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In a crystal containing a finite concentration of impurities which give rise to localized vibration modes,
the coherent motion of the impurity system can result in the generation of a macroscopic electric field, if
the local modes are infrared-active. In this case, the true normal modes of the impurity system are collective
modes with a wavelike character. We show that the transverse local modes have the character of polariton
modes, with properties very similar to the properties of the phonon-polariton modes of pure crystals. We
also present the theory of the Raman scattering of light from local-mode polaritons. We estimate the Raman
efficiency for the scattering of light from local-mode polaritons, and make comparisons between the scatter-
ing from these excitations and the scattering from phonon polaritons in pure crystals.

I. INTRODUCTION

T is well known by now that the vibrational spectrum
of a crystal with a small concentration of impurities
often contains modes with frequencies that lie outside
the band of vibrational frequencies associated with the
host crystal.! The displacement field associated with
these modes is localized in space, and is nonzero
only in the vicinity of an impurity ion. In the limit that
the impurity concentration f is small compared to
unity, it is generally assumed that the impurities
vibrate independently, when a localized mode is ex-
cited. As a first approximation, one can assume that a
number of independent oscillators with frequency above
the vibrational continuum of the host has been ran-
domly distributed through the crystal.

Consider an infrared-active localized mode associated
with a single, isolated impurity in an otherwise perfect
crystal. Since a dipole moment which is first order in
the impurity displacement is associated with the im-
purity motion, a finite electric field is present when
the localized mode is excited. Maradudin and Oitmaa?
have recently pointed out that when the impurity
concentration f is finite, a macroscopic electric field is
generated by coherent motions of the entire impurity
system. As a consequence, the true normal modes of
the impurity system have a wavelike character for long
wavelengths, with the motion of the impurities cor-
related through the macroscopic electric field. If the
electric field is treated in the static approximation, one
obtains normal modes of transverse and longitudinal
character in the long-wavelength limit, with a Lyddane-
Sachs-Teller (LST) splitting between the frequencies
of these modes.?

Our purpose in the present paper is to point out that
when retardation effects are included in the calculation
of the electric field, then the transverse collective modes
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of the system have the character of polariton modes,
with properties very similar to the polariton modes of
pure crystals.® Since the technique of Raman scattering
has proved useful? in the study of polaritons of pure
crystals, we have examined the theory of the Raman
scattering of light from local-mode polaritons. We show
that light scattering will also provide a useful means
of probing local-mode polaritons, although we shall
see that there are important differences between the
local-mode polaritons and polaritons in ordered systems.
When light is scattered by local-mode polaritons, the
Raman cross section contains a sizable contribution
from incoherent scattering of the radiation from the
array of impurities, in addition to the coherent scatter-
ing from which one obtains detailed information about
the dispersion relation of the normal modes. In pure
crystals, of course, the scattering is purely coherent.

In their calculation of the LST splitting of the collec-
tive modes of the impurity system, Maradudin and
Oitmaa? employed a model in which only the impurities
oscillate, while the host lattice remains at rest. We shall
employ the same model in this work, since it is clear
that it contains all the features essential to the phe-
nomena we consider.

II. LOCALIZED MODES IN PRESENCE
OF RETARDATION

If we make here the assumptions concerning the
vibrations of impurity ions in localized modes that were
made in Ref. 1, the equations of motion of one of the
impurity ions can be written in the form

il (I) = —mwotna, (It) —e o (1f) .

@.1)

In these equations 7 is the mass of an impurity ion,
14 (If) is the a Cartesian component of the displacement
of the ion on the /th site of the impurity sublattice
from its equilibrium position, wy is the localized-mode
frequency associated with an isolated impurity ion, e
is the magnitude of the electronic charge, and E (%)

3 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1954), Sec. 8.
( ¢ C.) H. Henry and J. J. Hopfield, Phys. Rev. Letters 15, 964
1965).
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is the exciting field at the /th site due to the other im-
purities in the crystal. It is with the calculation of
E®©@(f) when the retardation of the Coulomb inter-
action is taken into account that we will be concerned
in this section.

It is convenient to perform this calculation by deter-
mining first the Hertz vector of the electromagnetic
field set up by the impurity atoms vibrating in localized
modes, and deriving the electric field from it. The
Hertz vector IL(x,f) satisfies the equation

VAL (x,) — (1/6%) (6%/ 9 (x,t) = —4x P (x,8), (2.2)

where ¢ is the speed of light and P(x,f) is the polariza-
tion density at the point x at the time £. The solution
of Eq. (2.2) can be written formally as

o(t'+1/c|x—x"| —t
I(x,t) = / ( /el | )P(x',t’)d3x’dt’ .

|x—x'|

(2.3)

The electric field at the point x at time ¢ is obtained from
II(x,f) through the relation

82

Ea(x) =3 ( 2.4
B

— 5agv2)H,3 (X,t) .
axaax/s

The polarization density at the space-time point
(x,8) is given by

P =—e lZ c(Nul'de(x—x(")). (2.5)

The sum on /' in this expression runs over all the lattice
sites of the sublattice on which the impurity ions are
situated (an fcc lattice for crystals possessing the rock-
salt or zinc-blende structures); ¢(f) equa.ls unity if the
site I is occupied by an impurity ion, and vanishes
otherwise.

If we asssme for %, (lf) the expression

e (If) =mae™ xD 0t (2.6)

substitution of Egs. (2.5) and (2.6) into Eq. (2.3)

yields the result
etkolx—x ()|

Ma(x,{) = —euae—t ¥, c(I')ex——e | (2.7)
v |x—x(1)|

where we have set ko=w/c. It follows from Eq. (2.4)
that E.(x,0) is given by

Eo(x,f) = —e exit 37 g5 3 c([7) e xmx ')
8 v
3iko

[x—x(@)]"

X[(xa—xa(ll))(xﬂ—xﬁ(ll)) <I X—X(II) [ 5

ko 1 iko
lx—xa')13>_6""<|x-—x<z'>13 lx—x<z'>|2>

2

ko
+6aa——_‘—+47r5a55(x—X(l’))]ezkolx—x(l’)l (2.8)
|x—x()]
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At this point we recall that it is the exciting field at
the site / that enters into the equations of motion
(2.1). We obtain E,® (It) by setting x=x(I) in Eq. (2.8),
and omitting the term with 7=/ from the right-hand
side of Eq. (2.8). Finally, since the value of E, (i)
obtained in this way depends on the distribution of im-
purity ions over the sites of the impurity sublattice,
which is unknown, we follow the procedure of Ref. 1
and average the exciting field over all impurity con-
figurations. We obtain in this way the result that

Ea (e) ([t) = _efeik-x(l)—'iwt Z ug Z e—tk-rpikor
B VD

3 3iky  ko?
el =0)
ot 73

1 ke ko?
““5aﬁ(— *‘") +5aﬁ"‘:l , (2.9)
73 72 ¥ r=x(1)—x (")

where f=#/N, with # the number of impurity ions and
N the number of primitive unit cells in the crystal.

We are interested in only the long-wavelength limit
of the expression (2.9) for E.‘® (i), since it is only
this limit which is susceptible to experimental study by
light-scattering techniques. In the limit of small k,
the summand on the right-hand side of Eq. (2.9)
changes slowly as the summation variable x(?)—x(’)
ranges over the sites of the impurity ion sublattice. In
this limit we can replace summation over x(I') by
integration, and we have the integral

1 . 3 ik ko’
Top(k)=— / dér e—lk"e’kOT[xax;?("——-————)
Qo r5 73

1 ik ko?
_5aﬁ<___'">+5aﬁ"—:l (2.10)
772 r

to evaluate, where Qo is the volume of a primitive unit
cell.
It is convenient to rewrite Eq. (2.10) as

02 1 < 3 3iko k02>
Ay ¢~ k-rgikor —
Oko0kg Q0 r5 ot 8

iko 1 ke’
—603—— /d3r —1ik . retkm‘(_______ __>
2 37r

eikor

1
+Bapdo™— / & ¢
Q

Iaﬂ(k)= -

(2.11)

r

and to evaluate the integrals over angles by choosing
the polar axis along the direction of k. In this way we
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™ Fic. 1. Local-mode polariton
dispersion relation for a sample of
GaAs, doped with 59, P. Super-
imposed on the graph are curves
that denote the values of fre-
quency and wave-vector transfer
allowed at fixed scattering angle
for 1.06-u radiation.
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8r &
Qol op (k) =805~
31

2

- —47 3k o 5—84p)

00

X / dp 60 (1/p—it—3E0)jalp), (2.12)

where ¢=ko/k=w/ck and 7.(p) is a spherical Bessel
function. The last integral is readily evaluated, and we

obtain, finally,
£2
>] . (2.13)
1—¢

The exciting field E.® (i), therefore, is given by

Lp () %[ $habt (bus—he k@(l

0

eﬂ( x()—iwt

4me
E,@(t)=—-

2o

><z;[ 3hulisrt (bus—he kﬂ>( +£;>]uﬁ (2.14)

If we substitute Eq. (2.14) together with Eq. (2.6)
into the equations of motion (2.1), we find that the
equations determining the displacement amplitude u

are

2

(P )ttatiy? S [—k by

- (5ap—ha kfo(

)}uﬁo, (2.15)

where we have introduced the plasma frequency of the
collective impurity mode, w,?=4me?f/mQ. For longi-

8 9 10 ]
k, 103 cmil

tudinal modes, in which u||k, we obtain the dispersion

relation
(2.16)

and we see that retardation has no effect on these
modes. For transverse modes, in which u_lk, the dis-
person relation can be written in the form

R/ =€(w) =14w,/ (wi—w?), (2.17)

where w2=wi—3w,? is the transverse localized-mode
frequency in the absence of retardation. This equation
has two solutions

w? =w:|:2 (k) =%{wt2+wp2+62k2
:‘:[(wt2+wp2+c2k2>2 —460;262]22]”2} .

The elementary excitations whose dispersion rela-
tions are given by the two branches w?=w42(k) can be
called localized-mode polaritons by analogy with the
coupled-photon—transverse-phonon modes in pure crys-
tals. A plot of the dispersion curves given by Eq.
(2.18) is displayed in Fig. 1 for GaAs containing 5% P
impurities in the As sublattice.?

For each value of k the eigenvalue equation (2.15)
possesses three real eigenvectors, which we denote by
e.(k7) (=1, 2, 3). They are mutually orthogonal, can
be normalized to unity

2 ea(ky)ea(kj") =6,

w?=wltiwlt=ws,

(2.18)

(2.19)

8 We have assumed the effective charge of the P impurity is
2e, where ¢ is the charge of the electron. This is reasonable, since
the effective charge of both As and P in pure GaAs and GaP is
close to 2¢. We have also replaced the factor of unity on the right-
hand side of Eq. (2.21) by e, the dielectric of GaAs in the absence
of the P impurities. Followmg Mooradian and Wright [Phys.
Rev. Letters 16, 999 (1966)], we have used the value e.=11.3.
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and, consequently, obey the closure condition

2 ea(kf)es(kj) =0ap. (2.20)

The eigenvector e(k!) describes purely longitudinal
displacements and is given by e(kl)=k. These results
will be useful in Sec. III.

There is one feature of the local-mode polariton
spectrum we would like to point out at this stage in
the discussion. First consider the LST splitting. From
the preceding results we see that for low impurity
concentrations, the LST splitting Aw is given by

Aw=w;—w;=3%(w,2/wo) =4me? f/20imQo.  (2.21)
If this expression is applied to the case where GaAs
has been doped with P,5 the splitting Aw is 0.9 cm™,
as one can see from Fig. 1. The LST splitting is thus
quite small for this case. However, the separation A
between the two polariton branches at a value of the
wave vector k for which ck=w; is found from Eq. (2.18)
to be

ws ws 47re?\ 1/2
A =w+(—) —w_(—-) =w, =f1/2<-——> . (2.22)
c c m

The frequency splitting A, which is indicated in
Fig. 1, is a measure of the width of the frequency region
within which the polariton contains a strong admixture
of impurity motion. Notice that A varies as the square
root of f, while Aw is proportional to f. Thus, when
f&1, A may be considerably larger than the LST
splitting. From Fig. 1, one sees that A=24 cm™ for
GaAso.95P0.05. Even though Aw in some circumstances
can be small compared to the intrinsic width of the
local mode, so that the observation of the LST splitting
would be difficult, the quantity A may be much larger
than the intrinsic width.

III. RAMAN SCATTERING BY LOCALIZED-MODE
POLARITONS

At the present time the Raman scattering of light
from polaritons in pure crystals is the only experi-
mental technique available for determining the dis-
persion relation for these elementary excitations. It is
natural, therefore, to explore the possibility of using this
technique for the experimental study of the localized-
mode polaritons derived in Sec. II.

The intensity of Raman scattering per unit solid angle
in the frequency range from ws to w.4dws is given by®

4

w;
I (ws)dws=——3_ 3 Nattgiay,pr (@) Ey Extdews, (3.1)

2mcd oy BN

where w; is the frequency of the incident light, w =w;—w;

6 Reference 3, Secs. 19 and 49.
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is the shift in the frequency of the light on scattering,
n is a unit vector describing the polarization of the scat-
tered light, and E* and E-= (E+)* are the amplitudes
of the positive and negative frequency components of
the incident light. The tensor a4, (w) is given by

1 00
fer ()=~ / d e poxt O par=(0)),  (3.2)
T J -
where

Pav_ = /dax 6_iq‘xax°‘7 (x) = (Pa#)* ’ (3-3)

and 6X,(x) is the change in the electronic susceptibility
of the crystal at the point x. The vector q=k,—k; is
the difference between the wave vectors of the scattered
and incident light. The angular brackets in Eq. (3.2)
denote an average over the canonical ensemble defined
by the vibrational Hamiltonian for the impurity system.

Let us now restrict our attention to crystals of the
zinc-blende structure. Such crystals possess the correct
symmetry to give rise to Raman-active polaritons in
pure samples; they can have Raman-active localized
vibration modes in the presence of suitable substitu-
tional impurities, and these localized modes will have
Raman-active polaritons associated with them. For
such crystals the change in the electronic susceptibility
at the point x is made up of two contributions, namely,
an elasto-optic and an electro-optic contribution:

Xary (%) =22 8(x—x(lx))

lkp

X[ Pary,u(6)204 (16) +Qayu () E M (Ix) ] (3.4)
In this expression x(/) is the position vector of the
equilibrium position of the «th ion in the /th primitive
unit cell. We choose the basis vectors {x(x)} such that
x(—)=0 and x(4)=%a0(1,1,1), where a, is the lattice
parameter, and assume that the impurities occupy the
negative-ion sublattice. The coefficient P, (k) is the
first derivative of the electronic polarizability with
respect to the displacement amplitude u,(l), and
Qavu(lk) is the contribution of the lattice site (I) to the
lowest-order nonlinear susceptibility (it is an electro-
optic coefficient). E¥ (k) is the macroscopic field at
the site (k). Combining Egs. (3.3) and (3.4), we find
that

Doy =2 €U P o, (I)uu(lk)

Ixp
FQuyu () EM (k)] (3.5)
The macroscopic field E# (/) is set up by the vibra-
tions of the impurity ions. From the results of Sec. IT,
we find that a collective motion of the impurity ions
described by Eq. (2.6) gives rise to a macroscopic field
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at the site (/) given by

feik-x(lx)

4me
EM(lk)=—

0

2

xz(-kai‘eﬁ+(5aﬁ—kaéﬂ) )m,, (3.6)
8

1—g

irrespective of whether the site (k) is an impurity site
or not. Consequently, if we expand the impurity dis-
placement field in normal coordinates,

ua(l) = 2 ea(kf)e®*®Q(kj),

T 5 (3.7)

the corresponding macroscopic field is

E (1) dref 1 Z(l%l‘a (s 1%}%)52>
a K)=————"""—""—"— a — aB T Fa —
Qo (Nm)'? xip ? ? ? 1-¢2

Xeg(kg)e®*Q(ks). (3.8)

We have assumed that the impurity ions occupy the
negative-ion sublattice and are the only ions vibrating
in the localized modes and in the localized-mode
polariton modes. We now assume in addition that the
coefficient Qqv,(lk) for an impurity ion differs from that
for an ion of the host crystal, so that for any ion it can
be written as

Qaru () = Qanyu® () +¢ (D) AQayu- (3.9)
With these assumptions we find that we can write
Pay~ in the form

Parv =22 Paw(k] e, (k)N ky),

ki p

(3.10)

where

Poryu(k|a)
4ref

1
= ze—i(q—k).x(l){c [ [Pa +0y, + AQeyy
T3 (O] Parbut= =00

. n R
x(k»ku— (b0 —kyku)l—_—é)]

dmef )
> et x,, © (k)
0 K

+

. L. B
X<kvku_ (avu*kvku)_———)} . (3.11)
1—g

The expression (3.2) for s\ 2(w) can therefore be
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rewritten as

1
Tary, o (@) = 2 2 X Pon* (k| @) Py (K| @)eu (k)

Xe, (k') / d1 Q¥ (kj; HOKF0)).  (3:12)

To evaluate the Fourier transform of the correla-
tion function, we introduce the (retarded) double-time
Green’s function

Gkj; K55 8)=((Q*(kj; 1); 0(k'j’; 0)))
=—i0(t)([(Q*(kj; 1),0's"; 0) ],

where 0(f) is the Heaviside unit step function. If we
introduce the Fourier transform of this function by

(3.13)

00

GUj; W)= dEGWk);Kj'; E)e &, (3.14)
then it is the case that
1 e
) dt e=4(Q* (kj; DQ(K'"; 0))
=[i/ (P —1)J[G(kj; K'j'; w+i0)
—Gkj; Kj';0—i0)]. (3.15)

The Green’s function G(kys; k’j’; £) obeys the equa-
tion of motion

—12(/aP)G (kj; K 5 0) =ih8 (1) ([Q* (k7),0 (&'5)])

—72((Q*(kj; ); Q(K'5'; 0))).  (3.16)
The commutator of @*(kj) and Q(k’5") is
[Q*(k),Q(K' )= —ihA(k—K)b;,  (3.17)

where A(k) equals unity if k is 2= times a reciprocal
lattice vector, and vanishes otherwise. If we assume a
harmonic time dependence e~®¢ for Q(kj;#), the
equation of motion of this normal coordinate obtained
by combining Eq. (3.7) with the analysis that led from
Eq. (2.1) to Eq. (2.19) is

Qkj)=—wQkj)+wrV (kj)Q(ks), (3.18a)

where
Vkl)=-%, (3.18b)
V(k2) =V (k3) =31+w?/ (k> —w?). (3.18c)

Consequently, taking the Fourier transform of Eq.
(3.16) and making use of Egs. (3.17) and (3.18), we
obtain
- h A(k——k’)éﬂl
Gkj; W j'; E)=— . (3.19)
21 B2 —w+wpV (kj)
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Combining the results given by Egs. (3.12), (3.15),
and (3.19), we obtain for 7.y, (w) the result that

Tay, 82 () =7 sgnw n(w) kZ 2 Pon* (k| @) Pary (k[ q)
X{}Ae,,]%,,é (@ —wi?)+ (8 —fe,J%,) Spn (@)

X[o(w*—wy* (k) +-8(w* —w_2(k)) 1} .

We have introduced the photon strength function

602(1)2 602602 —1
L P ) (3.21)

(ws? —w2)\ I (w2 —w?)?

(3.20)

Sph (w) =

that has been utilized in previous discussions of
polariton theory.” This function may be introduced

2

iay,ﬂh (w)coh =

D. L. MILLS AND A. A, MARADUDIN 1

upon noting the identity
w2 (k) —c2k?

— (w2 —wi2(k))
w032 (K) —w_2() £

=8 (W)d(w2—w (k). (3.22)
This identity follows from Eq. (2.17) and Eq. (2.18).

It remains to average the expression given by Eq.
(3.20) over all possible impurity configurations. This
means that we must average the product Pgy,*(k|q)
XPay(k|q) over all impurity configurations. When
this is done, we find that 7.y, (w) can be written as
the sum of an expression which describes coherent
scattering of light and an expression which describes
incoherent scattering, where

dre d7re
sgno n(w) [(Paxu'l—‘g—(Qﬁxu‘“)+fAQﬁxu)><Paw+-£*(Qa"v(°)+fAQa~/»)>énév5(w2—wlz)
g 0 0

47re w? 47e w?
+<Pﬂku - (Qﬁku © +fAQBM) )(Paw (Qa'vv © +fAQaw)' )
Qo 2 —w? Qo quz —?

X (8,

4mef dmef .
AQﬁ)m)(Pa‘yv""‘ AQay,,)k“k,a(w?——wzz)

[/
mon (@) imeon =S (1 — ) sgneo n(w) 5 5 [(Pm+
m k Q

0

4dref w?

—Qﬂq»sph(w)<a(w2~w+2(q))+a(w2—wﬁ(q)))}, (3.23a)

Qo

+<P BAu AQpru

)(rer

Qg k2 —w?

4ref w?
AQa'yv >
Qo c2R2 —w?

X(Byv—}%yiey)sph(w)(5(@2—w+2(k))+5(w2——w_2(k)))], (3.23b)

where we have defined Qnq5® by

Qaw = Z Qa'vrS © (") .

(3.24)

For crystals of the zinc-blende structure each of the third-rank tensors Paysy Qay» @, and AQ.y, has only one in-

dependent nonzero component

Pa*ﬂ':P! "aw[ ’ QMP(O):Q(O)IGMVI ’ AQaw:AQleaw' )

(3.25)

where €qy, is the Levi-Civita symbol. Consequently, for these crystals we find that

F2hN

ia'y,ﬁ)x (w)coh =
m

w?

4re
+(P-—@o+100-

2Q?—w

4mef

2 0)
47 w?

X% (P ———efAQ—

Qo RE—w?

JA—f)nh

3m

'ia'y,ﬁ)\ (O)) incoh =

sgnw n(w)(P—l—

e 2
AQ ) 8(w?—wi?) 22 | egnul| €ayu| +

47 2
sgo n(w)[<P+-Q—e(Q<°’ +fAQ>) et =0) E | el canl 8

) S )00 - 2(@) 02 @)]

X lonlecn (=00 |, (3.260

sgnw 7 (w)

2fA—1)k
3m

®

) $un (@[3t =012 (K))+3(* —02 ()] X | esnsllars] . (3.26b)

7 E. Burstein, S. Ushioda, and A. Pinczuk, Solid State Commun. 6, 407 (1968).
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Being dispersionless, the longitudinal localized mode
contributes a sharp peak at the frequency w; to both
the coherent and incoherent scattering cross sections.
However, the polarization selection rules for the two
kinds of scattering processes are different, so that it
should be possible to observe the longitudinal-mode
peak in the coherent scattering cross section at the
same time that the incoherent scattering has been
suppressed.

The detailed information on the polariton dispersion
relation is contained in the coherent part of the scatter-
ing. To see this, note that the incoherent part exhibited
in Eq. (3.26) contains an unrestricted sum over wave
vector. The volume of k space within which the
polariton effects are important is very small. Thus, for
our model, the incoherent cross section consists of
peaks at w; and w;, and the polariton contribution pro-
vides wings of small amplitude on the transverse peak.
Note that for f<1, the intensities of the incoherent
peaks are proportional to the concentration f.

Now consider the coherent scattering cross section
of Eq. (3.26a). This expression describes the coherent
scattering from collective excitations of the impurity
array; the wave vector is conserved in this scattering
process. The presence of the coherent scattering con-
tribution allows one to study the local-mode polariton
dispersion relation by exactly the same technique em-
ployed in the study of polaritons in pure crystals. One
observes the shift in frequency of the transverse mode
as a function of scattering angle, for angles near the
forward direction.

Let us consider the concentration dependence of the
coherent scattering from the local-mode polariton. First
suppose that Q@=0, i.e., we ignore the electro-optic
scattering from the bulk of the crystal. Then, for
fK1, we have P>>(4wef/Q)AQ, and in this limit the
scattering comes primarily from the elasto-optic scat-
tering associated with the motion of the impurity ion.
For this case, the coherent scattering is proportional
to f2. Hence, for f<1, the coherent scattering cross
section should be smaller than the incoherent cross
section by roughly a factor of f. Next consider the
effect of the bulk electro-optic scattering represented
by the Q@ term in Eq. (3.18a). Upon noticing the
presence of the & functions in Eq. (3.26a) we may
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replace [4rew?/Qo(c??—w?) ]Qo by
4me m
o _Q"_:_(w,z_wZ)Qo. (3.27)
Qo e(w)—l fe

For large scattering angles, where w is very close to we
in value, the bulk electro-optic scattering may be
ignored, and the preceding remarks apply. As the scat-
tering angle is decreased, and the polariton region is
entered, then w shifts below w; and the bulk electro-
optic scattering becomes important. For the case where
the scattering vector ¢=w,/c, the right-hand side of
Eq. (3.27) becomes (mw:/ fe)QoA=[ (4wm) 2w/ f12]Q0.
For K1, the bulk electro-optic scattering thus domi-
nates the elasto-optic scattering for this wave-vector
transfer. The coherent part of the cross section at this
point is proportional to f rather than to f2 as it is in
the large-angle region.

The following picture of the scattering from the
transverse local modes thus emerges: At large scatter-
ing angles, one sees a peak at the TO frequency w;. In
the general case, the scattered intensity contains a con-
tribution from the coherently scattered light, and the
incoherently scattered radiation. The intensity of the
former is proportional to f? and the latter to f, for
fK1. As the scattering angle is decreased into the
polariton regime, the incoherent peak remains at w;
since its position is insensitive to the scattering angle.
The coherent peak shifts to lower frequencies and at the
same time grows in intensity from the increasing im-
portance of the bulk electro-optic scattering. When the
scattering vector ¢=w;/c, the incoherent and coherent
peaks are comparable in intensity.

In Fig. 1, we indicate the position of the coherent
peak as a function of scattering angle for GaAs doped
with 59, P. We have assumed the incident radiation is
1.06 p in wavelength. For this crystal, the frequency
shift is only 2.5 cm™ even in the forward-scattering
limit. The small frequency shift that can be realized in
this case in a consequence of the strong variation of the
refractive index of GaAs with frequency in the vicinity
of the 1.06-u line.®
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