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Electronic States of a Liquid Metal from the Coherent-Potential Approximation*
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A treatment of the electronic states in a liquid metal based on the coherent-potential method is given.
The equations for the coherent potential and the average Green's function obtained from the requirement
that the average T matrix is zero are shown to have as solutions certain expressions that were previously
derived by Klauder from a diferent point of view. Connections with other work are mentioned.

A METHOD for calculating the one-electron states
of a random substitutive alloy called the coherent

potential method has been put forward by Soven' and
has been used to treat various one- and three-dimen-
sional alloy models by him and by Velicky, Kirkpatrick,
and Ehrenreich. ' The philosophy of this method is to
immerse the scatterers in a medium specified by a
potential function chosen in such a way that on the
average, an electron propagating in it will undergo no
further scattering upon impinging on an individual
scattering center. Mathematically this requires that the
average of the T matrix for a scatterer in the medium is
zero, (T„)=0.We show that this requirement for a liquid
metal with no short-range order leads to equations for
the coherent potential that describes the medium and
for the average Green's function which can be solved in
closed form. These solutions are shown to be identical
with results previously derived by Klauder' using
in6nite-order perturbation theory. Our primary interest
in these solutions is in the insight into the nature of the
method that can be obtained from them. To study liquid
metals realistically it will be necessary to include at
least enough short-range order in the formalism to
prevent the atoms from overlapping appreciably.

Consider a liquid metal composed of Ã identical
scatterers in a volume 0 described by a Hamiltonian
B=Hs+g V„,where Ho is the kinetic energy operator
and (r~ Vo~r)= V(r—R„). The positions of the scat-
terers, R, are randomly distributed within Q. Many of
the properties of this system can be found from the
ensemble-averaged Green's function

(G(k,k', Z)) =Q
—~ dR,dRs dR„G(k,k', Z),

where G(k,k', Z) = (k
~
(Z—H)—

'~ k'), and in the last step
Z approaches the energy E in such a way that the
Green's functions have the proper analytic behavior. It
can be shown that G= Go+GoTGs, where Go ——(Z—Ho) '

*Research supported in part by a Fulbright grant from the
United States-United Kingdom Educational Committee.

$ Operated for the U. S. Atomic Energy Commission by Union
Carbide Corporation.' P. Soven, Phys. Rev. 156, 809 (1967); 178, 1136 (1969).' B.Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175,
/47 (1968).

s J. R. Klauder, Ann. Phys. (N. Y.) 14, 43 (1961).

T=g T„+P'T„+P'T„GoT
n, m

+ Q' T„GpT GpT„+
fl' 7 flE' 7

the prime on the summation meaning that no subscript
on a T can equal the one that precedes it. The T matrices
for each scatterer are defined by T„=(1—V Go) 'V,
and have the matrix elements

T (k k') =0—'8 '&"—"'~"l(k k')
with

l (k,k') =s(k —k')+ (2n)
—'

X dkis(k —ki)Gp(ki, Z)l(ki, k'), (2)

and s(tl) is the Fourier transform of V(r). Inserting the
T„into 6 and ensemble averaging leads to an expansion
for (G) in which each term is a product of Go(k,Z)'s and
l(k,k')'s. The numerical factor in front of such a term,
and the relations that restrict the values taken on by the
internal k's that are summed over, arise from the process
of averaging products of exponentials like the one shown
in Eq. (1). A concise method for keeping track of the
terms that appear in (G) is afforded by drawing a set of
diagrams' 4 that have a correspondence to these terms.
The first result that comes from this process is that (G)
is diagonal in k, i.e., (G(k,k', Z)) = (G(k,z))3(k—k').

Klauders arrived at a series of approximations to (G)
by summing over ever larger class of diagrams, the
highest level of approximation that he analyzed being
similar in form to the Brueckner approximat&on of
manybody theory. If the substitutions r (k,k') = tt (k—k')
+e(0)Es(k', k—k') and Ss'(k, z) =ps(0)r(k, z) are
made in his Eqs. (7S) and (76), the approximate
averaged Green's function r (k,s) is given by

r(k,Z)=PZ —ks —p (k,k)j
where p=lV/0 and

r (k,k') =e(k—k')+ (2n)
—'

dkis(k —k,)r (ki,z)r(k„k') . (4)

' S. F. Edwards, Phil. Mag. 3, 1020 (1958).
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Gs(k, Z) = PZ—k' —pwj
—'

Gs (k,Z) = )Go(k,Z)—'+w/QP'.

(6)

The quantity t(k,k') is like the t(k,k') of Eq. (2) except
that Gs(k,Z) takes the place of the Gs(k, Z) in that

' M. Lax, Rev. Mod. Phys. 23, 287 (1951);Phys. Rev. 85, 621
'{1952).

6 T. Matsubara and Y. Toyozawa, Progr. Theoret. Phys.
(Kyoto) 26, 739 (1961).' F. Yonezawa, Progr. Theoret. Phys. (Kyoto) 31, 357 (1964).

Writing the equations in this form allows a simple com-
parison with the Green's function from multiple scat-
tering theory' which is similar except that the quantity
7 (k,k) in Eq. (3) is replaced with 1(k,k) from Eq. (2).
The appearance of I'(k,Z) rather than Gs(k, Z) in Eq. (4)
can be called self-consistent internal propagator modi-
fication. Iterating Eq. (4) and inserting the result in
Eq. (3) leads to a complicated integral equation for
I'(k, Z), or inserting the expression for I'(k,Z) from Eq.
(3) into Eq. (4) leads to an equation for r(k, k).

Matsubara and Toyozawa' obtained an approxirna-
tion for the average Green's function by a process that
differs from the above in that real-space expressions and
diagrams were used rather than the k-space quantities
described above. Yonezawa' showed the equivalence of
this theory with that of Klauder and carried out a
calculation for a simple three-dimensional model.

In our consideration of the coherent-potential ap-
proximation we choose to follow an algebraic develop-
ment similar to the one that appears in Ref. 2 rather
than considering wave functions as in the standard
multiple scattering theory. '

The coherent potential is an initially undetermined
potential field, pm, in which on the average the electron
can be considered to move according to the Green's
function Gs ——(Z—Hs —pw) '. For a liquid it is reason-
able to assume that the coherent potential is indendent
of position because the liquid is translationally invariant
on the average, but the possibility that it could depend
on momentum operators must be considered. Rewriting
the Hamiltonian for the system in the form H= Vs+ pw
+g„(V„—w/0), it can be seen that the exact Green's
function can be written in terms of 60 and the scattering
operators

7„=E1—(V„—w/Q)G, )—'(V„—w/0) .
The basic postulate of this approach, that the average
Green's function (G) can best be approximated by Go if
px is chosen so that on the average there is no further
scattering from a scatterer imbedded in this Geld,
(T„)=0, can be described in terms of a single-site
approximation. 2

By a certain amount of algebraic manipulation of the
k-space matrix elements of T it can be shown that

1 Gs(k))'( Gs(k))
(T„(k,k')) = —

~ ~
t(k, k) —w ~3(k—k'), (5)

0 Gs(k)l 4 Gp(k))
where

equation. For most potential functions V(r—R„) it
will turn out to be consistent to assume that m is not
proportional to 0, and hence Gs(k, Z) can be replaced by
Go(k,Z) in Eq. (5) as the volume 0 becomes very large.
Under these circumstances it can be seen that the
equation (2' )=0 can be solved by functions w(k, Z) and
Gs(k,Z) that satisfy the same integral equations as
r(k, k,Z) and I'(k, Z), Eqs. (3) and (4).

This result shows that Klauder's analysis can be used
to determine the 1evel of approximation implied by the
coherent-potential method. in the language of pertur-
bation theory, and that m must in general be considered
a very complicated function of momentum operators as
well as the energy. The latter circumstances has some
interest implications when we try to think about wave
functions, which, as was mentioned above, have been
ignored in following the algebraic approach. If 6'0 was
the exact Green's function for the system, then Gs 'P = 0
would define the eigenstates. Plane waves satisfy this
equation but the k vectors are complex satisfying the
equation E—ks —w(k, E) =0 for a given energy E. The
average wave for a liquid should be a plane wave, ' but
since Go is not the true Green's function for the system,
it is dificult to give a meaning to the generally un-
normalizable wave vectors satisfying the above equation.

Although the above argument is complete, it is
reassuring to consider a simple model for which it is
possible to follow continuously the process whereby the
coherent potential result for an alloy goes over to
K.lauder's result for a liquid. metal. Soven' first applied
his method to a one-dimensional random alloy with a
potential function V(x) = —Q„P„5(x—nd), where P„
equals I'~ or I'~ if there is an 3 or 8 atom at that
site. The fraction of sites that contain 4 atoms is c,
and the number of A atoms per unit length is e= c/d. If
I'z is set equal to zero while c and d approach zero in
such a way that e remains Axed, this potential passes in
the limit to a set of 6 functions positioned along the x
axis according to a Poisson distribution, which is a
model of a liquid that was treated by Klauder. ' Thus,
the alloy calculation can be done using the coherent-
potential theory and then passing to the liquid-metal
limit should yield Klauder's results. In fact, this calcula-
tion already exists in the literature but it is necessary to
show another connection in order to demonstrate it.

When specialized to the one-dimensional alloy model
the coherent-potential method gives the same results as
an average-trace method~ which only works for one-
dimensional problems. To see this we note that the
coherent potential for the one-dimensional alloy is
periodic, W= —w +„3(x—ed), where w will turn out to
depend only on the energy. The T matrix for a scatterer
immersed in this field is

r„(x,x') = —
I 1+(P.—w)G, (nd, md))-&

X (P —w) 8(x—nd) 8(x'—ed),

s J. S. Faulkner and J. Korringa, Phys. Rev. 122, 390 (1961).
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where Gp(a, a') is the Green's function for the electron in
the field of the coherent potential. The part of this
function that is needed is

Gp(rtd, nd) = sinnd/(2in sinp),

where n=+Z and p is defined by

cosp = cosnd —(w/2n) sinnd .

The coherent-potential parameter z is determined by
the equation

cog+ (1—c)1'tt= 0. (7)

The average-trace method deals with a quantity U that
is a root of dh/8 U= 0, where

h(U) = —iP+ln(1+ U) —(1—c) lnU. (8)

It can be shown that setting the derivative of h(U)
equal to zero leads to Eq. (7) if the change of variable
U= —(w —P~)/(to —Ptt) is made, and the expressions
for the density of states used in the two methods' ' also
become identical.

The passage to the limit of a liquid has been carried
out using the average trace method' and Klauder's
result was obtained. In the present context this fur-
nishes an example of passing to the limit with the
coherent-potential theory.

There have been a number of other treatments of the
liquid metal problem. Ziman' has put forward a theory
of liquid metals with short-range order that he describes
in terms of multiple-scattering theory. ' He uses the
quasicrystalline approximation of Lax' that is the same
as the single-site approximation when there is no short-
range order, but he does not consider internal propa-
gator modification. His work is related to the average
T-matrix approximation for random alloys advanced by
Korringa" and Beeby, I2 which also does not use internal
propagator modification. Lloyd" does consider such
modification to some extent. The work of Anderson and
McMillan'4 is more closely related to the present
considerations. They apply the (T )= 0 condition in a

' J. S. Faulkner, Phys. Rev. 135, A124 (1964)."J.M. Ziman, Proc. Phys. Soc. (London) 88, 387 (1966)."J.Korringa, J. Phys. Chem. Solids 7, 252 (1958)."J.L. Beeby, Phys. Rev. 135, A130 (1964); Proc. Roy. Soc.
(London) A279, 82 (1964)."P.Lloyd, Proc. Phys. Soc. (London) 90, 217 (1967).

"P. W. Anderson and W. L. McMillan, in ProceeCkngs of the
International School of Physics "Enrico Fermi, "Course 37, edited
by W. Marshall (Academic Press Inc. , ¹wYork, 1967).

very direct way, but the scattering operator they use is
not the one used here and they do not obtain the density
of states function from taking the trace of a Green's
function as in the theory of Klauder. They obtain a
complex k vector for the medium that may have an
origin that is similar to the one described above.

The work of Matsubara and Toyozawa' has been
further extended in the direction of treating random
alloys by several authors. " It has been pointed out'
that these extensions of the Matsubara and Toyozawa
theory lead in certain limits to equations that have the
same form as the ones obtained by Taylor, " who
introduced the coherent potential theory into the treat-
ment of phonons and arrived at results that apply to
electrons in the tight-binding limit. Leath'" has dis-
cussed the connection between Taylor's equations and
those that arise from the theory for phonons of Davies
and Langer, "who patterned their work to some extent
after Klauder. ' Although these connections are related,
they are not the same as the general proof shown here.

In passing we note that when Taylor's coherent-po-
tential theory for phonons" is specialized to one dimen-
sion it leads to the same equations as have been obtained
using the average-trace method' referred to above.
Flinn, Maradudin, and gneiss" carried out some rather
extensive calculations with this latter method and
compared the results obtained with it to the numerical
calculations of Dean" and the moment-trace calcula-
tions of Bomb, Maradudin, Montroll, and gneiss, 2'

showing in particular that it seems to represent the
limit of successive approximations in the moment-trace
method. These considerations also apply to the coherent
potential theory.
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