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Polariton Modes of Molecular Crystals and Helical Polymers*t
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The exciton modes of a molecular crystal are expressed in a second-quantized form by a model Hamiltonian
which may be exactly diagonalized by the Bogoljubov canonical transformation. The formal connection
between theories based upon one-electron functions and theories based upon one-molecule functions is
demonstrated. The exciton-photon interaction is formulated, and the exponential term in the interaction
coefficient is retained. The polariton modes of the molecular crystal are found by a Bogoljubov canonical
transformation of the total exciton-photon Hamiltonian. The secular equation for those polariton modes
which represent electromagnetic waves propagating in a dispersive medium is solved, and a general refrac-
tive index is defined. The general refractive index is used for the formulation of the optical dispersion and
optical activity of the molecular crystal entirely in terms of molecular moments, molecular energies, and
intermolecular interactions. Since the intermolecular interaction is not treated as a perturbation, this
theory correctly represents the intensities of crystal transitions which arise from even the weakest molecular
transitions. The helical polymer is considered as a special case of the molecular crystal. A major term in
the optical rotation of the helical polymer follows directly from the correct dipole selection rules. Use of
periodic boundary conditions for the formulation of the optical rotation of the helical polymer is shown
to be valid.

I. INTRODUCTION
' QROTEJNS and DNA, biopolymers of great biologi-

cal importance, have helical structure; therefore,
there has been great interest recently among physicists
and chemists in the electronic properties of helical
polymers. Much work has been done with the perturba-
tion treatment' ' of exciton states of helical polymers,
and more recently with nonperturbationa]. treat-
ments. ' ' In this paper, the helical polymer is considered
as a special case of a molecular crystal. A theory of the
exciton modes of a molecular crystal and the interaction
of the exciton modes with photons is developed and
applied to the helical polymer.

Agronovitch and Fukutome' ' represent the exciton
modes of the molecular crystal by a second-quantized
formalism. The exact electron Harniltonian for the
molecular crystal is approximated by a model Hamil-
tonian which may be exactly diagonalized by the
I ogoljubov' canonical transformation. Agronovitch
bases the exciton representation on the states of an
isolated molecule; Fukutome uses a set of one-electron
functions as a basis.
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In this paper, the Frenkel, "or tight-binding exciton
modes of a molecular crystal are discussed in the second-
quantization formalism. Hartree-Fock (HF) molecular
orbitals of a single molecule are used as a basis for the
model Hamiltonian.

The interaction of the molecular crystal with light is
represented by an exciton-photon Hamiltonian. Hop-
field" has shown that an exciton-photon Hamiltonian of
this form may be exactly diagonalized by the Bogol-
jubov canonical transformation; the normal modes of
the exciton-photon Hamiltonian are called polaritons.
Agronovitch has solved the secular equation for those
polariton modes which represent electromagnetic waves
propagating in a dispersive medium, and has expressed
the refractive index of the crystal in terms of exciton
dipole moments and exciton energies.

In this paper, the exponential term is retained in the
exciton-photon coupling. The solution of the secular
equation for the photonlike modes is used to de6ne a
general refractive index for the molecular crystal. This
refractive index expresses the optical dispersion and
optical activity of the crystal. The Hermitian eigen-
value problem for the crystal excitons is used to formu-
late the crystal optical properties entirely in terms of
the molecular dipole moments molecular energies, and
the intermolecular interaction; it is not necessary to
solve the exciton eigenvalue problem. The form of the
optical dispersion and optical activity relations are
identical for the one-electron and one-molecule repre-
sentations. The one-molecule representation may be
used to express the optical properties of the crystal in
terms of observable monomer properties; the one-
electron representation may be used to express the
optical properties of the crystal in terms of a computed
basis set.

' J. Frenkel, Phys. Rev. 37, 1276 (1931)."J.J. Hopfield, Phys. Rev. 112, 1555 (1958).
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Since the intermolecular interaction has not been
treated as a perturbation, the theory presented here is
still valid when simple perturbation theory fails.
Crystal transitions which are related to very weak or
forbidden molecular transitions are accurately repre-
sented by the relations derived here.

The helical polymer is considered as a special case of
the molecular crystal; the optical dispersion and optical
activity of the helical polymer are expressed in terms of
the monomer energies, monomer moments, and the in-
teraction between monomers. The helix term in the
optical rotation, a term which is due to the helical
geometry, follows directly from the use of the correct
dipole selection rules with the correct expression for
optical rotation. The validi. ty of the use of periodic
boundary conditions is demonstrated, and the reason
for the failure of MoStt's theory' to include the helix
term in the optical rotation is discussed.

II. CRYSTAL EXCITONS

The model molecular crystal, which is discussed here,
has one molecule per unit cell; therefore, each molecule
is labeled by a lattice vector l.

Only Frenkel excitons are discussed here. The exten-
sion of this formalism to Wannier excitons" has been
discussed by the author" through the use of Kannier
functions, and by Fukutome' through the use of
Lowdin" orbitals.

The basis set for describing the Frenkel exciton modes
of a molecular crystal is the set of HF molecular orbitals
of a single molecule which is situated in the time-
averaged potential 6eld of the crystal; this basis set is
divided into hole states (@1 ), and electron states (it 1„).
The basis functions are assumed to be real. The model
Hamiltonian is

H= EH++ WAB1A B1A+Q Q Ulm(AB)B1A BmB
1,A 1,m A, B

+ ', LQUlm(AB-)B1AtBmHt+H. c.j, (1)
1,m

where

Ul (AB) = d'r d'r'g ~(1r)g „*(r')

X U(r', r)0, (r')0,.(r)

The one-molecule Hamiltonian H1 may be diagonal-
ized by means of the Bogoljubov canonical transforma-
tion. A new set of exciton operators is de6ned as

Blf =Q $CAfB1A dA—fB1Atj.
The diagonalization condition is

E+4Blf 3 ~fBlf

This diagonalization procedure represents the mixing of
different one-electron states to form one-molecule states
for a molecule in the field of the crystal; this procedure
is similar to the configuration interaction method com-
monly used in molecular-orbital theory.

The model Hamiltonian, Eq. (1), may now be ex-
pressed in terms of the one-molecule exciton operators
as

ep+Z ~fBlf Blf+ 2 Vl (f)g)BV B p
lcm

+, Z LV-.(f,g)B.»-, t+H'&, (»
where

e p
=EH NQ &f dAr-'

Af

Vlm(f g) =p Vlm(AB)(cAy+dAf)(cH, +dH, ) .

This Hamiltonian is formally identical to that used by
Agronovitch. ~ The diagonalization of the one-molecule
Hamiltonian, H1, has transformed the model Hamil-
tonian from one-electron representation to one-molecule
representation. Agronovitch7 uses the exact states of
the isolated molecule as his basis; the present theory
uses functions for the molecule in the average crystal
Geld, but with only part of the intramolecular correla-
tion interaction included.

The one-molecule exciton operators 81f may be com-
bined to form crystal exciton operators with Bloch sym-
metry. The model Hamiltonian then may be expressed.
as

B=ep+g ArBft(k)Bf(k)+Q rrp(k)Bfi (k)Bp(k)

+-', p Lr„(k)B,&(k)B,t( —k)+H.c.3, (6)

Ezz is the E-electron HF ground-state energy and 5"A
is the energy of an electron-hole pair. The exciton
operator 81A has boson commutator relations.

The model Hamiltonian, Eq. (1), may be rewritten as

where
B (k) —P1'—1/2 P c ik 1B—

I

&=K K+K Vl
1 1&m

"G.H. Wannier, Phys. Rev. 52, 191 (1937)."F. M. Loxsom, Ph.D. thesis, Dartmouth College, 1968
{unpublished)."P. 0. Lowdin, Advan. Phys. 5, 1 (1956).

and S is the number of molecules in the crystal.
This Hamiltonian is diagonalized by de6ning exciton

operators which are dressed with the exciton-exciton
interaction:

B,(k) =P Pu~, *(k)B~(k)—v~, *(k)B~&(—k)]. (7)
f
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The diagonalization condition is

[»B.'(k)] =&.( )B'(k) (g)

Fukutome' has shown that the diagonalization condi-
tion may be expressed in matrix form as an Hermitian
eigenvalue problem

[6'+26'~'F(k)a'"]pp(k) =pp(k)E'(k), (9)

where oi (k) is a unita ry matrix defined as

wh ere

J~ i(q) = d'r $i„(r)[—(e/m)e'p'(5/i) V]pi (r) .

For a simple crystal or linear polymer, the lattice
summation in Eq. (13) may be carried out:

J i (q) = (&"'Z [&re*(k)—vr, (k)]Jr(q))&„„(14)
f

where Jr(q) is the current matrix for the molecule with
I=0. For the helical polymer, this simple relationship
does not hold" ";the special case of the helical polymer
is discussed in Sec. IV.

The exciton-photon Hamiltonian may be simpli6ed
as

pp(k) =g'~'[u(k) —v(k)]E—iIs(k) . (10)

The crystal exciton eigenvalue equation, Eq. (9),
represents the formal description of crystal exciton
modes in terms of the one-molecule basis. A description
of the crystal excitons in terms of the one-electron basis
is found by diagonalizing the model Hamiltonian, Kq.
(1), directly; the Hermitian eigenvalue equation for the
one-electron basis is formally identical to Eq. (9).
Fukutome' uses a one-electron basis, and Agronovitch'
uses a one-molecule basis; the present theory establishes
the connection between these two theories.

&=&p+2 2 &.(q)B'(q)B,(q)+2 &o~,ai'(q)a) (q)
p

+2 1','(q)La" (—«)+a (q)]LB,'(q) —B,(—q)]

CO 0+2 l &o~, —[ai'(q)ai(q) +ai'(q)a~" (q)+H c ]
Q) qIII. EXCITON-PH OT ON INTERACT ION

(15)
where T,p~(q) has been rewritten as T,"(q).

The Bogol jubov canonical transformation is used to
diagonalize the exciton-photon Hamiltonian of Eq. (15)~

A new set of boson operators is defined as

of electromagnetic
is discussed in an
to that used by

In this section the interaction
radiation with a molecular crystal
exciton-pho ton formalism similar
Hopfield'2 and by Agronovitch. ~

The exciton-photon Hamiltonian
radiation gauge as

is expressed in the
('(q) =Z [~*,*(q)B,(q) —i '.*(q)B,'( —q)]

a =Z,yP Z, (1 )B,i(k)B,(k)
p, k

+P &pi,an't(q)ai(q) +2 &,."(q)[a~'(—q)+a~(q)]

+P [n; *(q)a (q) —p, (q)a t(—q)]. (16)

The diagonalization condition is

X[B,t(k) —B,(—k)]++ -,'ho),
I

—
I

.an d
T,P(q) = (27rk/oi, V) 'ls Jpk(q) pi(q),

(op (4e'~E/m V) '~ ',——
(12)

X[ "(q) (q) + '(q) '(-q) +H ],
where a&,"(q) is a photon creation operator. The interac-
tion coefficients are defined as

The normal modes, represented by the $,t(q) operators,
have been called "polaritons" by Hopfield. "Only the
photonlike polariton modes are considered here; these
are modes which represent electromagnetic waves propa-
gating in a dispersive medium.

With the use of Eq. (17), the equations which describe
the photonlike polariton modes are found to be

[8'(q) —h'oi '—6'pip']I;i(q)

where V is the crystal volume. The crystal current vec-
tor, J~q(q) is defined in terms of the molecular current
operator in the one-molecule basis, Jri(q), as where

=26 "(q)E g""'(q)~'i (q), (1g)

a'""'(q) =2 — (19)
[h"(q) —&,'(q) ] &"(q)

These two coupled equations represent the coupling
e molecular current operator is expressed in the one- b etween two polarizations of the photon field and the

electron basis as exciton field. The secular equation (18) is diagonalized

Jf](q) =g [c~r

deaf]Jgi(q),

— "A. W . Luehrmann and F. M. Loxsom, I. Chem. Phys. (to be
published) .'' W. Rhodes, J. Chem. Phys. 37, 2433 (1962).
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by choosing the photon polarizations in order that

gxyxg(q) 0

The energies of these modes are

8'(q) =(A'(o '+A(o(P)/L1 —2g "'"'(q)$
This equation expresses the crystal polarizability in
terms of molecular energies, molecular dipole moments,
and the intermolecular interaction. It is not necessary
to solve any eigenvalue problem. Equation (29) is iden-
tical in form whether expressed in terms of the one-
electron basis or in terms of the one-molecule basis. The
one-electron basis is appropriate for a calculation of the
crystal optical dispersion in terms of a computed basis
set; the one-molecule basis is appropriate for a calcula-
tion in terms of experimentally observable molecular
quantities. A complex polarizability may be dehned by
introducing a decay factor matrix into the denominator
of Eq. (29).

For weak exciton-photon interaction, 8,'(q) may be
approximated as (Ace~)'in Eq. (29); the resultant expres-
sion is similar to that found by Rhodes et al. "by the
use of linear response theory.

The oscillator strength sum rule holds for the crystal
excitons if it holds for the molecular functions. The sum
of the crystal oscillator strengths is

(21)

where z=1, 2. Equation (21) expresses the energies of
the photonlike modes, and Eq. (20) determines their
polarizations; therefore, the description of these modes
is complete.

The refractive index for light propagating through
a dispersive medium is dehned as

n'(q) =~~./~'(q); (22)

therefore, the refractive index for the photonlike polari-
ton modes is

(23)n,'(q) =—
1+(~o/~.)'

The general refractive index, Eq. (23), expresses the
optical dispersion of the molecular crystal. Because the
exponential term is included in the interaction coeffi-

cient, the general refractive index may be used also to
express the optical rotatory dispersion of molecular
crystals.

P, F,(k) =(2m/e'O'X)Pt(k) E(k)P(k).

If Eq. (28) is substituted into Eq. (26), then the
crystal polarizability becomes

(20) .,(q) =( &i )Po'~L~'+ ~(q)~-~'(~)]-'P. (2 )

IV. OPTICAL DISPERSION
With the aid of Eq. (28) it is easy to see that

P'(k) E(k)P(k) =cVPO'~PO,

n,'(q) =1+4m-n, '*"'(q). (24)

If only the dipole coupling term in the interaction therefor
vector is retained, and the oscillator strength sum rule
holds, then Eq. (23) may be approximated as

EF,(k)=Zfr=24
p f A

V. OPTICAL ROTATION

The crystal polarizability tensor is de6ned as

~,(q)P, *(q)P,(q))
~'(q) = —2V, Z,z(q)-B (q) i

(25)

The formalism which was developed in the previous
sections is applied here to optical rotation. For light
propagating in the ~3 direction, the polarization direc-
tions for left and right circularly polarized light are

where P, (q) is the crystal dipole moment vector. The
normal-mode polarizations are de6ned by Eq. (20).
Equation (25) may be expressed in matrix form as

and

ei ——(1/K2) t-ei+iez J,

e,= (1/W2) hei —zez).

~'(q) =(2/~){P'(q)E(q)LE'(q) —&"(q) l 'P(q)) (26)

An equation simila. r to Eq. (14) relates the crystal
dipole moment to the molecular dipole moment:

P.(q) =»""2 5 f.*(q)+ x,*(q)jPr(q)
f

or, in matrix form,

The condition that l and r are the polarization direc-
tions, Eq. (20), implies that

g "(q) =g "(q)

ReLg;"(q)]=0.

Optical rotation is de6ned as
I

P(q) =&'"t-&'(q)+v'(q) JPo (2&)
P=-,'g(nz —n„), (30)

and the refractive index is defined by Eq. (24); therefore
With the aid of Eqs. (9j and ('10', this relation is ex-

pressed in terms of the co(q) matrix as y (q) =(q/n) ImLg"(q) I, (31)

P(q) =cV'"E—'"(q)cd(q) ~'"P0. (28) "W. Rhodes and M. Chase, Rev. Mod. Phys. 39, 348 (1967).
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where
n=-', (np+n„),

and (a&e/&o~)' has been neglected. The optical rotation is
expressed in terms of the current vector by means of
Eqs. (12) and (19):

4sn f&p(Jp*(q) e&j/Jp(q) e2$
QIm~, (32)

ca), V I l E '(q) —8'(q)

basis. A complex optical rotatory power may be deGned'

by introducing a decay factor matrix into the denomi-
nator of Eq. (37).

The rotational strength sum rule holds for the crystal
modes, if it holds for the molecular basis. The sum of the-

crystal rotational strengths is

P R, (k) =(1/Ã)Pt(k)M(ir),

where

$(g) =A(o,/n.
with the aid of Eqs. (28) and (36), it is ea.sy to see that

Pt(k)M(k) =cVP,tM„
Equation (32) represents the extension to crystals and
polymers of a formula for the optical rotation of mole-
cules which Stephen" derived by a Geld theoretic scat-
tering formalism.

The current vector in Eq. (32) may be expanded in
a multipole series; if only terms to first order in the
crystal magnetic moment vector M, (q) are retained
and the rotational strength sum rule holds, the optical
rotation is approximated as

q4(g) =&m{et + 3(g) 'el+e2'@3(q) e2), (33)

where the crystal optical rotation tensor is deGned as

4vrlV P, (q) M, (q)e,(q) = n h'(q)P
Act ~ E,'(q) —8'(q)

Since the dipole contribution to the refractive index is
the same for the left and right circular polarizations,
there is no term in Eq. (34) involving only dipole cou-
pling. Equation (33) represents the extension to crystals
and polymers of a formula for the optical rotation which
Rosenfeld" derived by a semiclassical perturbation
theory. Equation (34) may be written in matrix form as

4zlV
+ (q) = n&'(q) P'(9) LE'(0) —8'(I)] 'M(V) (35)

Ace

The crystal magnetic dipole vector is related to the
molecular magnetic dipole vector by a relation similar
to Eq. (32):

M(q) =A'"E' '(q)rot(q)4 '"Me. (36)

With the use of Eqs. (9), (28), and (36), the crystal
optical rotation tensor is expressed entirely in terms of
the molecular moments, the molecular energies, and
the intermolecular energies as

4~&V

C3(q) = -n 8'(q)Pet
Ace

X)A +241 (q) —8 (g)] 'Me. (37)

Equation (37) is identical in form whether expressed
in terms of the one-molecule basis or the one-electron

r' J. Stephen, Proc. Cambridge Phil. Soc. 54, 81 (1958l.
20 L. Rosenfeld, Z. Physik 52, 16k (5928).

therefore,
P Rp(k) =P Rr ——P R~.

p f

Equations (29) and (37) are the main results for the
simple crystal and linear polymer; these relations ex-
plicitly express the crystal quantities in terms of molecu-
lar quantities without the need to solve the exciton;
eigenvalue problem.

VI. HELICAL POLYMER

In this section the polariton description of molecular
crystal optical properties is applied to a simple model
for the helical polymer. Discussions of the optical prop-
erties of the helical polymer by the use of linear response
theory may be found in recent papers by Ando' and by
Rhodes et ul. '""

The model helical polymer which is discussed here is
composed of identical monomer units; each monomer
unit is related to every other monomer by a screw
operation fC, (hg)

~

At)". The basic screw operation is
a rotation of dP about the helix axis (the s axis), fol-
lowed by a nonprimitive translation 3t along the helix
axis. If periodic boundary conditions are assumed, the
set of screw operations is a group of symmetry opera-
tions for the helical polymer. The eigenstates of the
helical polymer Hamiltonian transform according to one
of the irreducible representations of the group of screw
operations. More detailed discussions of the symmetry
and group theory properties of the helical polymer are
found in papers by Rhodes' and by Luehrmann and
Loxsom ~6

Because of the screw symmetry of the helical polymer, .

the summation relation of Eq. (14) does not hold for the
helical polymer. The correct summation for the dipole
moment is

P,~(q) =P, (&)$e—ey4, q,ys+e+e —4,g~s+ Keg4, q,J g (38)

where P, (k) is defined in Eq. (28), S=DP/At, and

e~=(1/v2)(e Hie„).

Polymer transitions from the ground state to an exciton,
state with k=q, &S are polarized perpendicular to the
helix axis; transitions to states with 0 =g, are polarizeci
parallel to the helix axis.

' W. Rhodes and P. M. Loxsom (unpublished).
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The expressions for the polarizability of the helical
polymer are very similar to Eq. (29). The helix selection
rules mean that there are different values of k in the
interaction matrix I'(k) for different polarizations.

For light propagating parallel to the helix axis, the
a.ormal-mode polarizations are left and right circular;
denly the transitions with k=q&S are allowed. The
small g value may be neglected for optical dispersion;
therefore, the helical polymer polarizability is

left and right, respectively. The dipole part of the refrac-
tive index is different for left and right polarizations
because of the k dependence of the interaction matrix
I'(k). Optical rotation is proportional to the difference
between the polarizabilities for left and right polariza-
tions; therefore, the helix term in the optical rotation is

27rP ) 1
yg(q) = n

i

—c~ Le(q, S+q) —e(q, S—q)] c: (4.4)
k'c' j2q

e q,S = 2N V Potch cL'+2K S cL —8' q
—'Po. 39

Equation (44) may be approximated as a derivative:

where
P, (q) =2 Im{e 4(q,S).e~}, (41)

N(q, k) = $(4m-LV/Acv) n]h'(q) Pot
&($42+2K P(k) —g2(q)]-iM, . (42)

For light propagating perpendicular to the helix axis,
there is a term proportional to p, the radial displacement
of the center of a monomer from the helix axis"; the
term is due to the shift of the magnetic dipole from the
helix axis to the monomer center. For light propagating
yerpendicular to the helix, the optical rotation is

y, (q)=1m{I+ N(q, S) «:}+Im{c,e(q, 0) e,}
27rrz

+—-P(q) Im{(y ~ )cp (e(q,0) —e(q,S)] ~.}, (43)
A'c'

where 4 (q,k) is defined in Eq. (44), and e(q, k) is defined
by Eqs. (39) and (40).

There is an additional term in the optical rotation of
the helical polymer which is not indicated in the expres-
sions for the linear systems. The reduction of Eq. (32)
to (33) is not valid for the helical polymer, because the
term which involves only dipole coupling is not zero.
This additional term is called the helix term, or the
cxciton term. In two recent papers, ""the author has
shown that this term arises solely from the helical sym-
metry, and is not an e6ect of a particular theoretical
model.

Consider the case of light propagating along the helix
.axis. The modes with k =q+S and k =q

—S are polarized

" F. M. Loxsom, J. Chem. Phys. 51, 4899 (1969)."F.M. Loxsom, Int. J. Quantum Chem. , Symposium No. 3,
Interscience (1969).

For light propagating along the x axis of the helix,
the normal-mode polarizations are along the s and y
axes. Only the transitions with k =0 are allowed for the
z polarization, and only transitions with k=S are al-
lowed for the x polarization. The polymer polarizability
for the s-polarization direction is

e(q, 0) =(2E/V)P, aLa +2r(0)a —S (q)]-'P, . (40)

If the Rosenfeld formula, Eq. (34), is applied to the
helical polymer, the optical rotation is similar in form
to Eq. (37). For light propagating parallel to the helix
axis, the optical rotation is

f2~ 8
yi„(q) =~ nh'(, q)—Lci e(q k) c ] . (45)

(k'c' Bk

For light propagating perpendicular to the helix axis,
Eq. (45) gives a zero value for the helix term; therefore,
for a randomly oriented solution of helical polymers, the
helix term is one-third of that in Eq. (45).

Moffitt, ' in a classic paper, used simple exciton theory
to describe the optical rotation of the helical polymer.
MoStt, Fitts, and Kirkwood'4 criticized the early
MoKtt theory because the helix term in the optical
rotation was omitted; this missing helix term was found
only by abandoning periodic boundary conditions.
However, it has been shown here that by using Eq. (32)
rather than Eq. (33), the helix term is retained for a
periodic model of the helix. MoKtt used. Eq. (33), the
Rosenfeld formula for optical rotation; therefore, he
naturally omitted the helix term in the optical rotation.
The use of periodic boundary conditions is quite valid
if Eq. (32), Stephen's formula, is used to describe the
optical rotation of the helical polymer.

VII. DISCUSSION

A nonperturbational theory of the exciton modes of
a molecular crystal has been used to describe optical
dispersion and optical activity. The optical properties
of the crystal are expressed in terms of molecular mo-
ments, molecular energies, and the intermolecular inter-
action; it is not necessary to solve the exciton eigenvalue
equation.

The model Hamiltonian is appropriate for weakly
interacting molecules; however, since the model Hamil-
tonian is diagonalized exactly, the theory developed
here may be useful for strong intermolecular interac-
tion. For weakly interacting molecules, this theory is
preferable to a perturbation treatment. For weakly al-
lowed or forbidden transitions, 6rst-order perturbation
treatments are inadequate for a description of the crys-
tal optical properties; it is necessary to include higher-
order terms in the perturbation expansion. The non-
perturbational theory accurately represents intensities
of crystal transitions which arise from weakly allowed or
forbidden molecular transitions.

'4 W. Mofhtt, D. Fitts, and J. G. Kirkwood, Proc. Natl. Acad.
Soc. (U. S.) 43, 723 (1957).
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The form of the crystal polarizability and optical
rotation tensors, Eqs. (29) and (37), are the same for
both the one-molecule and one-electron basis sets. The
one-electron basis set, which has been discussed here,
has the average crystal Geld included in its defining
equation. If the crystal Geld is approximated in the same
way as the correlation interaction has been, then a set
of molecular orbitals for an isolated molecule may be
used as a basis for expressing Eqs. (29) and (37); the
crystal-Geld interaction is included in the interaction
matrix. The set of molecular orbitals represents the
simplest computed basis set for a calculation of the
optical properties of a molecular crystal or polymer.

The approximation of the intermolecular interaction
as a dipole-dipole coupling is represented by

r(q)=Pp d(q) Pp',

where
d(q) =P d(h)e'& "

and d(h) is the dipole interaction tensor between mole-
cules separated by h. Rhodes et al. ' "have shown that, .

with the use of the dipole approximation, the crystal
polarizability may be expressed in terms of the molecu-
lar polarizability; the crystal optical rotation may be.
expressed in terms of the molecular optical rotation
tensor also.
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Selection rules are derived for multiple-phonon processes which are dominated by anharmonic inter-
actions between nearest-neighbor lattice particles. These nearest-neighbor selection rules (NSR) are different
from and supplementary to the usual group-theoretical selection rules. NSR for wave vectors at X or I are
expressed in Born's (NSRB) and in Keating's (NSRK) formalism. The NSRB refer to anharmonic two-
particle interactions; the NSRK allow interactions between two or more particles. The applicability of the
NSR to various multiple-phonon processes —with emphasis on infrared two-phonon absorption —is investi-
gated and the results of some relevant model calculations are given. Practical rules for further applications
are proposed.

1. INTRODUCTION

~

~

~

~ ~ ~

~

E shall present a new type of selection rules for
multiple-phonon interactions in crystals of the

zinc-blende or diamond structure. These rules supple-
ment the usual group-theoretical selection rules, and

specify conditions under which anharmonic interactions
between nearest-neighbor particles vanish.

Selection rules are commonly formulated for simple
interaction expressions. If such an expression approxi-
mates a real interaction sufficiently well, then a forbid-
den (approximate) interaction will correspond to a real
process of weak intensity. Infrared multiple-phonon
absorption, for example, if forbidden by the group-
theoretical selection rules (GSR) in the electric dipole

approximation, ' is extremely weak for all cases of
practical interest.

The nearest-neighbor selection rules (NSR) to be

' J. L. Birman, Phys. Rev. 131, 1489 (1963).

derived here' are based on certain assumptions referring
to the form of the anharmonic interactions and the
magnitudes of the harmonic amplitudes. These assump-
tions, and the neglect of the contributions of higher-
order neighbors to the anharmonicities, represent ap-
proximations to the situation in real materials. From our
present state of knowledge we can suggest where and to
what degree these approximations should be satisfied,
but the validity of these approximations is not as well
established as that for the GSR. If an interaction is for-
bidden by the NSR and the related real process is found

' Some of the material of the present paper is discussed in greater
detail in the following Foundational Research Projects Quarterly
Reports: Naval Ordnance Laboratory Corona Report No. 688, p.
35, 1966 (unpublished); No. 705, p. 37, 1966 (unpublished); and
No. 715, p. 39, 1967 (unpublished); Naval Ordnance Laboratory,
Corona, California, and Naval Weapons Center Corona Labora-
tories Report No. TP 756, p. 9, 1968 (unpublished). These publi-
cations, hereafter referred to as N1, N2, N3, and N4, respectively,
are available from the Clearinghouse for Federal Scientihc and
Technical information, Springfield, Va. 22151, where they are
listed as AD-645980, AD-651544, AD-655889, and AD-830635.


