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Microscopic Theory of Force Constants in the Adiabatic Approximation*
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The microscopic quantum-mechanical expressions for the Born—von Karman force constants in an arbi-
trary solid, crystalline or amorphous, are derived in terms of the complete inverse dielectric function
e '(r, r') of the electrons The many-body nature of the electrons is treated exactly; only the Born-Oppen-
heimer approximation is made. Born's translation and rotation invariance conditions are shown to be
satished by the microscopic force constants. In the case of a perfect crystal, it is shown for the first time
that the microscopic formulas recapture completely the phenomenological form of the dynamical matrix;
in particular, the microscopic expression for the eftective charge in an insulator is found. We prove that the
charge neutrality of the system implies the effective charge neutrality" condition and that, consequently,
all acoustic-mode frequencies vanish at long wavelength. This condition may be stated as a useful property
of ~ ' which we term the acoustic sum rule. Many results of the phenomenological theory, e.g. , the gen-
eralized Lyddane-Sachs-Teller relation, carry over exactly to the microscopic theory.

I. INTRODUCTION

~ 'HE vibration of nuclei in solids in the harmonic
approximation is described by the Born-von

Karman force constants. ' ' In the phenomenological
approach the force constants are regarded as param-
eters adjusted to fit experimentally observed vibration
frequencies. In order to make the parametrization both
feasible and physically meaningful, one introduces for
the various types of crystals different force-constant
models which are at erst sight unconnected. Recently,
on the other hand, much e8ort has been applied to
deriving the force constants from first principles based
on the microscopic electronic configuration of the solid.
These methods have been very successful in many
metals' and have been applied to other materials in a
few instances. ~'

Among the authors who have developed the micro-

scopic theory of lattice dynamics of metals are Toya,
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Press Inc. , New York, 1969), Vol. 22, p. 159.' K. B. Tolpygo, Fiz. Tverd. Tela 3, 943 (1961) )English
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The success of the theory applied to metals has in turn
spurred the extension to other materials. The additional
problems encountered in applying the general theory to
insulators have been examined in a preliminary report
of the present work, '4 by Keating, " and by Sham, "
who has independently derived the important results
of the present paper. Also, Sinha'7 has recently given a
microscopic basis for the shell model.

The purpose of the present paper is to derive in a
simple manner a microscopic theory applicable to a
wide range of solids so that it may provide the relation-
ship between the various methods and models used to
describe the nuclear vibrations. We go on to analyze
the results of the microscopic theory so that the connec-
tion to the familiar phenomenological theories can be
made. Of particular importance is our analysis of the
analytic properties of the microscopic functions in-
volved which were not considered in the previous works.

In Sec. II the general expression for the force con-
stants C~~ is derived from a microscopic examination
of the forces in terms of the nuclear charges and the

' G. Baym, Ann. Phys. (N. Y.) 14, 1 (1961).
'L. J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965);

thesis, Cambridge University, 1963 (unpublished).
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(W. A. Benjamin, Inc. , New York, 1966).
u W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963).
"A. Sjolander and R. Johnson, Inelastic Scattering of Neutrons

(International Atomic Energy Agency, Vienna, 1965), Vol. I,
p. 61.

~' S. H. Vosko, R. Taylor, and G. H. Keech, Can. J. Phys. 43,
1187 (1965).

4M. H. Cohen, R. M. Martin, and R. M; Pick, Neutron
Inelastic Scattering (International Atomic Energy Agency,
Vienna, 1968), Vol. I, p. 119.The acoustic sum rule stated there
[Eq. (3.11)g is incorrect and is supplanted by Eq. (6.9) of the
present paper.' P. N. Keating, Phys. Rev. 175, 1171 (1968)."L.J. Sham (to be published).' S. K. Sinha, Phys. Rev. 177, 1256 (1969).
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complete inverse dielectric response function ~ ' of the
electrons, treating all electrons equivalently. The
derivation assumes only the Born-Oppenheimer' "
approximation and the harmonic approximation for the
nuclear displacements. Thus the force constants
derived are essentially quasiharmonic force constants
in that they are, in general, temperature-dependent
because of thermal electronic excitation but do not
include any lifetime effects or frequency renormalization
due to phonon-phonon interaction.

The remainder of the paper is devoted to examining
the consequences of the expressions derived in Sec. II.
The invariance properties of the free energy of the
system in the harmonic approximation can be expressed
in terms of relations among the force constants which
have been stated, for example, by Born. ' In Sec. III
it is shown that these conditions are indeed satisfied
by the force constants of Sec. II.

In Sec. IV the specialization to a perfect infinite
crystal is made and the formulas for the dynamical
matrix are given. For comparison, we brieQy review the
phenomenological expressions for the dynamical ma-
trix" and note that in the case of ionic insulators the
long-range effective charge contribution to the dy-
namical matrix is identi6ed by its analytic behavior as a
function of wave vector q near q =0.

The analytic behavior of the microscopic expression
for the dynamical matrix is examined in Sec. V and it is
shown that in the case of an insulator the phenomeno-
logical form of the dynamical matrix for an ionic crystal
is obtained. In particular, the microscopic expression
for the effective charge is found. In the case of a metal,
there are no such effective charge terms.

The final step in making the identification with the
phenomenological theory is accomplished in Sec. VI.
There it is shown that the charge neutrality of the
system implies the "effective charge neutrality" condi-
tion which must be assumed in the phenomenological
approach. ' From this condition it follows that all
acoustic modes have vanishing frequencies at long
wavelength. The condition may be stated as a useful
property of ~ ' which we call the acoustic sum rule and
which points out a crucial factor in the computational
differences between metals and nonmetals. It is in the
study of the analytic properties that the present work
differs from that of Keating" (consequently, the
acoustic sum rule derived here differs from the similar
condition given by Keating).

Having completed the identification with the phe-
nomenological theory, in Sec. VII we point out two
results derived previously, " the generalized Lyddane-
Sachs-Teller (LST) relation" and the expression for the

'8 M. Born and R. Oppenheimer, Ann. Physik 84, 457 {1927)."W. Cochran and R. A, Cowley, J. Phys. Chem. Solids 23, 447
(1962)."R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
673 (1941).

total static dielectric tensor, which immediately carry
over to the microscopic theory.

uA +A ~A (2.1)

are assumed to be sufficiently small that Ii may be
expanded in powers of the u~ and the expansion trun-
cated after the quadratic terms:

J"=&o+-', Q u~ug,
AB ggg ggg p

(2.2)

where the symbol L jo means that the bracketed
expression is evaluated with all nuclear coordinates at
the equilibrium positions. Equation (2.2) is the basis
of the present work. Our theory does not encompass
lifetime effects and cannot be used when anharmonic
effects in the nuclear motions appear; the truncation
is then invalid. Quantum solids" such as He' and He4
are entirely excluded since the truncation is invalid
even at absolute zero because of the magnitude of the
zero-point motion.

"G. V. Chester, Advan. Phys. 10, 357 {1961)."F. W. DeWette and B.R. A. Njboer, Phys. Letters (Nether-
lands) 18, 19 (1965);L. H. Nosanow and N. R. Werthamer, Phys
Rev. Letters 15, 618 (1965).

II. BORN-VON KARMAN FORCE CONSTANTS

The Born-von Karman theory' ' of atomic vibrations
in solids and its direct descendants are formulated in
terms of force constants relating the force on an atom
to the displacement of any other atom from its equi-
librium position. Strictly speaking, this description is
valid only for insulators where the Born-Oppenheimer
(BO) approximation"o applies. In metals, on the other
hand, the breakdown of the BO approximation leads
to damping and retardation effects not included in the
Born-von Karman theory. With the exception of
degenerate semiconductors and semimetals in which
the Fermi or plasma energies and phonon frequencies
can become comparable, the effects of damping and
retardation are not important numerically. "We there-
fore confine ourselves to insulators and ordinary metals
and make the BO approximation.

It is convenient to generalize the BO approximation
to apply to the system of nuclei and electrons at finite
temperature. We assume that the electrons are always
in thermal equilibrium as the ions move. Then we can
de6ne a free-energy function F, computed for infinite
nuclear mass, which is a function of the nuclear posi-
tions only. It is this free energy that provides the
potential in which the nuclei vibrate.

Ke suppose our system to be arbitrary in structure
and in composition and to consist of nuclei labeled by
a, b, . . . , and of electrons labeled by t, u, . . .. The
nuclear positions are given by Rz where the Cartesian
component n and the nuclear index u are subsumed in a
composite index A. The displacements of the nuclei
from the equilibrium positions E&',
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The Hamiltonian governing the nuclear motion is powers of uA by standard perturbation theory". '

P =Pe+(H ()))+(H (2))

HX ~0++ +g E CABNANBy
a, 2~ AB

(2.3)

where P, is the nuclear momentum, M, is the nuclear
mass, and the Born-von Karman force constants CAB
are given by

where

and

2 p

g(r) erH, (c)e rHg— (2.13)

drL(&'"(r)&"'( ))—(&"')'j (2 12)

-~RA~RB- o

(2.4)
(n) =tr(e-e" (0)e)/tr(e-eH""). (2.14)

The term (H, (')) in (2.12), derived from the expansion
of the Hamiltonian to second order, has often been
omitted in treating the electron-phonon interaction'4;
however, it is essential to preserve the translation
invariance of the free energy.

From (2.12) the microscopic equilibrium condition,
which expresses the requirement that the force FA on
each nucleus a vanishes, can be seen to be

We now express Eq. (2.4) in terms of
microscopic quantities.

The total microscopic Hamiltonian is

Z~Zb8p2
H =2 +kZ'

2m ~b R b

—Z -+-', E' —(2.~)
rt a tu ~tu 8( Zy

=Z.e'
aZA( ' E.'

BF

-~RA- o

FA ——

for in6nite nuclear mass, where pt is the momentum of
electron t and rt is its position, and where Z, is the
charge of nucleus u. The corresponding free energy is

pr)
d'ri =0. (2.15)

Jr—R/ Ip

I et us define the electron density

P= —(1/P) 1n(tr(e eH')$, P=1/kBT. (2.6)
Finally, the force constants can be put in the micro-
scop1c form

p(r) =P 8(r —rg),

the nuclear potential

VH(r) = —p
~ Jr—R.

f

the electron-nuclear interaction

'0= VH(r)p(r)d'r,

and the bare nuclear interaction

(2.7)

(2.8)

(2 9)

CAB
g2F

BRABRB p

ZaZbe
(1—8.p)

MABRB R+b

BUN BUN
(r)D(r, r') (r')d'rd'r'

MA MB

O'VH(r)+'.b( ((~))
BRABRB

l9 ZgZg
(2.16)

C QRAQRB g~~ p

Z Zb8
W=-,' Q'

ab
(2.10)

where we have defined the density-density correlation
function

D(r, r') = dr)(p(r, r)p(r', 0))—(p(r))(p(r'))j. (2.17)
We now expand H, formally in powers of NA through

the second:
Using the symmetry of D(r, r') in r and r', it is easy to
show that CAB is symmetric, CAB ——CBA, as it must
be from (2.4). The form (2.16) is neither physically

(2 11b) appealing nor perspicuous. A more appealing form is
achieved by introduction of the microscopic dielectric

(2 11 )
function.

H =H, (')+H (')+H (')

where

H. (o) =EH.je,

H (&) —Q uA ——W("+'U(')
A /RA p "R. Kubo, J. Phys. Soc. Japan 12, 570 (1957)."R.A. Cowley, Proc. Roy. Soc. (London) A268, 109 (1962);

and so forth. Correspondingly, F may be expanded in A. J. Legett, Progr. Theoret. Phys. (Kyoto) 36, 931 (1966).
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Let a
only the
it results
If U...is
potential
linear in

static external potential V, b(r) with which
electrons interact be applied to the system;
in the additional term J' V, b(r)p(r)d'r in H, .
sufficiently small the change U(r) in the total
experienced by an external test charge is

U,„g.

which involve an arbitrary nucleus u. Nine of these
relations express the fact that no force is felt by nucleus
e when the system undergoes a rigid translation:

(3.2)pb C.a ~=0.

V(r) = e
—'(r, r') V. b(r')d'r'.

The nine remaining conditions express that this force
also vanishes when the system is rotated rigidly about

(2 18) an axis passing through R, . Utilizing (3.2), one finds

A perturbation calculation analogous to that of the
preceding derivation immediately yields, for the in-
verse dielectric function,

b '(r, r') =5(r—r')— D(r",r')d'r". (2.19)
lr —r"

l

Returning to Cz& in Eq. (2.16), we see that Eq. (2.19)
leads to

82 ( Z~Zae2
Czs=

~

'(R.,r) -d'r)(1 —8a)
&&~&Ra &

l
r-Rb

l

yV„(r)
+~.b ( (r)) d'r+2'

c)RQ BRB

ZaZc&

8Rg MB

ZgZbe
l

b '(R„r)—5(R.—r)j -d'r
lr—

(2.20)

The first term in (2.20) is evidently the bare nuclear
interaction screened by the total dielectric function of
the electrons, including core as well as valence electrons.
As we shall see in Sec. III, the remaining terms guaran-
tee the translation invariance of the free energy (2.2)
and can be transformed so as to combine directly with
the first term.

2a(C.a'&b' C—.b"&b') =o (3.3)

for the desired relation. The brackets L $b will usually
be omitted in the remainder of the paper with the under-
standing that all expressions are to be evaluated at the
nuclear equilibrium positions.

To our knowledge none of these relations has been
proved in general for the force constants derived in
Sec. II. Sham' has previously derived (3.2) for a perfect
crystal in the self-consistent field approximation. While
the present work was in progress, K.eating established
(3.2) for a perfect crystal in a many-body framework,
but in a way more cumbersome than that presented
here.

The invariance conditions (3.2) and (3.3), as well
as another condition discussed later in Sec. VI, are
easily demonstrated using an identity which is proved
in the Appendix. Let 8, be an operator which acts on
the variable r subject to the two conditions

l e„v,'j=0 (3 4)

f(r)D (r,r') l Ba„V~(r') $d'rd'r'

(3.5)

for any function g(lrl). Then in the Appendix we
demonstrate the following identity:

III. INVARIANCE PROPERTIES OF
THE FREE ENERGY

The free energy of the system defined in Eq. (2.6)
with the Hamiltonian H, given by (2.5) is obviously
translationally and rotationally invariant because H,
is a function of relative coordinates only. However, the
truncated expression (2.12) for the free energy involves
the absolute coordinates of the nuclei at equilibrium
R~o. We now proceed to demonstrate that in the micro-
scopic theory, translation and rotation invariance is
indeed maintained in the truncated free energy.

The invariance of the system against any uniform
displacement is guaranteed by 18 relations' among the
set of force constants

f(r) = (8/BR;) Vb (r)

and the translation operator

8,= 8/Br~—

(3.7a)

(3.74)

where f(r) is an arbitrary function of r. The physical
import of (3.6) is that under any rigid displacement of
the nuclei, the electron distribution is also rigidly
displaced.

The translation invariance condition (3.2) is easily
demonstrated. The part of the force constants (2.16)
involving the bare nuclear interactions manifestly
obeys (3.2). The proof is completed by using the
identity (3.6) with

~ah =CAB (3.1) Proceeding to the rotation invariance, one may
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propagating waves

I &a(q) —si a(q)pi% ~ (Rl+Rs) irs—t+c c (4 2)

B
=Z,e' 8 ~-

BE,&

8 ) Zb

aR.~) b R.b

with wave vector q and frequency co, the square of
which is an eigenvalue of the dynamical matrix

B Z~eB
( ())

cjR.s BR.& (r—R.
i

( (r))&. VN(r)d'r,
BR~"

where 8, is the rotation operator

e,=r~
Br& By&

Viv (r)D (r,r')p ORb V~ (r') d'rd'r'
BR, b

C-"'(q)
(M,M, )'i'

,nti(l)e —is (Ri+Rg R ) (4 3)
(M,M, )'i' i

It is convenient in the present work to deal with the
(3.8) matrix C„~~(q) instead of (4.3). Both the matrices C

and C defined below will be referred to as the dynamical
matrix when there is no danger of confusion.

The sum in (4.3) can be carried out using the general
microscopic force constants given in (3.10) and (3.11),

(3.9) yielding

C-"'(q) =C-"'(q) —~- 2" C--"'(0) (4 4)
The coefficients of each of 8 p and —8 ~ are the corn
ponents of the force F, exerted on nucleus ib at equi-
librium which must vanish. The rotation invariance
condition immediately follows from (3.8) by using the
identity (3.6) with f(r) given in (3.7a).

The translation and rotation invariance of the
truncated free energy, expressed in (3.2) and (3.3), has
been shown to follow from the exact microscopic
expression for the force constants. The proof is valid for
any arrangement of the nuclei and for both 6nite and
infinite systems. The only requirement is that the
in6nite system must be electrically neutral so that the
sums can be shown to be well defined.

The force constants may now be expressed in terms
of e '(r, r') only. From the translation invariance
condition and (2.20), we find

where
C.b e=C.b

P b.b Q. C.,"&— (3.10)

aPab

ZffZ be
e '(R„r) d'r . (3.11)

-0

This is the form for the force constants that is used in
the remainder of the paper.

IV. VIBRATIONS IN PERFECT CRYSTAL

We now specialize our attention to the perfect
in6nite crystal. The nuclear label a is divided into the
unit cell index l and the label of the nucleus in the unit
cell s, so that R~=R, =Ri +R, . The force constants
then are

C~ii=C,. &(l,l') =C,. s(l 7'), (4.1)—
where the final equality expresses the periodicity of the
crystal lattice.

Making use of the Born-von Karman periodic
boundary conditions-' the nuclear displacements are

where"

C„"s(q)=Z,Z,
(q+K) (q+K')~

n xx [q+K'i'

4ze'

der d3r'e —'(r, r )e'i—(s+K) '+(q+K ) ' ] (4 6)

where EQ is the volume of the system. Equations (4.4)
and (4.5) for the dynamical matrix have been derived

by Keating'~ through a more involved procedure and
have previously been derived within the self-consistent
field approximation by Sham. '

We note that the second term in (4.4) is by definition
independent of q so that all q dependence of the ele-
ments of C are contained in C. Also, we have formally
included the infinite self-interaction, term in C„. In
the following we shall examine the q dependence of C
ignoring the infinite constant since it does not a8ect
the 6nal matrix C and in any actual calculation may
simply be omitted.

Because the retardation of the electromagnetic field
is neglected, the formulas for the dynamical matrix
are invalid" for wave numbers q(ce/c, where c is the
velocity of light. Thus the g ~ 0 limits of the elements

"The Fourier transform of the Coulomb potential isa((q+E~)
=4rZe'i

~
q+IC

~

' for q+1CW0. However, for q+It =0, the
charge neutrality of the system allows us to set v(0) =0.

K. Huang, Nature 167, 779 (1951);Proc. Rov Soc. (London)
A208, 352 (1951).

X e '(q+K, q+K')e'I "' K' "'. (4.5)

Here 0 is the unit cell volume, K and K' are reciprocal-
lattice vectors, and e '(q+K, q+K') is the Fourier
transform of the inverse dielectric function e '(r, r'),

e
—'(q+K, q+K')
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of the dynamical matrix must be understood to be
restricted to q)co,~„,/c. However, in the following
wherever the acoustic modes are explicitly projected out
there is no such restriction since q=~/w, ))&o/c, where
e, is the appropriate velocity of sound; then retardation
of the field plays no role and the limits are exact.

Let us briefly recall the behavior of the dynamical
matrix in the phenomenological theory (also neglecting
retardation) in which the force constants are regarded
as adjustable parameters. If the force constants
C.. &(l) are required to be of finite range, as is assuined
to be the case in metals and nonionic insulators, the
dynamical matrix is an analytic function of q. However,
in ionic crystals there are long-range Coulombic forces
which must be taken into account. In the phenomeno-
logical theory these forces are included through the
effective charge tensor Z, ~, assumed to incorporate all
long-range effects of charge polarization in the distorted
crystal. Cochran and Cowley" have shown that in an
ionic crystal of arbitrary symmetry, the dynamical
matrix takes the form

C-"'(q) =C'- '(q)
4xe'

+ I&0'~ "(q)3* I:Zy"z."(q)j, (4&)
v eo(q) v

where Z,~~=Z, s(0) is the dynamical effective charge
tensor and eo(q) is the electronic ("high-frequency" or
"optic") macroscopic dielectric function. The two terms
on the right-hand side of (4.7) are distinguished by
their analytic properties as functions of q at tI=0; the
part C~(q) is an analytic function, whereas the terms
involving the effective charges are discontinuous at
q =0.

V. ANALYTIC PROPERTIES OF THE
DYNAMICAL MATRIX

The analytic properties of c ' can be established using
the results of Martin and Schwinger (MS)'7 (which
have been stated more recently by Keating" in the
reciprocal space representation) and following a pro-
cedure close t.o that of Ambegaokar and Kohn (AK).'s
In this section we consider only the T —+ 0 limit of ~ '
in which case one finds"

c-'(q+K q+K')
=8xx —v(q+K)D(q+K, q+K'), (5.1)

where n(q+K) is the Coulomb potentiaP' and where

D(q+K, q+K')
= (1/&)(p,+xL(1—&0)/(& —&o)$p x ) (5 2)

Here Eo is the ground-state energy, ( ) means the
expectation value in the ground state, I'0 is the ground-

' P. C. Martin and J. Schminger, Phys. Rev. 115, 1392 (1959).
'8 V. Ambegaokar and W. Kohn, Phys. Rev. 117, 423 (1960).

state projection operator, and

&i(g+Ki rt (5.3)

where e is the matrix inverse of e ' viewed as a matrix
in K and K'. Because the analytical properties of m

are straightforward to determine, we examine e,' the
needed properties of e ' are then found using elementary
arguments on the inversion of the e matrix.

A. Dielectric Function Matrix

%e now proceed to show that in the exact theory the
analytic form of ~(q+K, q+K') for q near zero are
the same as in the familiar self-consistent field (SCF)" "
form for vr. Despite the difference in their definition of
the proper part, the methods of AK for establishing the
properties of m (q,q) can immediately be taken over to
the study of ~(q+K, q+K'). Here we give the essence
of their argument.

The proper part z is so defined that the rnomenta
of all internal Coulomb lines are integrated over all
reciprocal space. This means that any possible non-
analytic behavior in ~(q+K, q+K') as a function of q
can en.ter in only two ways: (1) the factors p~+K or

p~+&. or (2) the vanishing of the energy denominators
in the expression for m, where the energy denominators

"J. I,indhard, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 28, No. 8 (1954); H. Ehrenreich and M. H. Cohen, Phys.
Rev. 115, 786 (1959).

» N. Wiser, Phys. Rev. 129, 62 {1963).
3' S. Adler, Phys. Rev. 126, 413 (1962).

In terms of functional derivatives, D is

D(q+K, q+K') = (Sp,+x/8V, i(q+K')), (5.4)

i.e., the variation of the electronic charge density with
respect to an external field. Let us define vr (q+K, q+E')
to be the "proper part" of the screening function,
which is

~(q+K, q+K') = (5p,+x/8V(q+K')), (5.5)

where V is the total field seen by a test charge in the
medium. In graphical language, x is that part of the
total screening function D which remains when one
omits all graphs which can be separated into two parts
by cutting a single Coulomb interaction line of mo-
mentum q+K", where K" is any reciprocal-lattice
vector. (Note the difference from the definition of AK
who require K"=0.)

It was shown by MS that e ' satisfies the equation

.-'(q+K, q+K') =~«y~(lqPKI)
Xpx" vr(q+K, q+K")e—'(q+K", q+K'), (5.6)

from which it follows that the dielectric function has
the simple form

e(q+K, q+K')
~KK' i ( I

«+K
I )ir(q+K, q+K'), (5 7)
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are simply the energies for production of electronic
excitations above the ground state of the system.

In the case of an insulator, we need consider only (1)
because the electronic excitation energies never vanish
for any wave vector. It follows that every element of
~(q+K, q+K') may be expanded in a power series in q.
Here we need to keep only the first nonvanishing term.
For KNO and K'&0, the lowest-order term is the
constant ~(K,K') evaluated at q=0. But for K or
K'=0, the leading terms are

~(q, q+K) —+ q A(K),

7r(q+K, q) —+ q. A*(K),

m(qq)~q 8 q,

(5.8)

where the vectors A(K) and the tensor B are well-
defined quantities independent of q. Thus, in the case
of an insulator e has precisely the same form as q —+ 0
as is given by the SCF formulas. '4 ""

Consider now a metal. In addition to the excitations
of finite energy found in the insulator, there are exci-
tations of vanishing energy as q —+0. However, our
assumption of the validity of the BO approximation in
the metal is equivalent to assuming that the electrons
near the Fermi surface are long-lived Landau quasi-
particles. That is, under the present assumptions the
SCF approximation is valid for the description of any
characteristically metallic excitations. For q~ 0 we
may immediately adopt the SCF form for the dielectric
function matrix in which m(q+K, q+K') has a well-
defined finite limit for all K and K'. Therefore, in every
case in which the BO approximation is valid, metal or
insulator, the exact e matrix has the same analytic
properties as in the SCF approximation.

P Q

S

LV X
I' Z

(5.9)

where I and S are square matrices assumed to be
nonsingular. It is easy to verify that

B. Inverse Dielectric Function

In order to determine the analytic properties of c ',
we must examine the inversion of the e matrix. "Let a
square matrix M and its inverse be written in the forms

may be expressed as

Z=S '+VW—'X (5.11)

The needed properties of e ' are obtained by identify-
ing P with the 1&&1 matrix e(q, q), W with e '(q, q), S
with e(q+K, q+K') for K and K'&0, and so forth.
The discussion in Sec. V A shows that S, and thus S ',
are always analytic functions of q at q=0. In the case.
of a metal it follows from (5.10) and (5.11) that each
element of the e '(q+K, q+K') matrix is an analytic
function of q and that each has a finite limit at q=0
except for e '(q, q) and e '(q+K, q) which go as q2.

However, in the case of an insulator, using (5.7),
(5.8), and (5.10), we find for q-+ 0,

L1/e '(q, q)3~i &' i;(q+K, q) 4~. ~q~y. A*(K)

e '(q, q)

e '(q q+K) 47re' 1
-+ — — j A'(K)

e
—'(q, q) 0

(5.12)

(5.13a)

(5.13b)

for K&0, where

A'(K) =P„A(K')S—'(K', K), (5.14)

and 8' is easily derived. Thus the first term on the
right-hand side of (5.11) is analytic but the second
term is, in general, nonanalytic at q=0 and has a
direct product form analogous to the second term of
(4 7).

C. Dynamical Matrix and Effective
Charges in Insulators

The analytic form of the dynamical matrix C defined
in (4.5) now may be easily displayed. In the case of a
metal, the above analysis shows that every element of
Q„."~(q) is always an analytic function of q. Thus the
separation of the terms in e ' in (5.11) has no particular
interest and the form for C as given in (4.5) is suflicient.

In an insulator, on the other hand, the form of &
—'

given in (5.11)—(5.14) allows 0 to be separated into
two parts which in general have different analytic
behavior:

X= —WQS '
V= —S 'ES',

W=(P —QS 'R) '

~- '(q) =~- '(q, 1)+~- '(q, 2)

Here C„. ~(q, 1) is the analytic part
5.10

(5.15)

4me'
and that the remaining elements of the inverse matrix g„,~&(q, ])=

(q+K) (q+K')s
Z,Z,

I
q+K'I '

' The essence of this inversion procedure was first applied to 6'

for the special case of the diamond structure by A. A. Maradudin
and I.. J. Sham (private communication). More recently, Sham
(Ref. 16) has also derived the results given in this subsection for
an arbitrary crystal structure.

XS '(q+K q+K')e'&x "—' "~ (5.16)

where S ' is the inverse of the matrix e(q+K, q+K')
for K and K'&0. The remaining term contains all
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possibly nonanalytic behavior and may be written

C- '(q, 2)=, 2 &."(q)*&""e(q), (5»)
4ir«—'(q, q) v

where E,& (q) is the long-wavelength component of the
electric Geld (macroscopic Geld) per unit displacement
of the nuclei of type s for a phonon of wave vector q:

4ir]ei
E,& (q)=- q&

Q
(q+K)

XQ « '(q q+K) Z,e 'x'R . (5.18)
fq+Ki'

The dynamical matrix in the microscopic theory of
an insulator now may be cast in exactly the form (4.7)
of the phenomenological theory. First, we note that the
high-frequency macroscopic dielectric function is given
by.80,31

«(q) = 1!«-'(q,q). (5.19)

The derivation of the analytic properties of the
dynamical matrix could have been given more economi-
cally without introducing the c matrix. However, it
was felt that because e is the quantity that would
actually be computed in a calculation to any degree
of approximation, it is the quantity in terms of which
the derivation should be given. Moreover, in the present
approach the relation to the familiar SCF theory is
manifestly apparent.

N. (q) =~ (q)+&(lql) ~ (6 1)

Projecting out the acoustic modes, we find that to
order q the acoustic frequencies are eigenvalues of the
3+3 matrix

VI. ACOUSTIC SUM RULE

In a long-wavelength acoustic mode all the nuclei
in the unit cell are displaced rigidly independent of s
to order q, i.e.,

The identi6cation is completed with the formulas for
the effective charge tensor generalized to finite q,

—Z t C-'(q)-C-'(0)3~ ss'
(6.2)

Z q Z.'(q) = - LE q &.'(q)i '(q, q)3
4n /eJ

and the analytic part

C...&-e(q) =C„.-e(q; 1)-S... Z C„„-e(0).

(5.20)

(5.21)

where M is the mass of the unit cell. We are only
interested in the long-wavelength limit of the acoustic-
mode frequencies, so that (6.2) is suGicient.

From (6.2) it follows that the condition that all

acoustic-mode frequencies go to zero at long wave-

length is

The form of « ' given in (5.13) shows that the micro-
scopic effective charge de6ned by

Z, e=lim Z.~e(q)
q-+0

(5.22)

has the proper tensor character and is well-defined
independent of the direction j in which the limit is
tak.en.

The meaning of the effective charge is clarified by
rewriting Eq. (5.20) as

lim P C„e(q)=Q C., e(0),
q~p ss'

(63)

Q, Z, e=0. (6.4)

i.e., p„.C„.~e(q) must be a continuous function of

q at q =0. In the case of a metal we have seen that (6.3)
is trivially satisfied. However, in the case of an insulator,
the form of the dynamical matrix (4.7) shows that a
necessary and sufficient condition for (6.3) is the

effective charge rleutrali ty condition

0
lim c '(q, q)P q Z, et e~ = —lim g q"E, e(q). (5.23)

u 4x'i '

Equation (5.23) shows that Z.~eX~e~ is the charge
which when screened by only the macroscopic screening
gives rise to the exact macroscopic electric field. This
means that Z, t' is a "bare" charge tensor which in-
corporates all of the effects of the nonlocal screening,
i.e., it is the Born effective charge"'4 which is also
called the dynamic effective charge. '4

» M. Born and M. Goppert-Meyer, Handbuch Physik 24, 638
{1933).

'4 E. Burstein, Lattice Dynaiqiics, edited by R. F. Wallis {Per-
gamon Press Ltd. , London, 1965), p. 315; Int. J. Quantum Chem.
1s, 759 {1967).

This requirement has been recognized'" in the phe-
nomenological theory where it is imposed as an addi-
tional constraint. Because the effective charges there
are purely phenomenological and have magnitudes
which must reflect the polarizability of the electrons, this
condition cannot be regarded as directly equivalent to a
statement of charge neutrality of the system.

In the microscopic theory, however, the definition
of the efFective charge tensor is Gxed LEq. (5.22)j,
and we must verify that (6.4) is satisfied to show that
the acoustic modes always have the proper zero-
frequency limit. We shall prove that (6.4) is a conse-
quence of the charge neutrality of the system.

From the microscopic expression (5.20) for Z, e,
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we find that the charge neutrality condition (6.4) is

The proof of (6.5) involves two essential steps. First,
we show that for K and K'WO,

5-'(K K') = e
—'(K,K'), (6.6)

where the right-hand side is evaluated at q—=0. This
identity follows because for an electrically neutral
system the q+K= 0 Fourier component of the Coulomb
potential is zero/' " so that e(O, K) =e '(O, K) =5oK.
Formula (5.11) then establishes (6.6). Second, using
(6.6) and the definition of A(K) in (5.8), we find

PZ, P=5 p+Z,

a, K', K&0

g 2

r" e(r, r')e~'*""&dsr d'r'
4z

X e '(K,K') (KP/K')Z, e& '* "'i, '(6.7)

which is easily transformed to

v
P Z,~P=5 pg Z,+E ' r~ Ie(r, r')e '(r', r")

4~)

Zg8
Idsr d'r'd'r"

&I 8.pZ, — P A-(K)S- (K K)
K~O, K'~O

p

X Z, e '*' ' I=O. (6.5)K' i

lation between the diagonal and off-diagonal elements
of e '. In terms of the calculation of the phonon dis-
persion curves of an insulator from the dielectric
function, the acoustic sum rule implies that the off-
diagonal elements of e ' must be included and must
satisfy the sum rule if the acoustic modes are to vanish
at long wavelength. In a metal, on the other hand,
there is no such requirement. Any ~ ' matrix with the
characteristic metallic behavior (es 1/q' as q~0)
yields acoustic modes with the proper long-wavelength
limit. This distinction demonstrates the large compu-
tational differences between metals and insulators and
the diS.culty of any first-principles calculation in an
insulator.

Note that in the discussion of analytic properties
no restriction to ionic crystals was made. The results
must also apply to nonionic insulators for which
Z, t'=0 for all s, which may be regarded as a special
case of (6.4), in which all the effective charges are equal.
In this case the effective charge terms vanish in the
dynamical matrix, but the acoustic sum rule (6.9) is
nevertheless a necessary requirement on e '.

The division of charges in the crystal in the manner
proposed by Phillips" in his bond-charge model can be
given a fundamental basis in the microscopic theory
presented above. The effective charge in the micro-
scopic theory can be divided into "diagonal" and
"off-diagonal" parts coming, respectively, from the
K=O and KAO terms in the sum in (5.20). These new
eftective charges correspond directly to the charges
in the Phillips model. The connection is discussed in
detail elsewhere by one of us. '

=5 p Q(Z. —Z.), (6.8)

from which (6.4) follows.
Because the effective charges are defined in terms of

e ', the charge neutrality condition places an important
constraint on the inverse dielectric function. For an
arbitrary insulator and for any direction j and any
component P, Eq. (6.4) iinplies

I ql (q+K)'
lim P e

—'(q q+K) Z e
—'I R, 0 (6 9)

q-+0 s,K
I
q+Kl'

We call the condition (6.9) the acoustic sum rule"
on e

An important consequence of the acoustic sum rule
is that e ' cannot be a diagonal matrix for an insulator.
It follows from (5.19) that the first term in the sum
over K in (6.9) is always nonzero for some direction P.
Therefore, (6.9) can be satisfied only if there is a cancel-

"There is an ambiguity in the dehnition of e '(ft, ft') for E
or E'=0. The form obtained here follows from Ref. 25, in which
we noted that the Hamiltonian itself is invariant to the choice of
v(0). All observable quantities must be unaffected by the choice
p(0) =0. However, we note that e '(O,E) as dered here does not
describe the change in the average total potential as the external
Geld is varied.

VII. ADDITIONAL RESULTS FOR CRYSTALS

In the previous sections it was shown that the
dynamical matrix for an insulator has the same form
as the phenomenological expression of Cochran and
Cowley (CC)."In addition, the form of the dynamical
matrix (4.4) and the effective charge neutrality condi-
tion were found to hold in the microscopic theory.
Therefore, all results derived by CC extend also to the
exact microscopic theory for any material, assuming
only the adiabatic approximation. I We may formally
extend the form (4.7) of the dynamical matrix to
metals with Z, t'=0 and with the proper definition
of C~.]

One of the results of CC is the demonstration that
the total static dielectric tensor that describes the
response of the system, including the nuclear response,
to a static long-wavelength potential is given by

e.(j)=lim 1/e '(q, q)
q-+0

47'-

+— & i Z'I:C (0)3- '"Z""q', (71&
Q ap, ys, se'

s' J. C. Phillips, Phys. Rev. 168, 917 (1968).
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where the limit is taken along the j direction. Because
C~(q) is an analytic function of q, its limiting value has
been taken in (7.1). The matrix LC~(0)j ' is defined
by (see CC) (1) inverting the 3(I—1)&(3(m —1)
matrix formed by deleting the rows and columns of
C~(0) corresponding to any atom s' and (2) inserting
zeros in the rows and columns of the inverse matrix
corresponding to atom s'.

The first term on the right-hand side of (7.1) is the
dielectric tensor given by Adler" and by Wiser."
Their result gives the complete static dielectric tensor
only in the case of metals or nonionic insulators.
Equation (7.1) provides the extension of their formula
to give the exact expression (within the harmonic
approximation) for the total response of any crystal
to an external field which is sufIiciently slowly vary-
ing that both the nuclei and the electrons respond
adiabatically.

A second result derived by CC is the generalization
of the LST relation" to include crystals of arbitrary
symmetry. Let us simply quote here the most general
form of the LST relation,

sn e, (y)
11111g F1, (q) = K

& P 1=4 ep(g)
(7.2)

ep(j) =Q j ep~&j&,
aP

(7 3)

and that the dispersion relation for a transverse electro-
magnetic wave (with frequency pp in the above-men-
tioned range) is given by

det
~

(b~s —q~P) —(cps/c'q') e(P&
~

=0. (7.4)

The demonstration of the required properties of eo t'

will be given elsewhere. " Establishing Eq. (7.4)
"R.M. Pick (to be published).

where the left-hand side of (7.2) denotes the product
of all the optic frequencies and ~ is a constant in-
dependent of j. The LST relation (7.2) thus follows
from the microscopic theory; the only point remaining
to complete the interpretation of (7.2) is to demonstrate
that ep(j), originally introduced as a longitudinal
dielectric function, can in general be identified with the
optical (or transverse) dielectric tensor.

The tensor ep(g LEq. (5.19)j represents the total
long-wavelength response of the system to an external
scalar potential of frequency much higher than any
phonon frequency but small compared to any energy
required to excite an electron from a filled to an unfilled
state. For a cubic material it has also been shown by
Ambegaokar and Kohnss that ep(j)= ep is also the square
of the refractive index at the given frequency. The
same result can be inferred from Adler's" arguments.
But for arbitrary symmetry the identification must be
demonstrated. That is, one must show that there exists
the tensor eo & such that

constitutes a microscopic derivation of the transverse
dielectric tensor and completes the derivation of the
generalized LST relation.

VIII. SUMMARY AND CONCLUSIONS

The theory of lattice dynamics has been examined
from a microscopic quantum-mechanical point of view
within the harmonic and adiabatic approximations.
The results fall into two categories. In the first category
are the microscopic expressions for the force constants
and their interrelations —the invariance conditions—
which were derived for an arbitrary solid, crystalline,
amorphous, or molecular, in the absence of any external
forces. The second category of results applies to crystals
only. We have pointed out the primary difference
between metals and insulating materials and have
succeeded in reconstructing completely the usual phe-
nornenological theory of lattice dynamics from the
microscopic expressions.

In Sec. II it was shown that the force constants
which determine the equations of motion in the har-
rnonic and adiabatic approximations are the second
derivatives of the total free energy of the system with
respect to the nuclear coordinates. It is then a matter
of ordinary perturbation theory to carry out the differ-
entiation and obtain the exact expressions for the force
constants. The identification of the inverse dielectric
response function of the electrons e ' in the formulas
then yielded a simple and concise derivation of the
force constants in terms of e '. The expressions for the
force constants are valid for any solid regardless of the

arrangement of the nuclei and treat the elect&ons in an
exact many-body framework.

In Sec. III, it was shown that the force constants
derived there satisfy the translation and rotation
conditions given by Born. ' Thus the necessary in-
variance of the truncated expression for the free energy
was explicitly proved.

In Secs. IV—VI it was shown that the analytic proper-
ties of the dielectric function matrix e(q+K, q+K')
as a function of q are sufficient to establish the connec-
tion of the dynamical matrix in the microscopic theory
to that assumed in the phenomenological theory of
lattice dynamics. The analytic properties of e near
&=0 in the general many-body theory were shown to
be exactly the same as in the well-known SCF approxi-
mation for c.""It then followed that in the case of a
metal every element of the dynamical matrix is an
analytic function of q as has been previously recog-
nized. '~ " In an insulator, on the other hand, the
present analysis has provided the first microscopic
derivation of the dynamical matrix (4.7) derived for
ionic crystals by Cochran and Cowley' from a purely
phenomenological point of view. In particular, the
microscopic theory provides exact expressions for the
dynamical effective charge tensor Z, t' and for the
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analytic part of the dynamical matrix C+(q) in terms of
the dielectric function matrix e(q+K, q+K').

Examination of the acoustic modes at long wave-
length showed that for an insulator a necessary and
sufhcient condition that all acoustic-mode frequencies
vanish as q

—& 0 is the eRective charge neutrality
condition (6.4). In the phenomenological approach
the condition (6.4) is imposed as a constraint on the
otherwise arbitrary effective charges. Here we have
shown that in the microscopic theory, the eRective
charge neutrality condition is implied by the real
charge neutrality of the system.

The eRective charge neutrality shows that the inverse
dielectric function satisfies a requirement for q

—+0
which we call the acoustic sum rule. From the point
of view of calculating dispersion curves, the necessity
of fulfilling the acoustic sum rule in calculations for
insulators represents a constraint of great practical
importance, which does not exist for metals. In the
case of a metal, no special requirements are placed on

as long as it exhibits the metallic behavior at long
wavelength. Then the crudest approximations such as
restricting e '(q+K, q+K') to be diagonal, are allowed.
This explains the wide, and rather successful, use of
such approximations for simple metals. ~ " But for
insulators the acoustic sum rule implies a necessary
cancellation between diagonal and oR-diagonal ele-
ments of e '. A high degree of accuracy in the compu-
tation of the entire inverse dielectric function matrix
is required merely to satisfy the sum rule. An alternative
to the calculation of the entire e ' matrix is to mak. e use
of the acoustic sum rule to derive information about
the o8-diagonal elements of e '. A discussion of one such
approximation procedure utilizing the sum rule as a
justification for the Phillips modeP' has been given by
one of us' along with results of calculations in the case
of silicon.

In closing, we point out the two most important
limitations of the present work. First, the Born-Oppen-
heimer approximation forced us to exclude from our
analysis semirnetals and degenerate semiconductors
with low plasma frequencies. Second, the retardation
eRects of the electromagnetic fields inside the solid
were completely omitted so that the coupling of the

electromagnetic field with the optic phonons did not
appear. A unified treatment including the nonadiabatic
and retardation eRects would complete the microscopic
formulation of lattice dynamics in the harmonic
approximation.
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and
8=+& 8r, (A2)

f=P& f(r&). (A3)

Next, the order of the operators in the trace on the
right-hand side of (A1) may be rearranged to give

(LB,f))= —tr{fL8,e e '")}/Tr{e e~'"}. (A4)

The commutator may be transformed using a formula
given by Kubo"

L6) e
—eHe&0))

dr e, ,(o)L6) He('))e-&e, )~.&0) (A5)

But because of the conditions (3.4) and (3.5), 8
commutes with electronic kinetic energy and electron-
electron interaction energy operators in H, ( ~, so that

Substituting (AS) and (A6) in (A1) and using the
definition (2.17) of D(r,r'), we find that (A1) is the
negative of the first term in (3.6) except for the term
in D(r, r') involving the product of the average charge
densities

Pl f(r)( (r)&d"

However, the second term in large parentheses in (A7)
may be shown to be

—Tr{e e~'"'$8, e e '")}/tr{e e+'"},
which vanishes by the cyclic invariance of the trace.
Thus the identity (3.6) is established.

APPENDIX

The proof of the identity (3.6) involves several
steps but is straightforward. First, the second term in
(3.6) may be written

(A1)
where


