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Exchange Interaction and Energy Transfer for 3d' Ions:
'As-'E Transition for KMgFs '.V'+f
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The energy levels of exchange-coupled pairs of 3d' ions, each in the 4A2 or 'E state, are derived, taking
into account the orbitally anisotropic nature of the exchange interaction. Specific analysis is made of the
spectrum of collinear pairs of vanadium ions in a KMgF3 host. It is found that the Davydov-type splittings
in the excited levels of the pairs, which are caused by the exchange orbital anisotropy, are 2—6 times greater
than the ground-state —ground-state exchange matrix elements. Using a semiquantitative method for esti-
mating the diminution of exchange as one increases the number of ligand linkages between the magnetic
ions, the magnitude of energy-transfer integrals for 72+ ions separated by three F ions is found sufhcient
to cause rapid single-ion —single-ion energy transfer ( 1 @sec). This result indirectly supports the argument
that the Davydov-like terms for weakly coupled Cr'+ pairs are responsible for energy transfer in dilute
ruby.

I. INTRODUCTION

ECENTLY, a number of authors have demon-
strated" that exchange, acting between the

ground and excited magnetic levels in concentrated mag-
netic materials, can give rise to large (comparable or
greater than the ground-state splitting) Davydov split-
tings of the k=o exciton band. In addition, several
authors' have considered equivalent terms in the
energy matrix for pairs of exchange-coupled Cr'+ ions
in A1203 and found large values for these quantities.
Numerical estimates of the magnitude of the Davydov-
type exchange terms for the 'E and 'As levels @As(u),
'E(b) ~ 'E(a), As(b), where the two ions are labeled
u and b, respectively) are terribly involved for CrsOs.
Not only are the overlap and transfer integrals compli-
cated because of noncollinear Cr'+-O' -Cr'+ bonds, but
also no adequate wave functions are available for the
0' in a trivalent "Madelung cage." This is a serious
difficulty; experience in other contexts' has demon-
strated factors of nearly 5 errors in overlap and transfer

f Work supported by the U. S. Air Force Once of Scientific
Research, under Grant No. AFOSR 523-67.' S. Freeman, Technical Report, RCA Laboratories, Princeton,
N. J., 1969 (unpublished).' J. W. Allen, R. M. Macfarlane, and R. L. White, Phys. Rev.
1?9, 523 (1969).

3 M. H. L. Pryce (unpublished).
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Phys. Rev. 184, 367 (1969).' R. J. Birgeneau, J. Chem. Phys. 50, 4282 (1969).
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parameters when using available 0' wave functions
computed for divalent Madelung cages, in a trivalent
environment.

For these reasons, and because all the relevant one-
and two-electron integrals have already been com-
puted' for V'+ in KMgF3, we have analyzed the 4A&,

'E spectrum for collinear pairs of vanadium ions in this
(cubic) host. In brief, we find the exchange terms which
would lead to a Davydov splitting in the concentrated
material to be large (2—6 times the ground-state—
ground-state exchange matrix elements). In addition,
the simplicity of cubic surroundings greatly simplifies
the pair energy matrix, so that the form of the results is
interesting in itself. Finally, quantitative arguments
are given which enable us to correlate rather directly
the magnitude of the Davydov-like pair terms with the
ground-state —ground-state exchange.

It should be noted that, as Birgeneau' has pointed
out, the Davydov-like terms for weakly coupled pairs
are probably responsible for energy transfer in dilute
ruby. Our numerical results verify his conjecture, and
yield a semiquantitative method for estimating the
diminution of exchange as one increases the number of
ligand linkages between magnetic ions. For our model
system, we are able to demonstrate sufficient magnitude
for the energy-transfer integrals for V'+ ions separated
by three F ions to enable rapid single-ion —single-ion

7 J. Yamashita and M. Kojima, J. Phys. Soc. Japan ?, 261
(1952):;R. E. Watson, Phys. Rev. 111,1108 (1958).' N. L. Huang and R. L. Orbach, Phys. Rev. 154, 487 (1967).
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3

Xex= —2 Q Jttst'st ~r (2)

When both ions are in the ground state 'A2, which
posseses the maximuin spin multiplicity and no orbital
moment, Eq. (2) reduces to the conventional form

X, ('As, 'As) = —(2/9)(Q J;)S S'—= —2JS'S'. (3)
i,j=1

energy transfer ( 1 ttsec) to obtain. We are aware that
the system we are considering may not, in fact, be very
useful to study in this context, since it is not even sure
if the 2E level lies below the 4T2 in dilute KMgFS. '
Nevertheless, arguing by analogy, our results do dew. on-
strate that in ruby, where an enormous ( 60) number of
Al'+ sites are available within a distance separated by
three oxygen links, exchange is potent enough to do the
job.

II. ENERGY LEVELS OF EXCHANGE
COUPLED PAIRS

The A2 and 'E states for a d' ion in a cubic environ-
ment can be written as"

'Aa(Ms= —,') = ((g'),
~ (~.=-:)= D~~|-)-u.|-)j/~2, (1)
'&.( 4= l) = L2(M) —

@VV)
—uv| )j/v'6,

where

($)=(i/v2)(jl=2, rtat= 1)y [1=2, rrtt= —1)) jrrts=--, ),
I ~)= —(1/v2)(l~=2, ~a= »

—
[
E= 2, rlt = —1)) ( ms = -,'),

and

~f)=(—i/&2)(~3=2, mt ——2)
—~3=2, rett= —2)) ~ms= ——,'), etc.

We shall ignore the admixing of 4T2 into 4A2 and
2E by the spin-orbit coupling since its contribution to
the energy of the exchange-coupled pair will be negli-
gible. Note that in both 4A2 and 2E states, each of the
three t2, orbitals is singly occupied. Consequently, we
can adopt the following simple expression for the
exchange":

Note that the exchange integral J entering in the above
expression is just the average of J;;.When one ion is in
the excited state 'E, it becomes necessary to use the
general exchange Hamiltonian (2) rather than (3) be-
cause J;; depends on the angular distribution of the
electrons. " The exchange Hamiltonian given by (2)
possesses the important property that it does not com-
mute with S' or Sa. As a result, Eq. (2) interconnects
'Aa and 'E states, whereas Eq. (3) does not. This prop-
erty demonstrates why Pryce' and Kisliuk et al. 4 find
that Eq. (2) rather than Eq. (3) must be used in assign-

ing the observed pair spectra in ruby to the theoretical
values, and why Refs. 1 and 2 found it necessary to use

(2) in order to explain the splitting of the k=0 exciton
band in concentrated magnetic materials (MnFa and
Craoa, respectively). The noncommutivity also shows
that the exchange interaction can be utilized as a mecha-
nism for the single ion-pair energy transfer as discussed

by Birgeneau. '
We shall consider the cases where both ions are in

4A2,' one in 4A2, the other in 2E and both in 2E. The
allowed values for the total spin of the pair are then
given by 5=0, i, 2, and 3. Since the exchange Hamil-
tonian (2) commutes with total (pair) S, 5 is a good
quantum number as long as we ignore spin-orbit cou-
pling. Hence, we shall diagonalize 3', by using the pair
wave functions which are constructed to be the eigen-
states of 5'. For the purpose of observing the important
features of the energy matrix of BC, , we shall consider
the case 5=2 in detail in the following. The energy
matrices for 5=0, 1, and 3 are given in the Appendix.

The eigenfunctions of S' corresponding to S=2 and
SI&=2 are given by

Fl (A a/2A a/2 A a/2A a/2)/v2 p

P2 + 8, 1/2A 3/2 )

+ e, l/2A 3/2 p (4)

P4 A 3/2~ 0, 1/2 p

where A ata= A'a(~a= s) and & e, tta='& e(~s=a),
etc. Using Eqs. (1) and (4), it is straightforward but
laborious to compute the matrix elements of 3', We
And

Pl P2 +3
pt 3J/2 Q(Ja;—Ja, )/K3 sg(Jr+ Ja, —2Ja,)
q a R——',PJa; P(Jr;—Ja,)/2V3

g4

Z(J a
—J a)/~3

—',(Jla+ Jar Jll Jaa)

E—ep(2Jr, +2Ja;—Ja;) (2Jaa —2Jaa+ Jaa
+J22 Jll Jal)/2~3

E——,'PJ,a

g5
aZ(2J a

—J a
—Jst)

(2Aa —2Jaa+Ar
+Jaa —At —Aa)/2~3

s (2Jas+ 2J„+2Ja,+2Jaa
Jll J22 Jal J12 4Jaa)

2 (Jsa —Jta)/2~2
E ', Q(2J, +2J; J—,)——

The A2 —+ T2 excitations in dilute KMgF3. V2+ will be discussed in a separate paper. Energy transfer between these two states
is of interest because the excitation-transfer integrals involve vibrational overlaps which would effectively reduce the "bare" exciton
transfer rate given by the interionic exchange. It has been pointed out to the author that M. D. Sturge (unpublished) has found
4T2 to be the erst excited state in KMgF:V'+.

ae J. S. Gritiith, The Theory of Trarasataota Metal Iorts (Cambrid-ge University Press, London, 1964), p. 406.
"The criteria for applying Kq. (2) simultaneously to interactions involving excited and ground multiplets have been discussed in

detail by S. Freeman in Ref. 1. For the case of KMgF3'. V', the anion-cation and cation-cation transfer energies have been estimated
(see Ref. 8) to be 21 eV and 17 eV, respectively, whereas the intra-atomic exchange is of the order of 1 eV. Hence, the error involved
in applying Eq. (2) to both the ground and excited rnultiplets is roughly 6%.

aa J. H. Van Vleclt, Rev. Univ. Tucuman A (Argentina) 14, 189 (1962).
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where R denotes the energy difference between 'E and
4A2 in a single ion, and the summation runs over j= 1,
2, and 3. The elements which are not given explicitly
can be obtained from (q, (~. ( p;) = (p;(X, ~

p;). Note
that if there were no orbital anisotropy in the exchange,
i.e. , if the J,,'s were all the same and Eq. (2) became the
same as Eq. (3), the off-diagonal terms in the energy
matrix (5) would have vanished. The presence of the
oR-diagonal terms has the following eRects: (1) It gives
rise to various Davydov splitting of from 13 to 40'K in
KMgF3.'V'+, as we shall see below. Such splittings are
obviously essential to the assignment of the observed
optical spectra. (2) It demonstrates that the exchange
interaction given by Eq. (2) provides a mechanism for
the single-ion-pair energy transfer. The latter property
follows from the fact that in (5), off-diagonal elements
of the form (4As' 'E'~BC, ~'E~ 4As~) exist. These have
the effect of simultaneously exciting ion 5 from 'A& to
'E and deexciting ion u from 'E to 4A~, resulting in an
energy transfer between the two ions. The strength of
these terms will be estimated later.

One might question the possibilities of replacing Eq.
(2) by an expression involving the two ionic spins. It
turns out that, although such an expression could yield
the correct energies, by defining an "e6ective" ionic
spin and appropriate coupling constants, it is actually
useless since it will not interconnect 'E and 4A2. One
might also expect that the isotropic exchange given by
Eq. (3) should be applicable to the calculation of the
diagonal elements of (5). This is apparently not true
in our case because of the specific forms of the 'Eg and
'E, wave functions that we have chosen. As a result,
('Es, ,

~
s,

~

'E'tt, ,) is not independent of i in our notation.
In fact, applying an appropriate unitary transforma-
tion to our 'Eg and 'E, wave functions, we Qnd that Eq.
(3) can indeed be used to compute the diagonal matrix
elements" (only).

The above considerations are entirely general for a
pair of d' ions, each in the 4A2 or 'E state. Let us now
consider the example of KMgFS.V'+. For the case where
two V ions are along a cubic axis which is chosen to be
the z axis, the cubic symmetry leads to the following re-
lations: J~3=J23=J3~=J3~, J~2= J2y, and Jyy= J22. Here,
we have assigned the indices 1, 2, and 3 to the orbitals
f( ys), ti( xz), and f( xy), respectively. Further-
more, using the method of configuration interaction,
it is found that Jqq——31'K, J~2 Jqs 1'K, and
J33—O'K. These lead to a value of —6'K for J, whereas
the experimental value for J determined by Smith and
Owen, " from a measurement of the ground-state pair
spectra, is —4.4'K. Although the theoretical calculation
is not in excellent agreement with the experiment

'3 The unitary transformation required is given by

-'(.' ')
Using (E,~7Eg)/V2 as the new basis set for 'E, we And that the
diagonal matrix elements of Eq. (2) are the same as those of the
isotropic exchange (3)."S. R. P. Smith and J.Owen ( unpublished).

(owing to diKculties similar to those involved in esti-
mating the amount of charge transfer in weakly covalent
crystals), yet it shows that among the J... J» is by far
the dominant term. This is in qualitative agreement
with the fact that d„, and d„,s (or d, .' and d„s) both

overlap with the ligand orbital p„(or p.). (Such a situ-
ation is not appropriate to Cr'+:A1203, of course, since
the bonding is by no means collinear. ) Hence there
exists a strong superexchange interaction between these
d orbitals. Making the approximation of retaining J~~
(=Jss) and ignoring the others, we find

Jgg~-,'J= —19.8'K. (6)

In this approximation, the pair energy levels, the
matrix element of 3C, entering in the rate of energy
transfer, and the Davydov splittings, all take simple
forms, as we shall see in the following.

In order to solve for the eigenvalues of (5), we form
the symmetric and antisymmetric combinations of the

s to reduce the matrix into block form. Using (6),
we find the energies of the pair corresponding to the
symmetric and the antisymmetric states to be

5=2: ss J, R—ss J, R+ssJ (antisym. )
R—sJ, R —ssJ (sym. ), (7)

where we have only retained terms of the order J/R as
compared with R. In a similar manner, from the energy
matrices given in the Appendix, we And the pair energies
corresponding to S=0, 1, and 3 to be

5= 0: —", J, 2R+-,'(2++5)J
2R+—'J

(antisym, )
(sym. ),

5=1: R——,'J, R+ssJ, 2R+ssJ
~s J, R+-,'J, R+~s J, 2R ——,

' J,
2R —J& st (13)'~'J (sym. ),

(antisym. )

S=3: ——,'J (syrn. ) .
(9)

(10)

For the case of two nearest neighbors with S= 2, using

(7), the Davydov splittings are found to be

EL(~s —
v s)/~2j —EL(v s+ ~ s)/v2j

=3J= —13.2'K,
(11)

EL(v v)/~& j EL(~—+~ )/~~ j-
= 9J= —39.6'K,

where (q;+q, )/v2 and (q,—p, )/V2 correspond to the
symmetric and the antisymmetric state, respectively.
Note that these splittings are 2—6 times greater than
the ground-state —ground-state exchange splitting ~J
given in (7). The matrix elements entering in the rate
of energy transfer are found to be

('Es~, 4A s'
~
Ke»

~

42 s~ 'Es') = —-'J= 19 8'K

(sE, ,4x, s~3.,
~

4a, , sE, s) = ——;J=6.6'K. (12)

Expressions similar to Eqs. (11) and (12) also obtain for
the case S=1.
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III. CONCLUSION

We have demonstrated above the importance of the
orbitally anisotropic nature of exchange integrals. In
the case of 1% ruby, using the observed single-ion-pair
transfer rate and a theoretical estimate for the convolu-
tion of the no-phone line and the phonon density of
states, Birgeneau' found that

l(A,«E Ix,„,l'E A, )l

for single-ion-single-ion transitions needs to be 2.5
X10 ' cm '. He also found that the electric or magnetic
multipole interactions are roughly three orders of mag-
nitude too small, as compared with this value, and con-
cluded that orbitally anisotropic exchange is the mecha-
nism for the energy transfer in ruby. For the case of two
nearest V neighbors in KMgF3, we found in Eq. (12)
that ('Ap 'E IX,xI'E~ 'Ag') is of the order of 10'K.
This value should be reduced roughly by a factor
Sg (~10 ') for each additional ligand which sits along
the path of the superexchange interaction between the
magnetic ions. Here 5 is the overlap integral between
two neighboring F ions. Hence, very roughly, we

would get a value of i0 3 'K for the above matrix ele-

ment corresponding to the case of two V2+ ions separated

by three F ions. Thus, even for exchange paths con-
taining three ligand linkages, there is sufFicient magni-
tude for rapid single —ion —single-ion energy transfer.
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APPENDIX

The wave functions and the matrix elements of Eq.
(2) corresponding to S=0, 1, and 3 are given below. We
need to consider only wave functions having the maxi-
mum value of 3Eq, since X, is invariant under rotations
in spin space.

(I) s=o:
Ij'1=2(A g, sA g, g

—A 1,2A

+A —I/2A I/2 A —3/2A 3/2) p

A=(E'8, I/2E 8, I/2 E'8, I/2E 8, I/2)/~&, — — —

gg= (E,, l/2E 8, I/2 E g, I/2E 8,I/2)/V2~-
p4 (E 8, 1/2E e,—I/2 E 8, I/2E e, l 2)//2yv—
45 (E e, l/2E e,—I/2 E e,—I/2E e, l/2)/v2 ~

The matrix elements of X, are found to be

9 lx-l~.&=—J,
(0'I I xex I/2) (Jll+ J22 J12 J21)/v2 p

(PIIX. Iks)= (JII—JI2+J2I—J22 —2JsI+2J32)/V'6,

Q I I
X.

I 44) = (JII—Jgl+ JI2 —J22 —2JI3+2J23)/Q6,

(/IIX, Ips)= (4Jgg —2Jgg —2Jgl —2Jlg —2Jgg

+J22+ J21+J12+Jll)/3~~ p

ygIX, IP2&=2Z+2J33,

Q2IX..lies&= 2(J23—As),
(A I X- I44& =

2 (Jsg —J»),
Q2IX. Ifs)=2(JII+J22 —JI2—Jgl)=gsIX. I44),

(03IXexlgs)=2~+Jig+ J23—2J33,

Q'3
I
X,x I

Ijjs& = (2J12—2Jll+ 2J22 —2J21+Jg1 —J32)/243,

(6 I
X. I04& = 2&+Jsl+ J32——2J33,

($4 I
x..I ps) = (2J2I —2JII+2J22 —2J12+J13 J23)/2@3,

(AI X x lg'3& = 2~+ 6 (4Jll+4J12 2J13+4J21+4J22
—2Jgg —2J31—2J32+Jss) .

(ii) S=1,mls=1:

ul (Cjs )A 3/2A —I/2 (Vs)A I/2A 1/2

+(V 10)A —1/2A 3/2

u2 2 (~&LI 8, 1/ 2A 3/2 E 8,1/2A I/2) y

us 2 (v3E 4,—I/2A 3/2 E e, l/2A I/O) p

u4 2 (v3A 3/2E 8,—I/2 A I/2E 8,1/2) p

us 2 (v3A 3/2E e,—I/2 A I/2E e, l/2) y

N6 + 8,1/2+ 8, 1/2 p

N7 + t, 1/2+ 8, 1/2 p

Ns ~ 8, 1j 2E ~41/2 q

N9 + e, 1/2+ e, l/2 ~

The matrix elements of BC,„are found to be

(uII x..luI) =~2J,
&u, lX..I»&= (~5)g(J2/—J„)/3v3

= (2/+5)(u IX,„lu ),
)=l(&5)Z(2J —J —J )

&» I X-Iu4&= (v'5)Z(J/2 —J I)/3~3
= (2/+5)(u4 I x.*l »)

&= l(&5)Z(2J' —J —J ),
(ul I

X I us) = s(V 10)(JII+J22 J12 J21)
= —(-21&5)(us I

X,.
I ul&

= —(21+5)(ugl x..Iug)
= —(21&5)(u4I Xex lus)
= —(-,'&5)(us

I
X.„lu,)

= (~10)&»Ix.„lu4&= —(~10)&u, lx.„lu,&

= —(+10)(ullX. Ius),
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(ul ( X.
I u7) = (+5)

X(2J22—2Jsl+ J21 J12+Jll J22}/3V6
= (+10)(us(X,„(u4)
= —

(-2, +5)(u4fX, fug)
= —(21+5)(us I x.„jul),

(» I x- I »)= (v'5}(2J29—»ls+ J12
—Jsl+ Jll —J22}/3+6

= —(l v'5)(us I x-I us)
= —(-,'&5)(us(X, jus)= (+10}(ng(X,(us),

(ul I Xex I ug) = (+5)(4J'ss —2J22 —2Jsl —2J22+ J22

+Jgx —2As+A2+ J»)/9v2
= (+10)(us(X„(us),

(ug(X. (us)=s g J'2;,

(us (X,„jus) =V2(Jsl J—)s/gV3= 2&2(us I X, (us),

( (X, I
)=—v2(J +.J —2J ),

(us(X, Ius)= (5/18)P(2J1+2J2;—Js,),
(us(X,X(u7) V2(2J» 2J22 2J12

+2J21+Jsg —Jsl)/3%3

=2v2(u7(X. (ug),

(»Ixexlug)= ga2(2J»+ 2J» —4J»+2J»+2J
—4Jgs —Jsl —Jsg+2 Jss),

(u4
I
X,„(u4) = —,

' g J;2,
(u4(X,x(us)=V2(Jls Jgs)/I/3=2&2(ns(X, „(u7) p

(u, I
X.„Iu7) = —2'V2(Jls+ Jgs —2Jss),

(u5( Xe~ I us) = (5/18)g(2J, 1+2J72 —Jls),
(us( X.„(us)=V2(2Jll —2J22 —2J21

+2Jlg+ Jss —As}/3~3
=2&2(u IX. (u),

(u5( XGXI u9) 9~2(2J»+2J21 4Jsl+2J12+2J22
—4Jsg —As —Jgs+2 Jss),

(us(X. (us)= —-', Jss,
(u7(X. Iul)=-,'(J'ss —2Jls —2J29),

(» I x-I»)= 9(Jss—2J» —2J92),

(ug I
X. I u9) = (1/18)(—4J11—4A2+2Jls —4J21—4J22

+2J29+2Jsl+2J52 —Jss) .
(iii) S=3, cV~ —-3:

u= A'3, 2A ~3, g

(~jx-I~)= —lJ.


