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with When two charged particles interact by exchange of

Ciia(p) a virtual transverse photon, their interaction is di-
S=Y —- minished by the factor |a|? which is the reduced
T 6.0 [q—wijq(p) ]2 probability that a physical photon contains a bare

photon.

Hence we conclude that both the longitudinal and
transverse renormalization of the electromagnetic
charge is given by the same expression. Equation (10)
therefore gives the adjustment of the value of ¢ in a
metal environment.

If the above calculation were done by conventional
Feynman-diagram techniques in quantum electro-
dynamics, Fig. 3 represents the diagrams which would
yield the corrections to e calculated above in this paper.

XTr[Ai(p+q)e-A;(p)a-A].  (17)

In the limit of small ¢2, the evaluation of (16) and (17)
yields

2 pdp /3 1 p NT!
efir L[ TPy
3 J (prAme\2 2 prbm?

which is identical to (6).
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We have undertaken the complete temporal description of pulsed emission by a homogeneously broadened
laser, including the effects of spontaneous emission, the detailed geometry of the laser cavity, and the
variation of atomic polarization and level populations over wavelength distances. The model is based on
traveling-wave equations which are derived from Maxwell’s equations and solved in conjunction with
boundary conditions imposed at the cavity mirrors. Thus, any direct assumptions concerning the nature
of the laser’s longitudinal mode structure is avoided. Variations in polarization and population over wave-
length distances are treated by means of expansions in spatial Fourier series, having as fundamental a
half optical wavelength. The Fourier series are truncated after the first harmonic. The treatment differs
from earlier work in that the dephasing of the dipole moment is treated exactly without a rate-equation
approximation. Spontaneous emission is simulated both as to spectrum and Gaussian character by including
in the dipole equations stochastic shot-noise sources. The model equations are solved numerically, and
results include the details of Q-switched pulse evolution from noise for both passive and active switching.
In the case of an actively switched laser, the two-photon fluorescence intensity pattern has been calculated.
It reveals a well-defined structure of subsidiary intensity maxima, even though subcavities are not assumed
in the calculation. The pattern can be correlated directly with the emission pulse structure, and should
vary from shot to shot. No single point in the pattern is suitable for a peak-to-background ratio determi-
nation. However, if the background is averaged over a distance in the fluorescing medium equal to twice
the separation between cavity mirrors, the peak-to-background ratio would be =~1.6, indicating a highly

uncorrelated spectrum.

pulsed emission has heightened in recent years as the
result of discoveries that solid-state lasers can emit
trains of pulses having durations of the order of 1012
sec, not only when mode locking is brought about,**
but even when mode control is not attempted.®-® Much
of the underlying detail of the resulting pulses cannot
be resolved on available oscilloscopes. As a consequence,
experimenters have made use of nonlinear optical

INTRODUCTION

HE emission of radiation by lasers as a succession
of pulses, under various conditions, has been a
familiar phenomenon for some time.'™'° Interest in
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techniques for probing pulse structure.!*~'* These
techniques yield data that is integrated over the entire
duration of the pulsed emission, making it impossible
to recover the complete details or the time history of the
emission process. Care is thus required in interpreting
the data for details of pulse structure.!5:!® Tt would be
useful to exhibit theoretically those details of pulsed
laser emission which cannot be resolved either by means
of oscilloscope or nonlinear optical data. One can, of
course, interpret experimental data on the basis of
simple ad hoc assumptions regarding the phasing of
laser modes, but an understanding of the underlying
emission processes must, in the final analysis, be based
upon a dynamic model of the laser. In this paper, we
have undertaken the derivation of a detailed model for
describing short-pulse emission by lasers, and we have
applied it, by solving the model equations numerically,
to the generation of short pulses by a Q-switched laser
operating both with and without a saturable absorber
in the cavity. In applying this model, an attempt is
made to follow the details of emission from initiation
by spontaneous emission through nonlinear amplifica-
tion and the depletion of gain. The cases listed above,
however, are not intended to be an exhaustive list of
possible applications for the methods described.

The conventional approach to laser theory has been
to express the laser field as an expansion in a set of
normal standing-wave modes appropriate to the laser
cavity. Multimode theories of phase locking and pulse
emission have been undertaken by a number of authors
using this approach.' 2 An alternative description of
the laser field is based upon a direct solution of Max-
well’s equations and reflection boundary conditions
appropriate to the laser cavity. Such a treatment avoids
any explicit assumptions regarding the longitudinal
mode structure of the laser, and seems ideally suited to
the time-domain description of pulse phenomena. This
method yields equations for the field amplitudes which
are of transport or traveling-wave type. Such a descrip-
tion will be referred to as a traveling wave or TW
description.
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The TW description is simplest to formulate and
apply for the case of single-pass amplifiers and at-
tenuators and one-wave ring lasers, since only one wave
is involved. The TW method has been in use for some
time for describing the effects of amplifiers and at-
tenuators on radiation. Theories have been formulated
both by neglecting the coherence of the polarization?s
(rate-equation theories) and by taking it into ac-
count?—33 (nonrate-equation theories). More recently,
one-way ring lasers have been treated using a non-
rate-equation TW description.®*%® The application of
the TW method to a Fabry-Perot laser cavity is more
complicated, partly because two opposite traveling
waves are required, but also because the waves in-
terfere. The TW method in a rate-equation approxima-
tion has been applied to Fabry-Perot lasers operating
in a cw condition.?$:¥ In two earlier papers, time-
dependent TW rate equations were used to describe the
evolution of mode-locked pulses in passively switched
lasers with Fabry-Perot cavities.38:%? Preliminary results
based upon a nonrate-equation TW description, have
been™given for ordinary Q-switched lasers.®:4t The
present paper will, in part, provide an elaboration of
the results and methods discussed in Ref. 41.

Of the above references to applications of TW
methods, only in Refs. 40 and 41 is the effect of spon-
taneous emission explicitly taken into account. The
inclusion of spontaneous emission turns out to be
crucial to gaining an understanding of the behavior of
Q-switched solid-state lasers, since in amplifying sys-
tems which are not strongly affected by pumping what
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comes out depends very strongly on what is put in. For
systems in which pumping plays an important role, the
influence of spontaneous emission should be less im-
portant. In Refs. 34 and 35, instabilities are reported
which depend on pumping. These results should be
applicable to the continuous pulsing of gas lasers,57
but not to the cases examined here.

The method which we use for deriving field ampli-
tude equations is based on a direct application of
Maxwell’s equations rather than on a second-order
wave equation. In Sec. I, a set of exact TW equations is
derived without making a slowly varying envelope ap-
proximation. These equations could be used for describ-
ing the amplification of ultrashort pulses, say, from 1
to 100 wavelengths long over centimeter distances, but
would be impractical for numerical use in describing
amplification inside a laser cavity where amplification
paths are far longer. In Sec. 11, it is shown by means of
a slowly varying envelope approximation and a rate-
equation approximation that the equations derived
in Sec. I contain small phase modulation effects which
can be neglected for the cases of interest in this paper.
In Sec. ITI, a slowly varying envelope approximation is
applied to the equations derived in Sec. I, and it is
shown that the intereference between the two op-
positely traveling waves in a cavity creates a variation
in the polarization and population difference, over a
distance of a half-wavelength, which can have an
important effect on the slowly varying field amplitudes.
The rapid local spatial variation in polarization and
population difference can be treated either by means of
Fourier expansions with a half-wavelength as fun-
damental, as is done in Sec. III, or by sampling these
variables at discrete points over a half-wavelength
distance, as is shown in Sec. IV. The remaining analysis
in the paper is based on a truncated Fourier expansion.
Section V is devoted to a discussion of the fluctuating
dipole model of spontaneous emission which is similar
to Langevin source models which have been employed
in the noise analysis of single-mode lasers.*? The
numerical methods used are discussed in Sec. VI, and
numerical results are presented in Sec. VII.

I. BASIC EQUATIONS

Whereas most treatments of laser phenomena begin
with the consideration of a second-order wave equation,
we shall find it convenient to deal directly with the
Maxwell field equations, which for a plane-polarized
beam can be written as

¢ OF, 0H, 4w 0P 4r

—_ :—————-———‘—*—U'E:v, (1'13')
¢ at 0z ¢ ot c

1 BH aE:c

—_ i = — . (l'lb)
c ot Jz

12 H. Risken, Z. Physik 186, 85 (1965); J. A. Fleck, Jr., J. Appl.
Phys. 37, 188 (1966).

Here the permittivity e and the magnetic permeability
p refer to a dispersionless host medium, o is a con-
ductivity, P is a polarization which characterizes the
active atoms which may be either amplifying or absorb-
ing, and E, and H, are the electric and magnetic field
components. Equations (1.1) can be rewritten in terms
of variables €'/2E, and u!/2H, as follows:

1/2 1/2 1/2
(ew) E‘(EUZE,):'— O(u!H,)  dmull 0P
¢ o 0z c o
dar fuN\ V2
‘“G)dwwm (1.22)
C \€
(ew)t'? 0 d
—(u!2H,) = — —(el2L,). (1.2b)
c 2 dz

We next introduce variables £+ and E~ which satisfy

Et=ePE 4420, (1.3a)
E~=e2E,—ul*H, (1.3b)
2B, =}(E++E"), (1.3¢)
pl?H,=Y(E+—E-). (1.3d)

If we first add Eqgs. (1.2a) and (1.2b) and then subtract
Eq. (1.2b) from Eq. (1.2a), we obtain the following
first-order equations satisfied by £+ and E~:

ndEt  OE*
¢ dt 9z
dapl/2 QP 2mo/u\1/?
e e S I
c 0t ¢ \e
n0E- OE~
¢ 0t 0z
4rul/2 9P

2mo [\ M2
_———— —<-—> (E*+E-), (1.4b)

where 7= (eu)!/? is the refractive index of the host
medium. Maxwell’s equations are thus reduced to a
pair of first-order transport equations.

To illustrate the significance of £+ and E~, we derive
some elementary relations from Egs. (1.3) and (1.4).
First, the energy density # of the electromagnetic field
can be expressed in terms of E+ and E~ as

1 1
u=—(eE2+uH,?) = —(Et4E?), (1.5)
8T 167

where use has been made of relations (1.3c) and (1.3d).
Thus, E*? and E? contribute additively to the energy
density of the field. We can express the magnitude .S
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of the Poynting vector as

c 4
S= —FE,H,= —(E*—E).

T TN

(1.6)

Here S is expressed as the net difference between the
energy flux traveling to the right and to the left. Con-
sider next the propagation of a plane wave through a
medium without polarization or conductivity, which
requires setting the right-hand sides of Eqs. (1.4) equal
to zero. If we assume the wave is propagated to the
right, E+ and E~ satisfy

n dEt  OEt
-——+— =0, (1.7a)
¢ dt 9z

E—=0. (1.7b)

From (1.7b) €/2E,=uY?H, and from (1.7a) E,
= f(t—nz/c), where E,(0,f)=f(t). Let us consider
finally the case of a medium without polarization but
with a conductivity. Equations (1.4) become

ndE+ QET 2mo [\ /2

_— =—~<—> (Et+E-), (1.8a)
¢ 0t 9z ¢ \e

n 0E- O0E- 2o N\ /2

- =——M<—> (Et+E-). (1.8b)
c Ot 0z c \e

Even if we consider a wave proceeding to the right, it is
no longer possible to set £-=0, since £~ and E* are
coupled. Let us take then E+ and E~ in the form

Et= g«!—(z’t)ei(wt—kz) ,

E~—= & (z,t)ei@t=k2) |

(1.9a)
(1.9b)

where k=nw/c and &+ and &~ vary slowly compared
to the exponentials. Substituting (1.9b) into (1.8b), one
obtains

798 96~
—— —— 42k =—A(6+ 8, (1.10)
¢ Ot 9z
where
A= (2ma/c)(u/e)'/2. (1.11)

Since &~ is slowly varying, one can neglect the deriva-
tives on the left-hand side of (1.10) and write

&=~ — A8/ (A+2ik) =~iNE/2k, (1.12)
if Z>>A. Substituting (1.12) into (1.8a), we obtain

98t 7A?
+—=— (A—{- ———>8+, (1.13)
c 9Ot 9z 2k

7 96+

with a solution

&*+= f(t—nz/c) exp[ —(A+1iA%/2k)z]. (1.14)

Expression (1.14) exhibits an exponential falloff in field
amplitude with distance and a shift in wave number
Ak=A?/2k. This shift in wave number, of course,
agrees with what could be derived from the dispersion
relation for Egs. (1.1) with P=0,

%2/ c*— k24 4drowi/c?>=0, (1.15)

in the limit Z>>A.
We turn our attention next to equations satisfied by
the polarization P. For a two-level system, P is given by

P=Nj(p12+pa1),

where IV is the number of active atoms per unit volume,
i is the mean component of the atomic dipole matrix
element projected along the direction of the polariza-
tion of the field, and p1s and py; are the off-diagonal ele-
ments of a two-level density matrix which satisfy

(1.17a)

(1.16)

I
p21=p12°,

apm . l

? F(—iwt-T Vpra=— (z)ﬁ(ﬁn—pzz)Ex. (1.17b)
i)
:9;(!’22—911) =T1 [ (p22" —p11°) — (p22~—p11) ]

+<2£>,1<,,12_p21)51. (1.17¢)

In Egs. (1.17), T» and T, are the longitudinal and
transverse relaxation times, w is the circular transition
frequency, pss and py; are the probabilities of occupying
the upper and lower states, and N (pss®—p11%) =n?0 is the
steady-state population difference which would prevail
in the absence of laser radiation. If we introduce a com-
plex polarization P.= Njip;; and a population difference
variable 7= N(p22—p11), Egs. (1.4) and (1.17) become

n dET  JLE*
¢ Ot 9z
4’71' 1/2
= [(—iw+Ts )P+ (iw+T5 )P X
c
2ma fu\ /2
——‘—<—> (Et+E7), (1.18a)
» ¢ \e
noE~ OE~
¢ dt 0z
4qryll2

[(—iwtT5)Pot (it T )P *]

c

2o fu\ M2
——~—(—> (Et+E7), (1.18b)

c €
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aP, N\ n(Et+E-)

—— F(—iw+Ts )P, = <_>ﬂ2_____,,_’ (1.18¢)
at h 2¢l/2

on 27 141

— =T (n"—n)+ —(P,—P*)- (1.18d)
ot h 2el/2

The elimination of the derivatives of P on the right-
hand side of Egs. (1.4) is made possible by the fact that
the right-hand side of Eq. (1.18c) is pure imaginary.

Equations (1.18) contain no approximations and are
in a form convenient for numerical integration. In
general, both £+ and £~ must be retained even if it is
known from symmetry considerations that wave motion
proceeds in only one direction. The presence of w in
Eq. (1.18c¢), however, requires that the detailed optical-
wave motion be followed. This is both impractical and,
as it turns out, unnecessary in the cases of interest to
us, although Egs. (1.18) might be useful in studying the
amplification of subpicosecond pulses. We must there-
fore look for ways of separating optical carrier waves
from E* and £-, which we shall do in Sec. III.

It will be convenient to renormalize the variables in

Egs. (1.18). We make the replacement
EE—> (¢/16mnheo) /2E- (1.19)

by multiplying Egs. (1.18a)-(1.18c) through by
(¢/16mnhw)'? and defining P’ by

P'=i(4nrw/c)(uc/16mwnhw) 2P, . (1.20)

We also drop the conductivity terms in Eqs. (1.18),
since no further use will be made of them. Equations
(1.18) become

ndE+  QE*

PP —(1+i8)P'+c.c., (1.21a)
c z

ndE~ JE~

P —(1+4i8)P'+c.c, (1.21b)
4 Z

aP’

?‘ +(——1w—{— Tz'_l)Pl = —%T2_10'07Z(E++Eﬁ) , (121C)
¢

n
— =T (n—n)+4(P'+P*)(Et+E), (1.21d)
ot
where we have Introduced
0= (wT2)! (1.22)

and the cross section at line center for stimulated
emission or absorption,

o= (Ara2wT s/ tic)(u/€) /2.

II. DISPERSIVE EFFECTS

(1.23)

Before going on to a detailed treatment of Egs. (1.21),
we shall isolate and discuss a pair of dispersive effects

JR. 1

so that they do not need to be considered later.*® For
simplicity, let us consider a single wave moving to the
right. Again we take

b= &1 (g, et k2 4-c.c.,

=& (3,t)e’ @t *)4-c.c. @1

If we ignore the space and time dependence of #, &*,
and &, we can solve Eq. (1.21¢) in a rate-equation ap-
proximation, which should be accurate enough for our
purposes here:

P'= —Jom(Ereii k4 Eeitw k) (2.2)

Substituting this result into Egs. (1.21a) and (1.21b),
we have

nd8&t 98T
e =loep(14+i0) (8 87), (2.3)
c Ot dz

708 98~

—— — —+4 2tk =Lom(1+i6)(EY+E7). (2.3b)

¢ 0t 0z

If in Eq. (2.3b) we neglect the total derivative and noy
in comparison with 26—, we have

&= —(i/th)noo(1+i5)E*. (2.4)

Since in general #oy<&Kk, |&~| will thus be small com-
pared with | §*|. Substituting this result into Eq. (2.3a),

nd&T  9&F i
+— =%gon(1—|—i5)<1— ——mo(1+i6)>5+
c at 0z 4k

=Fom[14i(6—noo/4k)]E*. (2.5)

The resulting gain is complex, with the imaginary part
of the gain leading to a change in wave number,

Akzéaon[(sz)"‘—nao/llkj, (26)
or, equivalently, a change in refractive index
A= (coon/2w)[ (wTs) 1 —nao/4k]. 2.7)

For ruby, the maximum possible value of %o, is ~0.4,
Ts at room temperature is ~ 1072 sec,* and w=2.7
X 10% rad/sec. Thus, the first term in the brackets in
Egs. (2.6) and (2.7) dominates, and we have

Ak=~10"*cm™,
Aw=10° rad/sec,
Ap=107°.

Granted that variations of # could produce phase
modulations, it is evident from the preceding numbers
that such effects would be entirely negligible in the
solid-state laser materials of interest. The value of

43 For further discussion of dispersive effects in pulse amplifica-
tion, the reader is referred to Ref. 31.

4D, E. McCumber and M. D. Sturge, J. Appl. Phys. 34, 1682
(1963).
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(wT'2)7' is not known for the dyes used as switches. If it
were as large as 1.0, then Aw could be of the order of
10° rad/sec. Thus, every time that a pulse bleaches
through a dye its circular frequency would be swept by
this amount. But clearly an enormous number of
bleaching passes would be required to produce the
chirping effects which have been observed.*® In the light
of the preceding discussion, we can treat E+ and E-to a
very good approximation as waves moving, respectively,
to the right and to the left, and we can set §=0 in
Egs. (1.21a) and (1.21b).

III. DERIVATION OF TW EQUATIONS BY
USE OF FOURIER SERIES

We now seek to express solutions to Egs. (1.21) in
the form

Et(z,t)= &*(z,0)et @tk ) +c.c., (3.1a)
E~(z,0)= 8 (3,f)e’ @tk cc., (3.1b)
P'(z,0)=p(z1)e™", (3.1¢c)

where &*(z,1), §(z,t), vary slowly in comparison with
the exponentials.

If we substitute expressions (3.1) into Egs. (1.21a)
and (1.21b), setting =0, we must have

n o6+ 98t )

“ = —(pe), (3.22)
¢ ot 0z

nd& 98

- — —— = —{pe =) (3.2b)
¢ 0l 0z

The quantities which appear on the right-hand sides of
Eqgs. (3.2) may undergo rapid spatial variations. It is
therefore only the spatial averages of these quantities
taken over a few wavelengths, indicated by brackets,
which contribute to the slowly varying functions &+
and &~. If we substitute expressions (3.1) into (1.21b)
and (1.21c) and make a rotating wave approximation,
the result is

op
— 4T p=—3Ts lon(Ere e+ Eei*?) (3.3a)
ol
on
— =T (n"—n)
ot
+4(p&HeiketpE*eikitc.c). (3.3b)

Unfortunately, there is no simple way of handling
the exponentials which appear in Egs. (3.3) in time-
dependent problems. The physical reason why they need
to be considered is that the presence of oppositely
directed waves leads to a quasistanding-wave pattern
and a variation in the field intensity over a half-wave-
length distance. This spatial behavior of the field and
intensity can in turn cause important variations in the

45 E. B. Treacy, Phys. Letters 284, 34 (1968).

population difference and polarization over similar
distances.*®

One method of treating the exponentials in Eqgs. (3.3)
is to make use of the Fourier series expansions for p
and 7,

bl meib 3 pre-itrbeteits 3 peitnts (3.4a)
=0 =0
n(z,t) =i+ > (npe2rka4c.c.). (3.4b)
p=1

If expressions (3.4) are substituted into Egs. (3.2) and
(3.3) and the orthogonality of the terms of the Fourier
series is made use of, the following coupled equations for
&+, &, ppt, pp~, My, and 7 result:

n a6t 98t
[ _ ..~—_-——p0+, (35&)
¢ ot 0z
798 98
K . (3.5b)
¢ ot 0z
dp,t
a +T2‘1Pn = —%‘TZ_IG’O(npg++”p+lg—>
+S*8,0, (3.5¢)
dpp~
Py +T2MIP17A:—%T2—10’0(%p*8‘+np+l*g+)
+S576,0, (3.5d)
0Ny
— T, =4y 18, 6
at
Fpp1*E 0, *E7), (3.5¢)
07
’? F+ I (n—n") =4(8 *p 4+ E*pst+c.c.), (3.5f)
¢

p=1,2,....

Phenomenological source terms have been added to
Egs. (3.5¢) and (3.5d) for p=0. These source terms
represent the effect of spontaneous emission, and will
be commented upon in Sec. V. It is evident from the
coupling of Egs. (3.5) that short-range spatial varia-
tions in #(3,f) and p(z,f) can influence the slowly varying
functions &+ and &~

Equations (3.5) contain a complete description of a
homogeneously broadened laser. It is not known in
general how many terms are needed in the summations
(3.4) to achieve satisfactory accuracy. Obviously,
terms through p=1 need to be retained if the short-
range spatial variation of the atomic variables is to be
described at all. What is required beyond this should
depend on the case in question. This much can be said.
The number of terms needed is not necessarily a func-

46 C. L. Tang, H. Statz, and G. de Mars, J. Appl. Phys. 34,
2289 (1963).
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tion of the degree of nonlinearity of the absorption or
amplification processes, but should be influenced more
by the relative strength of the two crossing beams and
the importance of pumping and relaxation processes in
restoring depleted population differences. It should be
further emphasized that the higher-order details of this
‘“spatial hole burning” are important only insofar as
they influence through coupling those lower-order
components which directly affect the field. It may be
helpful to draw an analogy between the present problem
and that of solving the Boltzmann equation for one-
dimensional neutron or photon transport.#” In the latter
cases it is customary to express the specific intensity as a
polynomial expansion in the cosine of the angle which
specifies the particle direction. The lowest-order ex-
pansion is linear in the angular variable and leads to
diffusion theory. While such a description does not allow
for much angular definition in the specific intensity,
experience has always been that the resulting calcula-
tions of particle densities are far better than the detail
of angular description would seem to warrant. The
analog of diffusion theory in the case of Egs. (3.5) in-
volves a neglect of terms past p=1. It would be hoped
that a p=1 expansion would similarly allow reasonable
accuracy in the determination of the fields and spatially
averaged population differences. In any case, in the
calculations which are described in Sec. VII the value of
|n1] /7, which may be some indication of the importance
of higher-order expansion terms, generally stays below
0.1 and only very briefly gets as high as 0.5 in the
description of saturable absorption.

IV. DERIVATION OF TW EQUATIONS
BY SAMPLING

There is an additional way of reducing Egs. (3.2)
and (3.3) to a finite number of equations capable of
numerical solution. One can write Egs. (3.3a) and (3.3b)
for discrete values of z, sampled over a half-wavelength
distance, and then express the spatial averages which
appear in Egs. (3.2) as discrete sums, determined by a
numerical integration formula. Let us write

pette=pt, (4.1a)

pe he=p—, (4.1b)

From Eq. (3.3a) we obtain the following equations

for pt and p—:

dpt

— Ty lpt=—1Ty lom(E++E¢2*=),  (4.2a)
ot

dp~
— + T = —5T loqn(§+Ere 2=, (4.2b)
ot

47S. Chandrasekhar, Radiative Transfer (Clarendon Press,
Oxford, 1950); B. Davison, Neutron Transport Theory (Clarendon
Press, Oxford, 1957).
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and, in terms of the variables (4.1), Eq. (3.3b) becomes

on
3— =T (n'—n)+4(pt8*+p~§*+c.c.).
t

4.3)

If we divide the distance between some point z
and z+3\ into M equal intervals, where for convenience
z is taken to be an integral number of wavelengths,
then at the discrete points which separate these intervals
Eqgs. (4.2) and (4.3) become

dpp"

a” T oyt = —3T5 lognp(8++ &2/ | (4.4a)
I3

9pp~ )

; Tty = — 3T Yoo p(§—+EFe2rivI M) | (4.4b)
{

My

— =T ) A5 6 6 ), (4do)
I

p=1,2,..., M,

where #n,(z,0)=n(z+pN/2M,1). If in the averages
appearing in Egs. (3.2) we treat each value of p as
having equal weight, i.e., the averages are evaluated
according to a trapezoidal numerical integration rule,
then Eqgs. (3.2) can be written as

nd&+ 98t 1
b= — T, (44d)
¢ ot 0z p=1
708 98 1 o
e (4.4¢)
¢ Ot 9z M p=t

Equations (4.4), which constitute the discrete sam-
pling TW equations, are no more formidable than the
Fourier series TW equations derived in Sec. ITI, and in
some ways are actually simpler to treat. We shall not
deal further with Egs. (4.4) in this paper. We have only
included them here to indicate a possible alternative to
the Fourier series TW method.

Before leaving the subject, however, we shall venture
a comment on the relative accuracy of Egs. (4.4) and
(3.5) for a given total number of equations used in
either system. A reasonable estimate would be that if
the maximum value of p used in Eqgs. (3.5) were pmax,
then comparable accuracy in using Egs. (4.4) would
require a total of

M=2pmaxt1

sampling points, based on the simple fact that the
same number of variables (or amount of information)
characterizes the medium in both cases.

V. TREATMENT OF SPONTANEOUS EMISSION

The phenomenological source terms S* and S~
which appear in Egs. (3.5a) and (3.5b) are meant to
create a fluctuating contribution to the dipole moment
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which is independent of &+ and &-. This fluctuating
contribution to the dipole moment in turn acts as a
spontaneous emission source to Egs. (3.5a) and (3.5b).
The latter should be Gaussian with a Lorentz spectrum
and a frequency width equal to the fluorescence line-
width.*® The following forms for S* and S~ meet the
above requirements:

St =4, 3 explidwio(—tw).  (5.1)
m/'=0

It will be convenient to choose the times ¢,,=mAl and
the space points z;= jAz to correspond to the points in
a two-dimensional space-time grid to be used in the
numerical solution of Egs. (3.5) (see Fig. 1).

In order to determine the normalization constant A,
let us apply Egs. (3.5) to the case of an infinite homo-
geneous medium near thermodynamic equilibrium. The
solution of Eq. (3.5¢c) for p=0 and S* as given in
Eq. (5.1) is

pot=—3ng 8t
+ A3 w(E—tw) explidm — T (t—tm)],

where spatial variations have been neglected. The first
term on the right-hand side of Eq. (5.2) comes from a
rate-equation approximation, which is valid near
equilibrium; the second term is exact. Also, the phase
variable in the second term has been abbreviated to
¢w. The function %(¢) represents a unit step function
which differs from 0 for positive arguments. After sub-
stitution of expression (5.2) into Eq. (3.52) and the
neglect of the spatial derivative, (3.5a) becomes

d&+ c c
— + —(NV1—No)oo8t= -4 X o u(t—tm)
dt 29 U]

(5.2)

Xexplipm — T Wt—tw)]. (5.3)

The population difference #=N,—N; has been written
explicitly to emphasize the connection between the
equation which arises from (5.3) and the usual Einstein
equation for radiative equilibrium. Equation (5.3) has
the form of the Langevin equation

aé*

— +86=F(1), (5.4)
dat

with 8= (c/279)(V1—N2)oo. The solution to Eq. (5.4) is

é’+(t)=é’+(0)e—ﬁ‘+/ e PNl . (5.5)
0

An equation for |&*|% can be derived by multiplying
Eq. (5.4) by &* and adding the complex conjugate

8 Numerous authors have treated laser noise analytically or
semianalytically using the Langevin method. For this purpose it
is usually unnecessary to specify the specific noise model as is
done here. See, for example, H. Haken, Z. Physik 190, 327 (1966).

t(m)
(jym+1)

Az =cOt/n

—(+1,m

7

A C A

z(j)
G- _'.m)—\ \—(j', m)

F16. 1. Finite-difference grid for numerical solution of Egs. (6.1).
Arrows indicate integration paths used in reducing differential
equations to finite difference equations. Paths AB are used for
Eqgs. (6.1a) and (6.1b) and path CB for the remaining equations.
Each grid point in the amplifying region is supplied with a
§-function source, which creates a fluctuating contribution to the
dipole moment.

equation. The result is
d [ &+ | 2

+28| 8+|2=E*F(t)+c.c. 5.6

To derive the Einstein equation one takes an ensemble
average over Eq. (5.6), obtaining

d
E(l5+|2>+26<(5+|2>=(5+*F(t)>+C-C-, (5.7)

where use has been made of the commutability of the
derivative and ensemble averaging operations. To cal-
culate the average (§T*F(f)), we use expression (5.5) for
&*(4) in the limit of large ¢, obtaining
(8+*F(t)>=f e B(F*(t—s)F (1)) ds. (5.8)
0
The correlation function (F*({—s)F(f)) is readily
evaluated for the function appearing on the right-hand
side of (5.3). For f and s taken at the sampling times i,

the correlation function is independent of time and is
given by

<F*<t-s>F(t>>=[(§)As]2

Xexp(—T571s) 3 exp(—2Te 'nAl)
n=0

[/ exp(=T57)
B 1—exp(—2T57'Af)

(5.9)

Substitution of expression (5.9) into Eq. (5.8) allows us
to express Eq. (5.7) in the form

d c

—([ 87 [2)+ —0o(N1—N2){| §+]%)

dt 7

) (/AT
 [—exp(—2751A0 (84T Y)
2(c/n)*T2A
- [1—exp(—2T51A1)] ’

(5.10)
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where the approximate expression holds if K727,
which is ordinarily the case.

Equation (5.10) thus has the form of the Einstein
equation, where the right-hand side can be expressed as

2(c/n)*T2 A/ [1—exp(—2T5'A) J=cNsf/7en.  (5.11)

Here, 7 is the spontaneous emission lifetime and fis the
fraction of the total solid angle subtended by &*.
Solving for 4,2 gives

Al2=[1—exp(—2T'A) N2 fn/2cTo7s. (5.12)

Equations (5.1) and (5.12) completely specify the
spontaneous emission model.4
The sampling interval At is determined by the re-
quirement that sampling times should be frequent
enough to provide an accurate description of the cor-
relation function (5.9). Thus A/ should be somewhat
smaller than 7. We can also arrive at this criterion
with the help of sampling theory. With a sampling
interval Af we can expect to reproduce a spectrum of
width30
Av=1/2At. (5.13)

For the spectrum of (5.9), which is Lorentz with full
width Av= (7T3)7, (5.13) becomes

At=1xTs. (5.14)

To accurately define the spectrum of (5.9) we therefore
need a value of Af somewhat smaller than the value in
(5.14). Furthermore, the accurate reduction of the
differential equations (3.5¢) and (3.5d) to difference
equations requires the fulfillment of the same criterion
on At because of the presence of the relaxation time 7%
in the former equations. The calculations to be de-
scribed in Sec. VII have been carried out for values
At=3%Tyand At=%T,.

VI. FINITE DIFFERENCE APPROXIMATIONS TO
TW EQUATIONS DERIVED FROM
FOURIER SERIES

The numerical solution of a set of ordinary differen-
tial equations with given initial conditions can be ac-
complished by a straightforward application of some
scheme of wide applicability such as the Runge-Kutta
method. But the reduction of a system of partial dif-
ferential equations to finite difference form suitable for

49 A Fourier series representation of spontaneous emission has
also been tried in Ref. 40. There are, however, several defects to
this method. First of all, it is time consuming if one wishes to
reproduce a wide spectrum; second, it introduces a discrete spec-
trum where a continuous spectrum really applies. One is then
hard put to decide whether the effects observed are influenced by
the assumed mode structure of the noise source. It is preferable
to use a noise source with a continuous spectrum and let the laser
determine its own mode structure.

% Strictly speaking, to reconstruct the entire function from the
sampled data one needs to employ an interpolation formula
f)=2"u fmg(t—mAL) where g(¢) is a sampling function. See, for
example, L. Brillouin, Science and Information Theory (Academic
Press Inc., New York, 1956), p. 93. In deriving difference equations
we have employed only linear interpolations.
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computation must be tailored to the idiosyncrasies of
the system at hand. Whereas a Runge-Kutta scheme
can be counted on to give fourth-order accuracy, special
pains are usually required to achieve second-order ac-
curacy in the solution of partial differential equations.
Whenever many integration cycles are required, as in
the present application, where as many as 90 000 cycles
may be required, it is essential to employ a second-order
scheme, both to preserve accuracy® and to minimize
computing time.

For convenience, we repeat here the complete set of
equations obtained from (3.5) in the case of pmax=1:

n 08+ a8+
-—+— =—pdt, (6.1a)
¢ Ot dz
nd& 98
_— =——-p0—, (61b)
¢ ot 9z
6p0+
+T2_1po+= —%T2_10'0(ﬁ8++n18_)+s+, (61C)
at
dpo~
+To e = ——%Tflao(ﬁé’——i—nl*é’ﬂ—i—S—, (61d)
at
aP1+
+T2—1p1+= —*%Tz_lo'onug'*', (616)
at
dp1~
— + T o =—3Ts lon*6, (6.1f)
al

o7
— T (7 —n) =4(E *p+E*pstH-c.c.), (6.1g)
al

nq
— + Ty =4(8 *pet+EFpr

at
+Ep*+Epi ™).

A useful strategy to follow in deriving both stable and
accurate difference schemes from systems of equations
such as (6.1) is to express the differentiated variable
appearing on the left-hand side of a given equation in
terms of an integral over the right-hand side. The in-
tegral can then be approximated numerically. Further-
more, integrals over the singular source terms in Eqs.
(6.1c) and (6.1d) can be handled exactly.

In Egs. (6.1), the following two types of equations
are represented:

(6.1h)

dx
— T %=,
dt

51 “Nth-order accuracy” implics that the truncation crror in
the dependent variables is of order N1 in the increments of
one or more independent variables, while the truncation error in
first derivatives is Nth order in the same increments.

%2 The calculatons to be described were performed on a CDC
6600 computer which carries the equivalent of 14 significant
decimal digits.

(6.2a)
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ndy 9y
_..__ﬂ:__:

g. (6.2b)
¢ ot 03

If Eq. (6.2a) is integrated from f,,=mAl to t,1 the
result can be expressed as

tm+1
7 = e bUT / ITHY A, (6.3)
tm

where «;7=x(jAz,mAL). If f(¢') is assumed to vary
linearly in time between ¢, and {41, the integral can be
evaluated explicitly with the result

£= Cayk A7 Bf14-0((8)9),
where f;m= f(jAz,mAt) and

C=eburT,

A=T[(T/A)(1—e2HT) —e 2T ],

B=T[1—(T/At)(1—e2¥T)7,
Equation (6.4) is the basis for the difference equations
which are used to approximate Eqgs. (6.1c)-(6.1h). In
addition to the fact that the difference scheme (6.4) is
of second order, a further advantage is that as 7/Af is
allowed to approach 0, x;7*! approaches 7 f;*1. This
means that in the limit of large time increments, the
numerical solutions to Egs. (6.1c)-(6.1f) can approach
their “rate-equation” form.

The total derivative which appears on the left-hand

side of Eq. (6.2b) can be expressed in terms of a direc-

tional derivative in the z, ¢ plane. The direction is that
of the characteristic which has direction cosines

1
e
[(n/c)2-H1T212
Lo e
C /o1

In terms of this directional derivative, Eq. (6.2b)
becomes

(6.4)

6.5)

(6.6)

dy
ds

where
D=[(n/c)*+1]"2. (6.8)

Assuming that cAt/y= Az and integrating Eq. (6.6)
from A=(zjv1,lm) to B=(z,lmy1) (see Fig. 1), one
obtains

B

yj"+1——yﬂ:1"=D—1/ gds. (69)

A

If now it is assumed that g varies linearly along the
characteristic between 4 and B, Eq. (6.9) becomes

Yt =yt =345(g M g7+ 0((A2)%) . (6.10)

Equation (6.10) forms the basis for the finite difference
equations which replace Egs. (6.1a) and (6.1Db).

When Egs. (6.1) have been differenced according to
the schemes represented in Egs. (6.4) and (6.10), the
result is eight implicit difference equations, i.e., which
contain the updated variables on both sides of the equal
signs. It is obviously far simpler to work with complex
variables than it is to introduce real amplitudes and
phases, which would require further complicated
algebraic reduction. In the former case one can simply
make use of complex arithmetic operations which are
available in most computer compilers. To illustrate the
method of solution, we write in detail the difference
equations which represent Egs. (6.1a)-(6.1h). Using
Egs. (6.4) and (6.10), one obtains

Eitmit=§;_tm—3Az(poi ™4 po;r™™), (6.11a)
8= 81 —3A%(po; " o) (6.11b)
POj+m+1 = C2p0j+m — % TZ—IO.OA 2(17ijgj+m+ nljmgj—-m)
— % Tz—la. OB 2 (*ﬁjm—f-l gj+m+ 1+*n l],m-l-l gj—m+1)
+ 4, exp(i¢mia,iT), (6.11c)
poi "= Copoj =515 o0 d o(7" 6+ m1,7*E™)
— % TQ—IO'OBg (*ﬁjm+1gj-m+l+*n1jm+l*gj+m+ 1)

+ 4, exp(ipmy1,7), (6.11d)
Pt = Copy =5 Ty oo (A amy ™65+
+B2n1jm+1é’j+m+l) 5 (6116)
P17 ™= Copr ™ —5 T 5 Yoo (A amr™ ™
+an1jm+l*é’j—m+1) , (611f)
ﬁjm+1= Clﬁjm+A1[T1—1n0
+4(8;7*po "+ 8 *"pojtm-c.c.)
+ Bl[Tl—ln0+4(gj~*m+lpoj—m+l
+ i HEmHipymtidcc)], (6.11g)

11 = Cog, - AA (87 ¥m+ 1 pg et § ¥t et
+ gj+m+lp0j—*m+1+ gj_'m+1p1j—*m+1)
+4B1(8;*mpot ™+ & po,™

+ &t oo+ 8 mpr ). (6.11h)

In writing Egs. (6.11c) and (6.11d) we have chosen to
replace ;71 and n,;m*! by their linearly extrapolated
values from the two previous integration cycle times.
This is permissible because % and #; vary much more
slowly than &*, &, pst, and py~. The prefixed * in
Egs. (6.11c) and (6.11d) signifies forward extrapolation,
and the constants Cy, 41, By, and Cq, 45, B, are obtained
from the appropriate one of Egs. (6.5) by substitution
of 7y and T, for T". Spontaneous emission contributes
complex constants with constant amplitudes but ran-
dom phases on the right-hand side of Egs. (6.11c) and
(6.11d). Expressions (6.11c) and (6.11d) for potm+!
and po;~t%, after substitution into Egs. (6.11a) and
(6.11b), lead to two equations of the form

a8t 3,8, mH=T, (6.122)
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Fi1c. 2. Laser cavity geometry used in calculations.

aggﬁmﬂ—i—ﬁzé’j_"‘“: I ’ (612]:))

which are solved simultaneously for &1 and &1,
The next steps in order are the simultaneous deter-
minations of 77! and #;;*! from Egs. (6.11g) and
(6.11h). In order to do this, poit™*, po;™FL, py 7™,
o171 are first eliminated from the latter difference
equations by means of expressions (6.11¢)-(6.11f). In
the resulting forms of (6.11g) and (6.11h), all stars are
dropped from 7;7*! and 7,;7*%. The cycle is completed
by solving (6.11c), (6.11d), (6.11g), and (6.11h) without
stars for pg; Tt po 7+ pyt™ 1 and po;~™*!. Separate
regions with different parameters must, of course, be
established for the absorbing and amplifying media in
the cavity. In those parts of the laser cavity where air
gaps exist, the material variables are disregarded and
the “streaming” of radiation is described exactly by
means of Egs. (6.11a) and (6.11b) without the paren-
thesis terms. Finally, the boundary conditions at the
cavity ends are taken to be the reflection conditions

go+m+1= __rlgo——rn-#l s

— 1— 1
é’J m+1— 725J+m+ ,

(6.13)

where mirrors having amplitude reflection coefficients
71 and 7, are assumed to be at positions =0 and
z=JAz, J being the number of zones in the cavity. The
cycle may be repeated with the improved updated
values of 7;7! and n;*! in Egs. (6.11c) and (6.11d),
but this step usually proves unnecessary.

VII. NUMERICAL EXAMPLES

The geometry which is treated is that of a typical
Fabry-Perot cavity shown in Fig. 2. For the purposes of
numerical integration, the optical path between the two
mirrors is subdivided into zones which are traversed by
light in the same time A?, regardless of medium. The
length of a given zone must then be Az=cAt/y where 3
is the medium refractive index. In all cases considered,
the respective intensity-reflection coefficients of the two
mirrors are 100 and 80%, the optical round-trip time
between mirrors is 3.68 nsec, and the amplifying section
is assumed to be a 7.5-cm ruby with ¢p=2.5X10"2 cm,
T1=3X10"% sec, and N=1.62X10°c.c. In addition,
the optical travel times indicated in Fig. 2 are 71=0.91
nsec, 72=0.44 nsec, 73=0.49 nsec.
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For ruby at room temperature, 7=~1.0 psec. The
appropriate T for typical dyes is not known, but it
should be at least this small. Unfortunately, it turns
out to be impractical to solve the system (6.1) numeric-
ally for cavities of experimental dimensions if values of
T of the above magnitude are used. In the calculations
which are described here, 77 is restricted to the range
10-20 psec. Thus, we do not seek quantitative agree-
ment between calculation and experiment in these
calculations, but we can expect to gain a qualitative
but detailed insight into certain multimode effects,
which has not been hitherto attainable by other
methods.

A. Operation of Q-Switched Laser with
Absorber in Cavity

We turn our attention first to the case in which the
laser is switched by means of a saturable absorber in
the cavity. We assume that the absorbing medium is
directly adjacent to the 1009, mirror and has a 1.0 cm
thickness. We also assume that for the absorber oo= 8.0
X107 cm?, corresponding to cryptocynanine, and
N=1.0X10% cm3. The resulting single-pass low-power
transmission is 559%,. For convenience, we take the
index of refraction to be 1.76 in both the absorber and
the amplifying media. For the absorber we take 7'y = 80
psec,5 and for both the absorber and the amplifier we
take T9=20 psec. For the dimensions of the cavity
under consideration there are thus a total of 60 modes
within the full width of the Lorentz line, compared
to the 1200 modes which would be present for the ex-
perimental fluorescence width. The cavity is divided
into 376 spatial zones defined by 377 grid points. The
amplifying medium contains 90 zones and the absorbing
medium 12 zones. The time increment A¢ is taken to be
4,9 psec,® and for the purpose of determining the
spontaneous emission constant A4, it is assumed that
the laser beam angle is 1072 rad.

The evolution of a Q-switched mode-locked laser
pulse from noise over round-trip time periods is ex-
hibited in Figs. 3(a)-3(h), which have been plotted by
the computer. The growth in intensity is initiated by
setting in the amplifying medium #,(z)=0 and 7(2)
equal to its threshold value plus 3.8%, which happens
to be 33.6% of the active atom density. Obviously, the
experimental situation would differ somewhat in that
7i(z) would be brought to its threshold value and above
continuously and over a period of time which is long
compared to the time represented in our calculations.

5 Decay lifetimes as short as 6 psec have been reported for
Eastman dye 9860, used to switch Nd-glass lasers, by R. I.
Scarlet, J. F. Figueira, and H. Mahr, Appl. Phys. Letters 13, 71
(1968). This author is not aware of similar measurements applying
to dyes used with ruby. The value of 7'y selected here was chosen
simply to be several times as large as T's.

54 According to relation (5.13), we should have contributions
from 376 modes to the numerically generated spectrum, although
the contributions from the highest-order modes may not be
handled too accurately.
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However, computation time considerations dictate the
method of starting used here.

The pulse evolution can be divided into three stages.
In the initial stage [Figs. 3(a)-3(d)], the intensity is
low enough that both the amplification and absorption
processes can be considered to be linear. The intensity
pattern is that of amplified spontaneous emission and
obviously represents Gaussian random noise. Initially
the intensity output is aperiodic, but as the radiation is
amplified above noise background there are quasi-
periodic similarities between the emissions over different
round trips. Since the laser exhibits net amplification,

x10~

N
r=
T

“INTENSITY OUT
—T

i
L

24
TIME'— nsec

X1

3.0

INTENSITY OUT

TIME — nsec

the radiation undergoes spectral narrowing. This effect
is exhibited in the time domain as a smoothening and
broadening of pulses existing in the round-trip patterns.
In the second phase of pulse evolution [Figs.
3(d)-3(g)], the absorption is nonlinear, but the ampli-
fication is linear. This phase ends when the absorbing
transition is completely saturated. As the result of
nonlinear absorption, two effects take place. First, there
is a selective emphasis of certain of the pulses already
present. Since the processes involved are frequency-
dependent, the selection may not always be on the basis
of height alone. For ideal mode locking, the number of
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F16. 3. Evolution of a Q-switched mode-locked pulse train from spontaneous emission noise for absorber next to mirror. Each picture
represents output intensity over a single round-trip period of 3.68 nsec. Intensity is measured in units of 1.62< 10 photons/nsec cm? or
4.64 GW /cm?in these and all subsequent figures. (a)-(d) Low-power emission. Both amplification and absorption are linear. Slight excess
of gain leads to spectral narrowing which shows up in the time domain as a smoothing and broadening of pulse structure. (e)-(g) Inter-
mediate power. Nonlinear action of absorber broadens spectrum and selectively emphasizes one pulse. Amplification is linear, however,
and this tends to counteract spectral broadening by absorber. (h) High power. Pulse structure at maximum intensity. Background
pulses have been almost completely suppressed. However, pulse narrowing in time due to nonlinear gain is minimal.
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Frc. 3 (continued)

pulses per round trip should be narrowed down to one.
In the case under consideration here the elimination of
background pulses is almost complete, as is seen in
Fig. 3(h) which represents the pulse of maximum in-
tensity in the entire train. The second effect of nonlinear
absorption is spectral broadening which tends to
narrow the existing pulses in time. This effect, however,
is partly counteracted by the tendency of the linearly
amplifying region to narrow the spectrum.

The final phase of the pulse evolution occurs when
the intensity is sufficiently high for complete saturation
of the absorber transition to take place and for the
amplification to be nonlinear. It would be expected that
the nonlinear amplification would further broaden the
spectrum and narrow the temporal width of the pulse.
However, this does not happen, as can be seen by com-

paring Figs. 3(g) and 3(h). One would certainly expect
nonlinear pulse narrowing in time to take place after
the passage of radiation through a sufficiently long path
in an amplifying medium. When the path is folded back
and forth upon itself as it is within a laser cavity, how-
ever, the nonlinear pulse-shaping capability can be
very much reduced if the pump cannot restore the in-
version lost during each pass before the reflected pulse
reenters the amplifying medium. This is the situation
encountered with solid-state lasers.

The minimum pulse width which is exhibited by the
pulse in Fig. 3(h) is 145 psec. This is 2.4 times the
reciprocal of the fluorescent bandwidth A»—! which is
generally regarded as the lower bound to the duration of
mode-locked pulses and which also represents a lower
limit for the Q-switched mode-locked pulses which have
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Fi16. 4. Evolution of mode-locked pulse train from noise. Same conditions as in Fig. 3, except that spontaneous emission is determined
by different random phases. (a) Intermediate power. Output pattern at beginning of nonlinear action by absorber. (b) Fully evolved
pulse pattern at high power. Suppression of background pulses is incomplete. This and Fig. 3 suggest that a statistical element is involved

in the production of well-defined mode-locked pulses.

been observed experimentally.11—14.55.58 Tt has been
established theoretically that nonlinear amplification
can lead to pulses which are shorter than 7; when high
enough intensities are available to create a sufficiently
strong nonlinearity.?”:31:35 Conditions for such pulse
shortening are extremely difficult to achieve experi-
mentally and are apparently not realized in the genera-
tion of short pulses by solid-state laser oscillators.
Since the strength of the nonlinear interaction between
the radiation and the matter is determined by the
constant # rather than by ¢, the problem of Figs.
3(a)-3(h) was rerun with a value of oy twenty times
greater than the room-temperature value previously
assumed to determine whether the correct value of i
for ruby would lead to any differences. This case would
correspond to ruby at a temperature of 110°K. This
change produced no difference in the final pulse widths.
The only difference was that the peak intensity was
lower than in the previous case by a factor of 20.

In order to test the effect on the final pulse structure
of the initial noise pattern, the problem was rerun with
the room temperature oo and a different set of random
phases in the spontaneous emission sources. The in-
tensity pattern over one round trip is shown in Fig. 4(a)
at a power where the maximum absorber population
difference is —98%,. The pulse pattern over one round
trip close to peak power, displayed in Fig. 4(b), clearly
shows that the elimination of background pulses is
incomplete. These results agree with experimental
findings that there is a statistical factor in the produc-

( % S. L. Shapiro and M. A. Duguay, Phys. Letters 8A, 698
1969).
% G. Kachen, Appl. Phys. Letters 13, 229 (1968).

tion of well-defined mode-locked pulses.’” To determine
the effect of operating the laser near threshold on pulse
formation, this problem was rerun from time {=148.0
nsec with 7(z) in the amplifying medium lowered to
the threshold value. The main effect of operating near
the threshold is to lengthen the time during which
nonlinear absorption takes place. The result of this cal-
culation was that the background pulses in Fig. 4(b)
were completely eliminated, and the final pulse width
was reduced to 2Ay~1. This result is in agreement with
experimental findings that statistics are better for the
production of well-defined mode-locked pulses when the
laser is operated near threshold than when it is operated
well above.57

The effect of placing the center of the absorber at a
point which is located one-third the distance between
the two mirrors is shown in Figs. 5(a) and 5(b). The
final output pattern in Fig. 5(b) indicates the presence
of three pulses per round trip spaced so that two can
always cross at the absorber.’® This example clearly
indicates how a selective emphasis of random noise
beats through nonlinear absorption brings about mode
locking in passively switched lasers.%8:39

It has already been noted that an appreciable change
in pulse width does not take place during nonlinear
amplification. An experimental determination of the
time duration of mode-locked pulses from Nd-glass
lasers, on the other hand, has indicated that during
nonlinear amplification pulse durations increase with

57 G. Kachen (private communication).

88 Such patterns for intermediate positioning of the absorber
have been found experimentally by A. Schmackpfeffer and H.
Weber, Phys. Letters 24A, 190 (1967); R. Harrach and G.
Kachen, J. Appl. Phys. 39, 3482 (1968).
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F16. 5. Evolution of mode-locked pulse train from noise when absorber is placed one-third the distance between mirrors. OQutput is
shown over three round-trip periods. Pulse pattern is such that two pulses always cross simultaneously at absorber, thus enhancing non-
linear action. (a) Intermediate power. Shaping of noise pattern through nonlinear action of the filter. (b) High power. Pulse pattern has

evolved into three prominent pulses per round trip.

power.’2 A similar effect has not been reported for ruby.
It has also been reported that pulses from Nd-glass
lasers are frequency-swept or ‘‘chirped,”*® presumably
as the result of dispersion, either linear or nonlinear,?3.5
in one or both of the host media containing the absorb-
ing and amplifying atoms. The calculations under dis-
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Fi1c. 6. Intensity pattern for Q-switched laser switched by
mechanical or electro-optic means. Power is roughly three orders
of magnitude below peak power, and amplification is still linear.

39 R. A. Fisher, P. L. Kelley, and T. K. Gustafson, Appl.
Phys. Letters 14, 140 (1969).

cussion here show negligible frequency sweeps of the
order of 10° rad/sec/pulse.

B. Laser Q-Switched by Active Means

We turn our attention next to the operation of a
(Q-switched laser with no absorbing medium in the
cavity. The cavity and starting conditions are the same
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Fic. 7. Detailed shape of giant pulse. Fluctuations in intensity
are caused by spontaneous emission source rather than by co-
herent dipole effects. ’
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as in the previous case, with the following exceptions.
The initial value of 7(z) is taken to be 239, of the active
atom density and Ty has been lowered to 10 psec (120
modes in the spectrum at half-maximum). Also, Af
has been reduced to 3.27 psec and the optical path be-
tween mirrors has been divided into 564 zones. A de-
tailed history of the pulse-pattern evolution like that in
Figs. 3 will not be included here, since much of it will be
similar to the first phase of the mode-locked pulse
evolution. The sharp patterns which are present initially
are smoothed as the result of spectral narrowing by
amplification. There is, however, no pulse-selection
mechanism, and the pulses which are present, say, three
orders of magnitude below peak intensity (Fig. 6),
are present throughout nonlinear amplification. Non-
linear amplification, however, causes a slight distortion
in the round-trip pulse pattern. The complete giant
pulse envelope is shown in Fig. 7 and the pulse pattern
emitted over one round-trip time when maximum in-
tensity occurs is shown in Fig. 8.%0 The pulses in this
pattern are typically =107 in duration.

In order to test the laser output depicted in Figs. 7
and 8 for its similarity to Gaussian noise, the normalized
two-photon fluorescence pattern has been calculated
for the entire emission history. The integrated fluores-
cence intensity f(7) normalized to its value for +<<T
is given by16

f(1)=1+2G(r), (7.1a)
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F16. 8. Pulse structure detail over single round-trip period
at maximum power.

€ There is no chance that the fluctuating emission pattern is due
to a “‘ringing” of the electric field caused by changes in sign of the
population difference, such as is reported in Refs. 28 and 30,
because the population difference variable 7(z) approaches 0
monotonically.
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F16. 9. Normalized two-photon fluorescence intensity pattern,
assuming that plane-polarized beam is reflected from a mirror.
Slight aperiodicity of pattern is caused by giant pulse envelope.
No single point appears appropriate for a peak-to-background
intensity ratio determination. However, peak to background
averaged over the round-trip period has the value ~ 1.6, indicating
a lack of correlation between spectral components. Structure of
pattern reflects the detailed pulse structure and is not based on the
assumption of subcavities.
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F16. 10. Normalized two-photon fluorescence intensity pattern
for spontaneous emission noise, calculated numerically using the
second right-hand term of Eq. (5.2) in Egs. (7.1) with 73=20
psec, At=0.2T, and a time 7'=10000 sampling intervals. The
background intensity fluctuates about a mean value of 1.95, but
the background mean itself will fluctuate from record to record
about the value 2.0. This is due to fluctuations in the normaliza-~

tion constant,
e
/ 120) &t
L]

brought about by the finite record length.
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where 7 is the duration of the emission and

G(r) = / 10+010) / / 1) di. (7.1b)

Equations (7.1) apply to an experiment in which linearly
polarized light is reflected back on itself, and 7 measures
the delay experienced by light in traveling from some
point in the fluorescing fluid to the mirror and back
again. A plot of f(r) for Fig. 8 is displayed in Fig. 9.
The background, it will be noted, contains a well-
defined structure. For comparison, the reader’s atten-
tion is directed to Fig. 10 in which the fluorescence
pattern for pure spontaneous emission noise is dis-
played. Structure has also been observed experimentally
in the fluorescence patterns for actively switched
lasers.®1° This structure may be attributable to sub-
cavities in the laser systems observed, although this
explanation seems unlikely in view of the fact that in
Ref. 10 different structure is reported for different
firings of the same laser, pointing to the possibility that
the observed patterns simply reflect the variable pulse
structure present in laser emission itself. The back-
ground in Fig. 9 appears to fluctuate about a mean
value of 1.9. Thus the ratio of the peak-to-background
averaged over most of the round trip period is =~1.6. If
the laser field could be represented as a Fourier series
of randomly phased normal-mode oscillations, the peak-
to-background ratio would have the value 1.5, at least
if averaged over an ensemble of measurements. It is
difficult to attach any significance to the small differ-
ence between the peak-to-background ratios for Fig. 9
and that for the case of randomly phased modes. First
of all, the mean background is likely to fluctuate from
record to record due to fluctuations in the donominator
of Eq. (7.1b) (see Fig. 10). Secondly, a periodic repre-
sentation does not apply strictly to the nonstationary
emission history of a Q-switched laser. If the field were,
in fact, periodic, f(r) would be periodic with a period
equal to the round-trip period, but in Fig. 9 the height
of the maximum for 7 equal to the round-trip time is
slightly less than the 3.0 value at 7= 0. This represents
the effect of the giant pulse envelope. Measurements
for a Q-switched Nd:YAG laser (YAG=yttrium
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aluminum garnet) give a peak-to-background ratio of
1.44-0.1, where the background measurement is taken
at a point between the maximum at the mirror and the
first subsidiary maximum.® In Ref. 54, measurements
for a free-running laser showed a Gaussian-shaped
fluorescent yield for two overlapping, oncoming beams
with a peak value of 2.84+0.2 and a value of 2.04:0.2
far out in the wings. If one picks the first minimum in
Fig. 9, the peak-to-background ratio is 1.7, which lies
slightly out of the range of the above measurements.
However, it is also evident from Fig. 9 that no single
point can be selected a priori as most suitable for a
determination of the peak-to-background ratio. In view
of the peak-to-average-background ratio of 1.6, it is to be
concluded that the spectral components in Figs. 7 and 8
if not representative of stationary Gaussian noise are
at least highly uncorrelated.®? This result might be ex-
pected in view of the minimal role which pumping plays
in the operation of a Q-switched solid-state laser, since
it is pumping which brings about the stabilizing
characteristics of a self-sustained oscillator in a laser.®

VIII. CONCLUSION

In the past, laser-fluctuation phenomena have been
treated theoretically in terms of the statistical properties
of an entire ensemble of systems. In the present work,
we have demonstrated a method for generating an in-
dividual member of such an ensemble, which is what
one normally does in performing an experiment. This
method is particularly useful for studying the properties
of Q-switched laser radiation for which it is found that
the pulse structure at high power depends directly on
noise fluctuations at low power.
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