0380k
= 1.9748

0.9998g,—0.0383k
= 1.9751

1.9774+0.0001h

MgO:Cr3+
Cubic site~

0.9997g,—0.0337k
= 1.9780

0.9998g,—0.0337k
= 1.9783

1.9797'

=gl l

ZnO:Co'+
Tetradhdral Co'+'

0.9769g,+0.3095k
=2.2038

0.9933g,—0.2656k
=2.2014

2.243a0.001'

0.9769g,+0.3116k
=2.2055

0.9940g,+0.2997k
=2.2301

2.2791&0.0002&

An.

gllc E,E Num.

Expt

—1.000g, —1.061k . —1.000g, —1.882k
= —2.741(—2.779) = —3.319—1.002g, —0.942k —0.994g, —1.163k
= —2.666 = —2.804—2.445%0.001" —2.71+0.03'

—1.000g, +2.585k
= —0.189—0.997g,+3.129k
=0.195

Oa0. 15~

—1.000g, +0.155k
= —1.889—1.004g, +0.227k
= —1.851
= —1.860&0.005

—1.000g,+0.229k
= —1.624(—2.008)—0.897g, —1.953k

= —3.358

An.

gl le 'F.,2A Num.

Expt

An.
gqa 'L E Num.

Expt

An.
D (4A 2) Num.

= —2D
(cm ') Expt

4 (2L&) An.
E—2A Num
(cm ') Expt

0.996g,—1.152k
= 1.205

0.99g,—1.20k
= 1.213

1.480

0.128k =0.090
0.063k =0.044
0.0515+0.0001~

0.29q
0.311

0.383V

—28.8q
—28.5—29, 140 f

0.999g,—1.760k
=0.0770

~1.02g, —1.49k
=0.997
= 1.04&0.02'

0.063k =0.044
0.492k =0.344
0.27~0.03

1.78+.07g

99.0q
58.5
62.7'

0.995g,+2.943k
=4.049

~1.01g,+2.44k
=3.716

i.85w0.25~

0.087k =0.061
0.162k =0.113
Oa0. 15~

-1.52~—1.712

—1.856+0.001"

5.8~
6.3
6.72+0.01'

0.997g,—0.2511k
= 1.899

~1.00g, —0.40k
= 1.863

gll

0.893g,+2.534k
=3.689

0.88g,+3.35k
=4.266

—0.847k = —0.677—1.333k = —1.066

—3.37&—5.408

—5.5+0.3~

—116.3q—90.3

a For parameters 6 =18100, B=650, C =3120, v =800, v' =680, f =180 cm 1.
b For parameters 5 =16200, B=780, C =2960, v = —2000, v' =2000, f =225 cm
& For parameters g = 18250, B=700, C =3200, v = —200, v' = —1700, f =250 cm '.
d 6 = 16600, B=650, C =3200, v =v' =0, t =210 cm 1.
e For parameters 6 =4000, B=750, C =3500, v =400 cm ', v' =350, |'=450 cm '.
& Reference 27.
I J. E. Geusic, M. Peter, and E. O. Shulz-duBois, Bell System Tech. J. 38, 291 (1959).
h H. Kahan (private communication).
I J. E. Wertz and P. Auzins, Phys. Rev. 106, 484 (1957).
~ T'. L. Estle and M. DeWitt, Bull. Am. Phys. Soc. 6, 445 (1961).
& T. Muramoto, Y. Fukuda, and T. Hashi, J. Phys. Soc. Japan 26, 1551 (1969).
& Reference 12.
m D. L. Wood, W. E. Burke, and L. G. Van Uitert, J. Chem. Phys. Sl. 1966 (1969).
n L. L. Chase, Phys. Rev. 168, 341 (1968).' S. Sugano and I. Tsujikawa, J. Phys. Soc. Japan 13, 899 (1958).
& We find gled(2A) =6.6251, which departs from 3gii(E) by 0.4'p&, i.e., there should be two independent git values measurable for this system.
& Using the expression of Ref. 5.' D. F. Nelson and M. D. Sturge, "Phys. Rev. 137, A1117 (1965).
I Reference 7.

via the Coulomb interaction, we 6nd the situation in the
last column of Table IV. In this case, the perturbation
method ceases to be useful.

As we have already noted in Sec. IU, the g values of
the other cubic terms are best calculated numerically
because of the large number of interactions involved
and the relatively slow convergence. The results of
such a numerical calculation is given in Table U for the
a 2T1 and a ~T2 terms. It will be seen that the departures
from the first-order values [Eqs. (6.25) and (6.26) of
Ref. 2j are appreciable in most cases. These g values
are more difficult to measure than those of a '8 because
the linewidths are greater, but some measure of them

can be obtained by high-pulsed field measurements"
or magnetic circular dichroism. They are also useful
for identifying the transitions to these levels observed
in excited-state absorption. The ZFS of a'T1 and
a 'T2 are also given in Table U for completeness and as
an aid in identifying the levels. They are defined as
follows (see also Fig. 1):

5r'= W (a 'T,Eb) W(a 'T;E,), —
Bs' ——W(a 'T,E,)—W(a 'T,23) .

2' K. Aoyagi, M. Kajiura, and M. Uesugi, J. Phys. Soc. Japan
25, 1387 (1968).
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TABLE V. g values and ZFS for the a'TI and u'T2 terms. These are not amenable to a satisfactory analytical perturbation treatment.
The results of numerical calculations are given here. Note the definitions of the ZFS given in the text.

2T gll 2A

ZFS
(cm ')

~2 gll

$11
g1
2A

ZFS
(cm~) Sms

A1203.Cr'.+
Ruby-num. ~

0.990g,+3.221k
=4.233

0.952g, +0.020k
=1.920—0.952g, +3.053k
=0.230

0.976g,+0.334k
=2.188—0.025g, +0.265k
=0.135

208.1—196.0
I0.999K* 2 031kl

=0.647—0.993g,—2.001k
= —3.389

0.989g,—0.009k
=1.974—0.005g, +0.263k
=0.174

0.995g,+0.211k
=2.14

270.5
108.1

Ruby-expt

233c
—211'

0.69&0.09"

—2.97&0.15d

-2Q

&0.6d

290'
75'

Emerald-num. '
~1.141g,+2.548k

=4.067
0.986g, —0.108k

=1.899—0.942g, +2.535k
= —0.111

1.002g, +0.496k
=2.354

0.062g, +0.034k
=0.148

816.0—765.1
I0991f 1244kI

=1.114—1.016g,—1.115k
= —2.815

1.024g, +0.031k
=2.072—0.002g, +0.158k
=0.107

1.034g,+0.051k
=2.106

1587.3
34.3

Spinel-num. a

0.997g,+0.041k
=2.020—1.006g, —0.548k
= —2.398

0.997g,—0.086k
=1.936

0.177k =0.124

0.998g,—0.005k
=1.995

550.8
111.5

I1.011',—2.512kI
=0.268

0.996g,+0,008k
=2.000—0.996g,—2.397k
= —3.672

1.000g, —0.189k
=1.870

0.010g,+0.112k
=0.098

1515.5—501.9

MgO Cr'+ num. ~

0.996g,+2.334k
=3.623b

0.327g,+.561k
=1.047b

—0.338g,+1.367k
=0.280
=gil

57.2
0

I0996g 2.110kI
=0.519b

0 324g —0 647k
=0.177b—0.350g,—1.329k
= —1.631
=gll

94.0
0

a For parameter values, see Table IV.
b For the cubic sites in MgO, 2A and B& are degenerate as &s. The difference in the g values for these components reflects the need for two independent

g values for a 1's level.
e J. Margerie, Compt. Rend. 255, 1598 (1962).
d Reference 11.' Reference 26.
& S. Sugano and I. Tsujikawa, J. Phys. Soc. Japan 13, 889 (1958).

B. Nonlinear g Values

The most important nonlinear g value is that
describing the interaction between the E and 2A levels
of a'E for H' c axis. As we have already seen in Sec.
II 3, if g~(E) is negligible, the energies of the 8 and
2A levels are given by an equation of the type (7),
i.e., we expect the E line separation A to satisfy

A'=A's+(GyH)', (32)

where Ap is the separation at zero Geld. No splitting of
the R lines occurs, but they show a nonlinear repulsion.
Such nonlinear Zeeman effects have been observed in
ruby" and emerald. 's If the effect of g'(E) is not negli-

gible, both E and 2A levels will show a splitting in
addition to their shifts, and we must diagonalize the
matrix

A.p

0
—',GQP

0

Ap

0 0
—G+B 'g+H 0. —

(33)

Typical values of gL are 0.1, so this situation arises

only for very sharp lines in high Gelds. For example, in

ruby at the highest Gelds used by Aoyagi et al." the
splitting of the E level would be only 2 cm ', and,
with the concentration of Cr'+ in their samples, the
linewidth would mask this. The same is true of the
emerald studies by Wood, " even though g~ is larger
giving a 3-cm ' splitting at 200 kGaus. Table VI shows

the result of numerical calculations of G& and a com-
parison with experiment for ruby and emerald —the
only cases for which good data are available. There is a
first-order spin contribution to G~, so its value is close
to 2. We note a small anomaly in the high-field Zeeman
data for emerald, viz. , the change in the E,-line separa-
tion A-Ap shows about a 10/o departure from Eq. (32).
This is shown also by better and more recent data by
Wood. '~ The origin of this behavior is not clear at this
stage.

For all practical purposes (at least for Cr'+ systems),
the ground state can be described by a single g perpen-
dicular, as noted in Eq. (g), i.e., the nonlinearity in the
Zeeman splittings for H'c is describable by a parameter
directly related to g&, and the energy of the four Zeeman
components can be found from the solution of two
2)&2 matrices by transforming to Zeeman quantiza-
tion."The departure from the relation (8) for tetra-
hedral Co+ is noted in the footnote to Table VI.

C. MD Intensities and Lifetimes

We now restrict our attention to zero-phonon lines
in centrosymmetric systems, such as spinels, garnets,
and MgO, and use parity labels to emphasize that we
are dealing with even-parity states. The only transition
from the ground state which is allowed, between zero-
order cubic terms, is A2, ~ 'T2„and this will have an

2' D. L. Wood (private communication).
"K.O. Schulz-du Bois, Bell System Tech. J. 3S, 271 (1959).
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TABLE VI. Nonlinear Gz values for 4A& and 'E terms for the same parameter values as in Table IV.

4A s Gr (E/2A) Num.

Expt'
'E Gr (E/2A) Num.

Expt

Al203 ..Cr'+
Ruby

~1.7318g.—0.0453k
=3.4358'
3.4364

~0.998g,—0.233k
= 1.84
1.70d

BerA12 (Si03)6 ..Cr'"
Emerald

~1.7317g,—0.0579k
=3.4268
3.417

~1.003g,—0.321k
= 1.83
2.16e

ZnA1204 ..Cr'+
Spinel

1.7317g,—0.0663k
=3.4209~
3.4306
0.998g, —0.230k
= 1.91

ZnO:Co'+
Tetrahedral Co~+

~1.722g, —0.515k
=3 8595b
3.885
1.602g, +0.805k
=3.77

a These are equal to V3gy to 0.008% or better.
c Taken as~3gy (see Table IV).
& Reference 12, but see comments in text.

b Departs from egg by about 1.2%.
~ Reference 11.

integrated absorption cross section per ion of 10 '7

cm. The predominant mechanism for absorption to
other '8+'I' terms is the admixture of 'T&, into ' +'I'.
The orthogonality of orbital states belonging to dif-
ferent representations of Oy, makes the spin part of the
MD operator 1s=kL+g, S ineffective in inducing
transitions. The selection rules on components of p
are given in Table I. In the case of R line transitions, the
absolute magnitude of the intensity is given within a
factor of about 5 in most cases by the perturbation
expression of Eq. (30), although, as we have noted
already, the details of the E line intensity pattern
almost always require numerical computation. As we
can see from Eq. (30), there is an approximately in-
verse quadratic dependence of the intensity on the
'T2,—u'E, separation. Expressions equivalent to Eq.
(30) for transitions to the u 'Tr, and a 'T2, terms become
rather unwieldy, and we have preferred to calculate
them numerically.

The absolute measurement of the absorption cross
section is complicated by two main factors. (i) In the
case of impurity systems, which we have been discussing
here, it is difficult to measure E, the number of absorb-
ing centers/cm'. This can be done either by calibrating
absorption bands against the results of x-ray Quores-
cence or by a spin count using a calibrated EPR spec-
trometer. (ii) As a result of electron-phonon coupling,
the intensity in the zero-phonon line is reduced. For
weak coupling, such as that within the t2 configuration,
this reduction is given by e 8, where 5 is a small quan-
tity containing the electron-phonon coupling constant. 29

The rest of the intensity we can think of as being the
MD part of the one-phonon sideband. This is, however,
masked by the larger ED contribution to the sideband
which arises from coupling to odd-parity phonons.
Because of this, the calculated cross sections will tend
to be higher than those observed by an amount which
depends on the strength of the electron-phonon cou-
pling. From the ratio of the sideband to zero-phonon
intensity in ruby (where both are ED), it seems that,
for the u 'E level of Cr'+ systems, e &0.7. It is, how-
ever, difficult to get an accurate measure of this. The
effects outlined in (i) and (ii) above are least for the

» M. H. L. Pryce, in I'honors, edited by R. W. H. Stevenson
(Plenum Publishing Corp. , New York, 1966), p. 403.

(34)

In the case of ruby, Nelson and Sturge" were able to
separate (r, '+r„, ') by measuring the lifetime under
conditions of complete R line reabsorption. By using the
ratio of E. line to sideband intensity of 4.4," we can
determine the individual lifetimes of Eq. (34) from their
data. The results are shown in Table VII, together with

TAaLE VII. Experimental ValueS Of C 'E —& kg
inverse lifetimes at 77 K.

r 1(SeC 1) rg 1(SeC ') rs 1(Sec ~) mr 1(SeC ~) Q

Ruby&
MgO:Cr3+ b

MgA1204. Cr3
ZnA1204 '.Crg+ d

239&3
86&1
27.4 +0.1
34.4 &0.1

174&3
9.9 &2
1.3 &0.5
(4.2)

40 &1
25&5
7.3+3

(11.2)

25 &7 0.90
52 &10 0,40
19+4 0.31
(19) 0.45

From Ref. 30.
b From Ref. 31.' From Ref. 7.
d 1 ' is from Ref. 7. The values given in

are obtained on the assumption that rrr is
spinels. This was done because there is no
ZnA1:04 '.Crg+ to determine r& ~.

parenthesis for rr ' and rg '
the same in the Zn and Mg
absorption data available on

"D. I'. Nelson and M. D. Sturge, Phys. Rev. 137, A1117
(1965).

3~ G. I''. Imbusch (private communication).

43~, and a'E, terms, and we estimate that their effect
on the absolute R line intensities introduces an un-
certainty of about 50%. In addition, the MD transitions
are very weak and, in lightly doped crystals, signal
averaging must often be done to get a satisfactory
signal-to-noise ratio.

A knowledge of the radiative lifetime r„(4Asg, a 'E,)
also gives the absorption cross section from Eqs. (13)
and (17), or (A2) and (A7). In practice, the determina-
tion of this lifetime for an isolated d' impurity is corn. -

plicated by the presence of alternative modes of decay
for the excited a E, levels. (i) Radiation occurs in the
vibronic sidebands with a lifetime r, . The ratio r./r„ is

given by the ratio of the integrated zero-phonon line
intensity to that of the sideband, so this can be allowed
for fairly reliably. (ii) Non radiative decay with life-
time z„„cannot be neglected for a 'E relaxation and is
completely dominant for every other excited state, with
the possible exception of 4T~,.

Neglecting pair eGects which only become appreciable
at high-impurity concentrations, the total lifetime r
can be written

T = Tr +ra +Ter'~
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TABLE VIII. Integrated absorption cross sections (see Eqs. (13), (A2), (A3)7 for MD transitions within the
nominally t2 levels. The refractive indices for spinel and MgO have been taken as 1.74.

A. ZnAl204 Cr'+ ~

a'E
2A E

k do- X1022 cm
a E

C T1
Ea

g T2
2A E Eb

2A Num.
Obs. b

4A2 E Num.
Obs. b

38.0 15.6
(29.5) (18.0)
28.7 34.2

(24.5) (28.0)

6.9

0.6 21.0

3.3 53.0

3.2 5.6 4,2

4.7 14.4 .03

0~ Num.
4+ 2e Obs. '

Num.
Obs. '

2A
195
128
92.1
79

(
1

k~ do- X10"cm
E

8 T1
2A L~

42.9 45.3
Eb
75.9

E
58.7
79

164.1
128

41,0 45.0 81.1

H. Mgo:Cr'+ ~ stress along L111]

2A
9.7

3.3

0 T2
@a
1.2

7.5

@b
2.0

2.2

& For parameter values, see the footnotes to Table IV. For comments on the Mg spinel, see the accompanying text.
b These values were obtained from the lifetime r« ' of Table VII. See footnote d of Table VII for additional comments.
&Since the ground-state splitting is not resolved optically under stress, we have summed over the ground-state components.

d The polarization of the incident light is defined with reference to the $111j direction as s axis. Thus, the o spectrum (Bgs,Mals) has a =s and the 7r

spectrum (Bfls,Hgs) has ~ =x.
e From Refs. 31 and 34. The sum of the B and 2A cross sections is the average of absorption measurements on two samples. The relative intensities of

the components under stress were obtained from the fluorescence data of A. L. Schawlow, A. H. Piksis, and S. Sugano, t Phys. Rev. 122, 14&9 (1961)].
Although the total cross sections are in very good agreement, the relative intensities in o polarization are not so good. The reason for this is not known.

a similar analysis for MgA1204 ..Cr'+ and MgO:Cr'+. The
values of 7.„are obtained directly from the R line-
absorption measurements, r./r„ from the 8 line —to-
sideband-intensity ratio, and 7- from the fluorescence
decay. We see that, for the a'E level in materials of
comparable Debye temperature, the nonradiative part
of the lifetime is about the same for all systems. If we
define the quantum eKciency as Q= (r„'+r, ')/r ',
we see that, in the cases where the E line is MD, Q is
substantially lower than in ruby.

In Table UIII, we give the results of a numerical
calculation of the cross sections for absorption to a 'E„
a 'T1, and a 'T2, for ZnAI204..Cr'+, MgA1~04'. Cr'+, and
MgO:Cr'+. The former includes and extends our recent
work on Cr'+ spinels. ' The calculated quantities for the
Zn and Mg spinels are essentially the same. The ex-
perimental R line strengths for the Zn spinel are some-
what less reliable, as in the absence of absorption data
they were obtained from the r„of Table VII which uses
the assumption (which is probably very good) that
7 „ is the same for the Mg and Zn spinels. The relative
strengths of the four R line components follow from the
emission data of Wood et al. 7 This intensity pattern
enables an assignment to be made of the relative
ordering of the 43~ and u 2E components. This is im-

portant, because the over-all cubic symmetry of the
spinel structure prevents the observation of polarized
transitions. The Mg spinel has strain-broadened E lines
so that the ground-state splitting is not resolved. For

3~ Reference 7. In this paper, the calculated absolute oscillator
strengths are a factor of 3 low due to a numerical error. The
relative strengths are correct.

MgA1~04. Cr'+, the measured absorption cross sections
for E1 and 8& are 16X10 "and 13)&10 "respectively,
compared to calculated values from Table VIII of
54.0)&10 " and 49.8X10 " In view of this disagree-
ment, it would be interesting to measure the E line
absorption in the Zn spinel.

In MgO:Cr'+, we have a good system to test our
intensity calculations, because a very careful measure-
ment of the E line-absorption cross section for Cr'+
ions in the cubic sites of MgO has recently been made by
Imbusch" using two crystals with 7.0)& 10' and
17.7X10is Cr'+ ions/cm' in cubic sites. The number of
Cr'+ ions was measured by Dravnieks and Wertz" using
a calibrated EPR spectrometer. We have calculated the
R line intensity for the '32F8 ~ 'EF8 transition and also
for the case in which L111j stress is applied and the
'E splitting is resolved. For the unstressed case, we find
the total absorption cross section per ion (1V j''k, do.)„
to be 2.55&10 "cm, in very good agreement with the
measurements of Imbuscha' on two samples which
yielded 2.3/10 "and 1.8&&10 '0 cm, respectively. The
calculated cross sections depend very little on the
magnitude of the applied stress, as can be seen by corn. —

paring the total 0- and m cross sections for levels which
are degenerate in the absence of stress. A stress value of
20 l~g/min' was used in the calculation, i.e., o = —15.4,
v'=13.6 cm '.'4 The 2A and E, levels of Table VIII
arise from cubic I's, Es('Ti) from I's, and Es('Ts) from
F7. The label 0. is used to denote the H vector of the

"S.Dravnieks and J. Wertz (private communication).
"R.M. Macfarlane, Phys. Rev. 158, 252 (1967).
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incident light II to L111]and ~ to denote the H vector
J to

I 111].The ratios of the intensities of the R line
components ('As —+'Z2A As —&'EE) are 0.61 (obs.),
0.57 (calc.) for m polarization and 1.6 (obs.), 3.3 (calc.)
for 0 polarization. The origin of the discrepancy in the
case of o- polarization is not known.

In view of the difhculty of obtaining a good absolute
measurement of the absorption cross section and our
inability at this stage to calculate the Condon factore, we consider the agreement between observed and
calculated cross sections in Table VIII to be very
satisfactory. This represents the first such detailed
calculation of the MD absorption cross sections for
transition-ion impurities. No further phenomenological
parameters have been introduced in the intensity calcu-
lations, as we have used the values of the parameters
determined by the zero-field energies.

VI. CONCLUSION

We have been concerned here with providing an
analysis of the observed g values and MD line strengths
for a number of d3 impurity systems. By going beyond
the usual analysis of energy levels, we are able to
provide a more searching test of the assumptions of the

par ameterized crystal-field model, viz. , that the
impurity orbitals transform in the site group like
d orbitals and that the vibronic coupling is small for
the levels of interest. The parameters of the theory are
well overdetermined by considering energies and ZFS
together with g values and line strengths. We find, as we
have done before, " that some of the apparent dis-
crepancies between experiment and theory are removed
by ensuring that the calculations are done completely
and that any mathematical approximations made do
not compromise the quantitative predictions of the
model.

To this end we have also been concerned with the
extent to which perturbation expressions for g values
and MD line strengths, based on a strong cubic-field
zeroth-order approximation, can provide an adequate
approximation to the exact numerical solution within
d' (exact in the sense that the perturbation series, if
summed to infinity, would reproduce it). We find that
previously published expressions are almost always
inadequate. Where possible, these have been extended
here to provide useful approximations. This is par-
ticularly true of the 4A& and a'E g values which are
very important because the transitions involving these
levels are sharp and their magnetic properties are well
studied. Our analysis of g values has included the
de6nition and calculation of nonlinear g values which
are important when the Zeeman energy is comparable to
the ZFS and the orbital and spin contributions to the g
values have been given separately.

+ R. M. Macfarlane, J. Chem. Phys. 42, 442 (1965).
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APPENDIX A

We present here some useful general expressions
relating absorption cross sections, oscillator strengths,
and. radiative lifetimes to dipole matrix elements for a
system of thermally populated electronic levels.

Consider a process involving absorption from a set
B, (i=1, . . .m; n=1, . . .g,) of re thermally populated
levels with degeneracies g;, to a set A, ~(j=1, . . .n;
P=1, . . .p,) of initially unpopulated excited states.
Analogously to free-ion nomenclature" we call '8+'I' a
term, I'~ a level, and yz a state, and the A's and 8's
can be interpreted as these crystal quantum numbers
as appropriate. The line strengths for transitions from
8, to A for a given polarization g are as follows:

s.(A,B,-)=Z I(A, ID.IB;-&I,

S,(A,B,) =Q S„(A,B; ),

S,(A,B)=P S.(A,B,), etc.

The transition-dipole operator is denoted by D. In the
case of MD transitions, D„= (—eh/2mc)g, (kl,+g,.s;).,
where i labels individual electrons. It is also convenient
to work with the quantity S„'= (2mc/eh)sS„, since

involves dimensionless matrix elements of the
orbital and spin operators in units of h. We will obtain
formulas for absorption cross sections in which the line
strengths have been summed over all the substates of A.
This summation can be trivially extended or restricted
to include just those final states of interest. For
example, if the final level is a cubic term, 2=—S, I', if a
Kramers doublet 3—=S, I', I'z, etc. Since the final state is
unpopulated, there is no complication from Boltzmann
factors in the summation. We can use Boltzmann
statistics for the populations when we are dealing with
an ensemble of independent absorbing centers.

The absorption cross section per ion for the process
8;~ A for light with polarization ~ is given by

(
8m'aq A"

Ã' k der A,B, = S„A,B;, A2
hc Eg,

(
~e'ho-g N;

iV ' k do- A,B, = — 5,' A,B;", A3
6m'c' Xg;
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where

Q./g —
g e k.i/—kr/P g o Oa. l—kT

In the approximation of the Lorentz local-field cor-
rection (i.e., allowing for dipole-dipole terms),
~= L(n'+2)/3n7

and 6; is the energy of the ith level. To get the total cross
section from all sublevels of 8, we must sum (A2) over i.
In the limiting cases kT))h, i.e., all levels equally
populated, and k T((A&—6&, i.e., only the lowest
populated, the factor X,/cV takes the values g;/P;g;
and 5~,;, respectively.

The oscillator strength is given by

so that

8x'disco- S-
f.(A,B;)= g S„(A,B;-),

ht,' hagi

DEC 1
f .—=N' kd).

x'8 'g

(A4)

(AS)

This has been summed over j because it is assumed that
the upper states have thermalized. If they are thermally
isolated, each level can be treated separately as above,
but in intermediate cases the situation is more com-
plicated. The population factor is

—P, o oj &/kT/Q P . o oj &lkT— —
E' j=l

where 6 measures the excitation energy above the
lowest populated excited state. For T((62'—6&', only
A l is populated and

64+40'g' 1
r„'(B,A g) = — —P P S.(A ps, B) .

37s py r
(A7)

To use the above expressions for ED transitions, set
D=e P„rv in (Al) and multiply (A2), (A6), and (A7)
on the right-hand side by the factor p= (1/rP) (o,«/oo)'
and (AS) on the left-hand side by this same factor.
f(A3) is not valid for ED as it involves S.f The dielec-
tric-screening term (o,fg/oo) is discussed by Dexter. 's

36 D. L. Dexter, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 0,
p. 353.

Now we consider the inverse process of radiation from
a set of m thermally populated excited levels A; in
which the thermalization time is much faster than the
radiative-decay time. In this case, the line strength is
summed over all anal states in', so that we take account
of all processes contributing to the radiative emptying
of the excited levels. The quantity of interest is the
averaged radiative lifetime which can be temperature-
dependent if states are populated which have different
line strengths to the ground levels. We find

64m'0'g' E
(B,a) = g — Q S„(A;~;8). (A6)

3h J E'p, s.~

APPENDIX 3
We give here the matrix elements of the zero-6eld

perturbation operator 8=K—H&'& within u'E u'Tl
to second order Lsee Eq. (23)j. These ms, trix elements
have been denoted A.l. A.6 and Kl' 'K4 in Table III.

( v + P+ |v)/D7 P/D14 7282/D12
—1gB'/Dis —v '/Ds sP/Dio —oP/Ds —v'/D»—,

Zs = (-,'v2vsy sVZi.v/y-'P)/D, +VZP/6D, 4

+ (3v38v' ——,'3~28t')/D» —(k&2v"+ 'i v' —3-8v')/Ds
—(——;iv'+-;vZBt. +-,'%2P)/D„

—(,' fv'+P/2-4)/Dg+ (~%2 v+—' fv')/Dg$
p

X =E (-', v+s,'—t +v-,'P-)/D ——,', SP/D

$(,'v2"+—', g-38)'+-,'—P]/D, -
—L( k»v'+k|+ 38)'+ 'P) /D~ -o

(-',9"s+',vZ"—i-+P/4g)-/D,
—(-,'v"+V2v'i/24+ P/4&) /D»,

~4 (sV+ 30v)ID7+ sv/D&4 3m/D&&+ 4~~rv /Ds
—(4P+ s&2fv'+3t 8)/D, o ,', P/Dg+ —~;—v2fv'/D»,

X,= —(-',V2py oa2t'v)/D7+ ,'gv2P/D$4-
—(—-',VZ|.v'+-,'vZP)/D»
—(-'|."——'%2 P+ so&2 Bi) /D.
—(-',|."—,', V2 Py-ssKZ Bi) /D„

—(~~ f'v'+v2 P4/8) /D—g (fv'/24+v2p/4g)/D„

Xs=E sP/Dy sP/—D$4 sP—/D»—
—PP+ ( ~~s2+v38)sj/Ds

—$z'P+ (-,'v2v'+38)'$/Dio —P/24Ds —P/24D» ~

kg
——E—(-'2v' '2t v+ 'P)/Ds —4P-/3Dg4-—

—728 /D» —188 /D» —v /Ds P/Dio--
——',P/Dg —v"/Dgg,

zs ——Z —(-', v' —-'i v+-sP)/D7 —-'P/Di4
—Ll +vl(v'6) t+v:Pj/ D-
—(-'~»' 't 38)—'/-Ds —( &~»'—+—

k t +38)'/Dio
—('9v" ov—2v'0+—'P/Ds-

—(-'v"—&2f'v'/24+ —'P)/Dgg,

~2( s"+oval—+ 'P)l» -~~V/6D~4

+ ( 33VB'v+ssv28 f)/Dgs —v'(k'V2v' —4f —38)/Ds
+~2i ( ~kv2v'+ ~F1+38—)/2D»+ (-'fv'+P/24)/Dg

v'( ',v2v'+ ,', f)—/D»—, -—
x4 ——( t v+ ',P)/Dv+P/3D—g4-

—38i./D»+ pv2f "—,', p)/D, —v2f "/6D»
—( ,'v2v'i+ ',P+38—t )—/Dgo. -

The constant K occurs on all diagonal elements and
may be ignored.


