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Fra. 2. Instantaneous longitudinal Coulomb interaction is
shielded by electron gas polarization bubbles in the RPA. If the
dotted line is interpreted to represent the propagation of a trans-
verse photon, the diagram also represents the resulting vacuum
polarization which renormalizes the charge value.

solid-state point of view4:

jo(x)j~(x )
H=Hr+ dÃQS

2 Ix—x'I

III. LONGITUDINAL INTERACTION CHARGE
RENORMALIZATION

The usual approach to obtaining the shielding of the
longitudinal Coulomb interaction in materials is to
employ the random-phase approximation (RPA) to
sum the polarization bubble processes of Fig. 2 and
obtain the dielectric constant of the system. This RPA
calculation of the static dielectric constant will be made
here, but we will include full account of the negative-
energy sea of electrons. From a solid-state physics
perspective, the negative-energy sea can be viewed as
another band of electrons. From that point of view the
vacuum state is an insulator with band gap of 2m''.

The sum of the diagrams in Fig. 2 leads to the
expression for the static dielectric constant'.

+ Ar(x) j(x)d'x, (1)
with

e(q, o) = E1—(4~«'/q')Z(q) j, (3)

~vs(y)
Z(q) = 2 TrEA'(y+q)A (y)1

&~2~p —~;s.(y)

~*.(y) =~*(y+q) —~;(y),

where Hf is the Hamiltonian for free electrons and the
free transverse modes of the electromagnetic field. jo(x)
is the electric charge density, j(x) js the charge current,
and A, (x) is the transverse electromagnetic vector In (4) we have
potential. In second quantized form (1) reads

(4)

2 '(P) "(y) '(y)+E p "(y) (y)
'L, p X,p

1
+2 co' 2 —E""(y+q)1.EN)(y)3 EN"(y' —q) j,

e,p, p' q

XE"i(y')j,&"(y+q)a, (y)a"(y' —q)«(y')

(leos '"
+I E EN"(y+q)3 E~]-E~ (y)3, ~(q)

5 2q

XE~xi( —q)+~~(q) ja"(y+q)a (P). (2)

(We have set h=c=1.) Axt(q) creates a photon of wave
vector q, polarization X. Ax(q) destroys a photon of
wave vector q, polarization X. a;t(y) creates an electron
of wave vector y, Dirac state i (i= 1, 2, 3, 4). The four
states are positive or negative energy, spin up or down.

a;(y) destroys an electron of wave number y, Dirac
state i.

8, ,(*)l,= e" *EN, (y)j,
is the four-component free-Dirac-particle wave function.
The subscripts y and g are to be summed over in

equations when appearing twice. The Dirac wave
function satisfies the free-particle eigenvalue equation

E~ yc+Pmc'j-E4', .(*)3.= ~"(p)E&',u(*)jr,
where Enj» are the Dirac 4X4 velocity operator
matrices, [j9j» is the scalar operator matrix, R(q) is the
unit polarization vector of the photon, and

"(p)= (m'+P')"'.
4 p. A. M. Dirac, Principles of Qnanilm Mechanics (Oxford

University Press, London, 1958), 4th ed. , Chap. XII.

cv(p)+n y+pm

co(p) ny pm— —

summed over positive-
energy states

summed over negative-
energy states.

Evaluating the trace in (4) for (ij) representing
excitations from negative-energy states into positive-
energy states gives in the small q' limit

T E~+(y+q)A-(y) j
1 f 1 p2= —q'P (3)

o 2(p'+m')'l'E 3 p2+m')

Therefore, the dielectric constant is

lim e(q,o)
q2~0

2 eo' p'dp 3 1 p'1+-— (6)
3 ~ (p'+m')'l' 2 2p'+ma)

In the vacuum, the sum over p extends over all p s,nd
we obtain the mell-known quantum-electrodynamic

'P. Nozieres and D. Pines, Nuovo Cimento X9, 470 (1958).

with n;(y) being the occupation number of the electron
state (i,y).

"*«(y) =~'(y+q) -~s(y).

EA.;(y)j» is the Dirac free-particle projection operator;

EA'(y)3, .= LN'(y)U. E""(y)3,



QUANTUM —ELECTRODYNAMIC CORRECTIONS TO THE

charge renormalization'

eo
e2=-—

1+(2/3m) ep' ln(21'/m)
(7)

where a momentum cuto6 I' must be introduced to give
6niteness.

In the presence of a sea of positive-energy electrons
as shown in Fig 1. the virtual excitations in (5) for
lpl &pr are quenched because of the Pauh exclusion
principle:

~+-(I') =~+(I') —~-(I') =0, lI'I &pr

Therefore

lim p(q, 0)
q&~O

I

I

) allp p~
I

I all p p~

+ 1S~

Due to the coupling of photons to the electron
current, bare photons are no longer the elementary
excitations of our many-body system, even in the
vacuum. Instead, we seek a quasiparticle operator

FIG. 3. By conventional Feynman-diagram techniques, the
above processes give the corrections to the photon propagator
resulting from a Fermi sea of positive-energy electrons. The
electron momentum p is to be summed over all filled states of the
electron Fermi gas.

2
1+—ep

3'
p'dp t'3 1 p'

, (p'+m')'"k2 2 p'+m')

»(q) =-~.t(q)+».(-q)
+Z ~"p(I')~"(I'+q)~ (P), (»)

which gives a renormalized charge value in a metal of

e'(pr) =e ' 2
1+—ep'ln

3'
2F

e'(pr) =
1—("/3 )(p /m)'

(9)

Inserting the necessary h and c factors, (9) yields the
fractional change in e due to a Fermi sea of electrons
of density p..

be 1 ('e') (pr =4.2XI0 "p,
e 6~'Ehc) &me

(10)

where p is in e/(10 " cin'). High electron density
metals will therefore have a slightly larger value of e
than low electron density metals.

If the positive-energy —to—positive-energy virtual
electron excitations in Fig. 1 are added to the expression
(4) we get the static result

e(q, 0)= Le'(pr)/ep')(I+qrr'/q') ',
with the Fermi-Thomas shielding constant given by

q~T'= 4~-'P"(pr)/@')mph. (11)

IV. TRANSVERSE INTERACTION CHARGE
RENORMALIZATION

for a nonrelativistic electron gas (pr«mc). The ex-
pression (8) can be expressed solely in terms of finite
physical quantities:

L~(q),~"(q))=I,

l~l'+2 l~' (P) I'c', ,(I') =1
&.JtP

(15)

which creates the physical photon. Using the RPA
(also called the linearized equation of motion method)
we find P+(q) such that it obeys'

LH, P+(q)) = QP+(q) . (13)

The fact that virtual electron excitations are present in
the physical photon is a consequence of the vacuum or
background polarization cloud which accompanies a
physical photon.

The necessary commutators to solve (13) are obtained.
from the Hamiltonian (2). For this transverse problem
the longitudinal Coulomb interaction term in (2) can
be neglected. We will not illustrate all the straight-
forward steps of solving (13) here. But the following
results are obtained:

0(q) = Aqc;

that is, the physical photon has an unaltered energy in
the vacuum state. Also,

n" (y) =(4~ep'/2q) "4(q)

L~"(p+q)l, i~)„L~,(p)),x — ~. (14)q-"".(I')
The proper normalization of the physical photon

operator is

In (1) electrons are coupled to the transverse vector
potential, too. This coupling is also renormalized by
polarization of the background electrons. We show here
that this renormalization is identical to (7) and (9)
in the static, q=o limit.

Solving for 0, gives

2gepP

'=(&+ Z(g)
l

q r J
6 P. W. Anderson, Phys. Rev. 112' 19OO {&958).

(16)
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with

XTrLh. ;(p+q)n RA/(p)n R]. (17)

in the limit of small q', the evaluation of (16) and (17)
yields

p'gp 3 1 psn'= 1+—es'
3s (p'+m')'~' 2 2 p'+m')

which is identical to (6).

When two charged particles interact by exchange of
a virtual transverse photon, their interaction is di-
minished by the factor !n!', which is the reduced
probability that a physical photon contains a bare
photon.

Hence we conclude that both the longitudinal and
transverse renormalization of the electromagnetic
charge is given by the same expression. Equation (10)
therefore gives the adjustment of the value of e in a
metal environment.

If the above calculation were done by conventional
Feynman-diagram techniques in quantum electro-
dynamics, Fig. 3 represents the diagrams which would
yield the corrections to e calculated above in this paper.
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Ultrashort-Pulse Generation by Q-Switched Lasers*

J. A. FLKcK, JR.
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(Received 12 June 1969)

We have undertaken the complete temporal description of pulsed emission by a homogeneously broadened
laser, including the e6ects of spontaneous emission, the detailed geometry of the laser cavity, and the
variation of atomic polarization and level populations over wavelength distances. The model is based on
traveling-wave equations which are derived from Maxwell s equations and solved in conjunction with
boundary conditions imposed at the cavity mirrors. Thus, any direct assumptions concerning the nature
of the laser s longitudinal mode structure is avoided. Variations in polarization and population over wave-
length distances are treated by means of expansions in spatial Fourier series, having as fundamental a
half optical wavelength. The Fourier series are truncated after the first harmonic. The treatment differs
from earlier work in that the dephasing of the dipole moment is treated exactly without a rate-equation
approximation. Spontaneous emission is simulated both as to spectrum and Gaussian character by including
in the dipole equations stochastic shot-noise sources. The model equations are solved numerically, and
results include the details of Q-switched pulse evolution from noise for both passive and active switching.
In the case of an actively switched laser, the two-photon fluorescence intensity pattern has been calculated.
It reveals a well-defined structure of subsidiary intensity maxima, even though subcavities are not assumed
in the calculation. The pattern can be correlated directly with the emission pulse structure, and should
vary from shot to shot. No single point in the pattern is suitable for a peak-to-background ratio determi-
nation. However, if the background is averaged over a distance in the fiuorescing medium equal to twice
the separation between cavity mirrors, the peak-to-background ratio would be =1.6, indicating a highly
uncorrelated spectrum.

INTRODUCTION

HK emission of radiation by lasers as a succession
of pulses, under various" conditions, has been a

familiar phenomenon for some time. ' ' Interest in

*Work performed under the auspices of the U. S. Atomic
Erl ergy Commission.
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pulsed emission has heightened in recent years as the
result of discoveries that solid-state lasers can emit
trains of pulses having durations of the order of 10 "
sec, not only when mode locking is brought about, 4'
but even when mode control is not attempted. ' "Much
of the underlying detail of the resulting pulses cannot
be resolved on available oscilloscopes. As a consequence,
experimenters have made use of nonlinear optical
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