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Fro. 1. Density versus pressure curve for 2&Fe. The experimental curve represents the reduced shock-wave data (taken from Ref. 1).
The curve SZ is based on TFD plus average correlation corrections (Ref. 1). The present curve is based on TFD plus the quantum
and (the average correlation corrections,

The matter density is given by

p= 1.664LAZ/(ZV) $ g/cm',

where A is the atomic mass in physical atomic-mass
units.

Results for the equation of state of g6Fe are sho~n in
Fig. 1 along with the experimental data (taken from SZ)
and the results of SZ. I'rom the figure we see that the
simple procedure outlined in this note improves the
agreement with experimental data.
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Reaction-Rate Kinetics and Distribution of Activation Energies
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In the problem of the determination of the characteristics of reaction-rate kinetics through the analysis
of isothermal (or isochronal) data, we show that (1) it is impossible to determine both the order of reaction
and, concurrently, the distribution of activation energies, and that (2) without prior knowledge of one of
these —either the order of the reaction or the distribution of activation energies —the other cannot be deter-
mined in a unique manner.

A SYSTEMATIC study of the kinetics of processes
distributed in activation energy was made by

Primak, ' who also gave an impressive list of fields in

physics where this concept has been applied. We follow,

' WV. Primak, Phys. Rev. 100, 1677 (1955).

in general, the notation of Primak to write the kinetic
equation

dg——=A.q" (1)

where q is the concentration of the reactant, t is the
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time, 'A is a constant, and e is the order of reaction. For
a given tt, Eq. (1) can be integrated at once to analyze
isothermal data. Thus,

q=qoL1+(rt —1)qo" 'Xtj' &'—"& for rt)1
= qoe "' for e= 1. (2)

In reaction processes, the rate constant X is usually
given by the Arrhenius expression

X=X,e-&1», (3)

' C. Lee and J. S. Koehier, Phys. Rev. 176, 813 (1968).

where E is the activation energy and kT is the product of
Boltzmann's constant and the absolute temperature.
Therefore, the reaction kinetics are characterized by
Eqs. (2) and (3).

Now assume that there exists a distribution of activa-
tion energies, so that qo and X are in fact dependent on
such a distribution. We then ask the following question;
What are the distribution functions implicit in qo and X

which would give the same functional form in time and
temperature as given for q in Eqs. (2) and (3), i.e., with
a single governing activation energy P The answer is that
go and X must be Dirac 8 functions, i.e., of the form
A 6(E'—Eo), where 2 is an unspecified pa,rarneter and Eo
is a singular value; in other words, qo and X have null
distributions in E. The proof is based on the de6nition
and the uniqueness of the 6 function.

In a recent work on the annealing in gold after electron
radiation, ' analysis was made to determine the order of
kinetics (it was found tt=2) as well as to establish a
continuous spectrum of distribution of E in qo. Our
mathematical argument shows this analysis is not
self-consistent.

Next, we ask the following question: Can one establish
the form of a distribution in activation energies based on
isothermal (or isochronal) data without a prior knowl-
edge of the order or reaction, and vice versa? The
answer is negative.

First, consider the following example: Suppose experi-
rnental data are generated by Eq. (2) with rt= 2, but
somehow we attempt to analyze the data in terms of a
first-order kinetics (rt= 1) with a distribution of activa-

tion energies. We have

(1+qoXt) '=Ps age

Formally, we can determine the expansion coefficient
c& and the exponential parameter X& from the system of
equations

Equation (5) does not determine uniquely both a& and
X~ because there are two times more unknowns than the
algebraic equations. Therefore, in fact, we have extra
free parameters to choose and we have j values of either
a& or X&, each has its own "activation energy. "There-

foree,

either a~ or X~ can be used to generate a spectrum
of activation energies; however, this was bused oe a
false artalysi s.

The above example is based on the preassignment of
e. Now, if we leave m free, and if we represent the right
side of Eq. (1) by a general function f(g), we only
impose a condition that f(q) is meromorphic' with as
many zeros as we require, then Eq. (1) can be integrated
and we have

(6)

where tts are zeros of f(cf) and ted the Riemann residues
of f '. /The expression in parenthesis of Eq. (6) should
be qs —

q it q(qs. $ Since we have not speci6ed a priori
the number ot ts, Eq. (6), in principle, could 6t any
experimental isothermal or isochronal data, with any
desired degree of accuracy, with a siege X, i.e., a single
act& O,ti orI, energy.

Therefore, unless there is other physical evidence, as
emphasized by Primak himself, ' it seems there is no
mathematical base to establish the activation-energy
spectrum, as advocated in the recent literature. '4

I would like to acknowledge several opportunities of
discussion with Professor T. Tanaka of the Catholic
University of America.

'E. C. Titchrnarsh, Ttteory of Fttlctt'oms (Oxford University
Press, London, 1932), p. 110.

4 Some other examples are: R. M. Kimmel and D. R. Uhlman,
Phys. Chem. Glass 10, 12 (1969);V. Danchenko, U. D. Desai, and
S. Brashears, J. Appl. Phys. 39, 2417 (1968).


