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The quantum-electrodynamic renormalization of the electron’s charge when in a metal (Fermi gas of
electrons) environment is calculated. Solid-state many-body techniques are employed rather than the
usual quantum-electrodynamic approach, so that the analogy to calculating a material’s dielectric constant
is exhibited. In metals, the renormalized charge value is increased over the vacuum value by de/e=24 X 101,
where p is the metal’s electron density in e/ (1072 cm3). These corrections are too small to affect the recent
measurements of e/ in metals using the Josephson frequency-voltage relation for superconducting junctions,
which are accurate to 107%. Experiments to be done which will compare e¢/k values in different metals to
several orders of magnitude greater accuracy should detect the corrections to e calculated in this paper.

I. INTRODUCTION

ECENT experiments have employed the Josephson
voltage-frequency relation in a superconducting
junction to make a precision measurement of ¢/4.! This
measurement presently yields the most precise value for
the fundamental constants of quantum electrodynamics.
It is remarkable that in spite of the complex solid-
state environment that electrons see in metals, the
measured value of e/k is independent of particular
metal to the accuracy of the experiment which is about
2 ppm.}

Although it will be difficult in the near future to
improve the accuracy of an absolute measurement of
e/h, an experimental comparison of e/ in different
metals will be done soon to several orders of magnitude
greater accuracy.?

The charge on free electrons in the vacuum is known
to be the renormalized charge that results from starting
with a bare charge and shielding that charge by means
of polarization of the vacuum state.? The vacuum is
polarizable, i.e., it has a dielectric constant, because of
the existence of Dirac’s negative-energy sea of filled
electron energy levels.

This paper will concern itself with the question of
whether the renormalization of the electron charge is
altered by the presence of a density of positive-energy
electrons as is found in a typical metal.

Figure 1 schematically shows the situation. A metal
(in the Fermi-gas approximation) can be viewed within
the context of quantum electrodynamics as a sea of
filled electron states which includes both an infinite sea
of negative-energy states and the sea of positive-energy
states filled up to a Fermi surface.

When a particular charge interacts with another
charge or with an external potential via the gth Fourier
component of the potential, then the electron gas will
shield that interaction by means of background elec-
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trons making virtual excitations from filled states of
momentum p to empty states of momentum p-+q. This
leads to an effective shielding factor or dielectric con-
stant for the system.

Figure 1 suggests that the positive-energy Fermi gas
will inhibit some of the virtual excitations from the
negative-energy sea because of the Pauli principle, thus
altering the renormalized charge value. This will indeed
be the result of our calculations below.

We will find that the charge value in a metal is
different from the free-charge value by an amount of
order 10~? which varies from metal to metal. Therefore,
the experiments to compare ¢/k in different metals
should see differences of that order.

The calculations will be made in the language of the
solid-state many-body problem, though they are iden-
tical to the Lorentz-invariant quantum-electrodynamic
charge-renormalization calculations of Feynman.?

II. HAMILTONIAN OF QUANTUM-
ELECTRODYNAMIC SYSTEM

The Lorentz-invariant Hamiltonian for a collection of
electrons interacting with each other via the electro-
magnetic field can be written in a form which hides the
Lorentz invariance but corresponds more closely to a
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Fic. 1. Complete set of energy levels of an electron gas are
shown including the negative-energy sea. Virtual electron excita-
tions (1) shield longitudinal or transverse electromagnetic inter-
actions of wave number q renormalizing the charge (e;— e).
Virtual excitations (2) are quenched by the Pauli exclusion
principle, leading to a different value for ¢ in an electron gas
(metal) environment.
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F1c. 2. Instantaneous longitudinal Coulomb interaction is
shielded by electron gas polarization bubbles in the RPA. If the
dotted line is interpreted to represent the propagation of a trans-
verse photon, the diagram also represents the resulting vacuum
polarization which renormalizes the charge value.

+
ﬁ——-——x
PUPER.
+
+

s

solid-state point of view*:

1 [ jo(x)7o(x")
H=H+ / I s
2

x—x'|

+ [ a0 i0s,

where H; is the Hamiltonian for free electrons and the
free transverse modes of the electromagnetic field. jo(x)
is the electric charge density, j(x) is the charge current,
and A,(x) is the transverse electromagnetic vector
potential. In second quantized form (1) reads

Z wi(p)ait(p)ai(p) +}; A\ (p)Ax(p)
i P
1

2

+2me® 2 —{ud(p+a@) 1, Lui(p) ] L' (0" —a) Iy

0.0 ¢

X [a(p") Jnait (p+ @ as(p)ar' (0" —@au(p’)

4:7['602 1/2
HE) 2 Dl el el M)
q ,\,p,q

X[ (—a)+Ax(@)Ja:! (p+a)a;(p). (2)

(We have set #=c=1.) A\'(q) creates a photon of wave
vector q, polarization . Ax(q) destroys a photon of
wave vector q, polarization \. a;(p) creates an electron
of wave vector p, Dirac state ¢ (4=1, 2, 3, 4). The four
states are positive or negative energy, spin up or down.
a;(p) destroys an electron of wave number p, Dirac

state 7.
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is the four-component free-Dirac-particle wave function.
The subscripts v and 5 are to be summed over in
equations when appearing twice. The Dirac wave
function satisfies the free-particle eigenvalue equation
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where [a]y, are the Dirac 4X4 velocity operator
matrices, [8 ]y, is the scalar operator matrix, A(q) is the
unit polarization vector of the photon, and

w(p)= (mo-p).

1P, A. M. Dirac, Principles of Quantum Mechanics (Oxford
University Press, London, 1958), 4th ed., Chap. XII.

III. LONGITUDINAL INTERACTION CHARGE
RENORMALIZATION

The usual approach to obtaining the shielding of the
longitudinal Coulomb interaction in materials is to
employ the random-phase approximation (RPA) to
sum the polarization bubble processes of Fig. 2 and
obtain the dielectric constant of the system. This RPA
calculation of the static dielectric constant will be made
here, but we will include full account of the negative-
energy sea of electrons. From a solid-state physics
perspective, the negative-energy sea can be viewed as
another band of electrons. From that point of view the
vacuum state is an insulator with band gap of 2mc2.

The sum of the diagrams in Fig. 2 leads to the
expression for the static dielectric constant?®:
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In (4) we have
Cija(p) =n:(p+q) —7;(p)

with #,(p) being the occupation number of the electron
state (4,p).

wijg(p) =wi(p+a) —w;(p) .
[Ai(p)]y, is the Dirac free-particle projection operator;
I:Ai(P)]w= [u,-(p)].,[uﬂ(p)],,
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, summed over positive-

2w(p) energy states
w(p) —a-p—PBm :
= ———————, summed over negative-
2a(p) energy states.

Evaluating the trace in (4) for (¢j) representing
excitations from negative-energy states into positive-
energy states gives in the small ¢? limit
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Therefore, the dielectric constant is
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In the vacuum, the sum over p extends over all p and
we obtain the well-known quantum-electrodynamic
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charge renormalization®
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where a momentum cutoff I' must be introduced to give
finiteness.

In the presence of a sea of positive-energy electrons
as shown in Fig. 1 the virtual excitations in (5) for
Ip| <p,; are quenched because of the Pauli exclusion
principle:

Ci—(p)=n4(p) —n_(p)=0,

Therefore

[p| <ps.
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which gives a renormalized charge value in a metal of
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for a nonrelativistic electron gas (py<mc). The ex-
pression (8) can be expressed solely in terms of finite
physical quantities:

e2

1—(e2/3m) (ps/m)*

Inserting the necessary % and ¢ factors, (9) yields the
fractional change in e due to a Fermi sea of electrons
of density p:

de 1/7eN/pr\°
ST —
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where p is in ¢/(107% cm?). High electron density
metals will therefore have a slightly larger value of e
than low electron density metals.

If the positive-energy-to—positive-energy virtual
electron excitations in Fig. 1 are added to the expression
(4) we get the static result

e(,0)=[e*(ps)/e0*J(1+grr*/ ),

with the Fermi-Thomas shielding constant given by
gen*=4a'[eX(p,)/H* Jmp; . (1

IV. TRANSVERSE INTERACTION CHARGE
RENORMALIZATION

e(ps) = ©)

(10)

In (1) electrons are coupled to the transverse vector
potential, too. This coupling is also renormalized by
polarization of the background electrons. We show here
that this renormalization is identical to (7) and (9)
in the static, ¢=0 limit.

!

e e ¢

;lk all p<ps

Fre. 3. By conventional Feynman-diagram techniques, the
above processes give the corrections to the photon propagator
resulting from a Fermi sea of positive-energy electrons. The
electron momentum p is to be summed over all filled states of the
electron Fermi gas.

Due to the coupling of photons to the electron
current, bare photons are no longer the elementary
excitations of our many-body system, even in the
vacuum. Instead, we seek a quasiparticle operator

P(g) =adrt(q) +BAN(—q)
+ 2 aijg(p)at(p+q)e;(p),

%,7,p

(12)

which creates the physical photon. Using the RPA
(also called the linearized equation of motion method)
we find P*(q) such that it obeys®

[H,P*(q) ]=2P(q). (13)

The fact that virtual electron excitations are present in
the physical photon is a consequence of the vacuum or
background polarization cloud which accompanies a
physical photon.

The necessary commutators to solve (13) are obtained
from the Hamiltonian (2). For this transverse problem
the longitudinal Coulomb interaction term in (2) can
be neglected. We will not illustrate all the straight-
forward steps of solving (13) here. But the following
results are obtained:

Q(q) = #qc;

that is, the physical photon has an unaltered energy in
the vacuum state. Also,

aijg(p) = (4med®/29)*N(q)
% Luit(p+a) 1yLedys[ui(p) Iy
q—wijq(p) '

(14)

The proper normalization of the physical photon
operator is

[P(@,P'(@]=1,

13)
|43 Jaiig(p)]*Cuig(p) =1.
2,0,P
Solving for a gives
21I'6()2 -1
“2=<1+ = (q)) , (16)
q T
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with When two charged particles interact by exchange of

Ciia(p) a virtual transverse photon, their interaction is di-
S=Y —- minished by the factor |a|? which is the reduced
T 6.0 [q—wijq(p) ]2 probability that a physical photon contains a bare

photon.

Hence we conclude that both the longitudinal and
transverse renormalization of the electromagnetic
charge is given by the same expression. Equation (10)
therefore gives the adjustment of the value of ¢ in a
metal environment.

If the above calculation were done by conventional
Feynman-diagram techniques in quantum electro-
dynamics, Fig. 3 represents the diagrams which would
yield the corrections to e calculated above in this paper.

XTr[Ai(p+q)e-A;(p)a-A].  (17)

In the limit of small ¢2, the evaluation of (16) and (17)
yields

2 pdp /3 1 p NT!
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which is identical to (6).

PHYSICAL REVIEW B VOLUME 1, NUMBER 1 1 JANUARY 1970

Ultrashort-Pulse Generation by Q-Switched Lasers™

J. A. FLECk, JRr.
Lawrence Radiation Laboratory, University of California, Livermore, California 94550
(Received 12 June 1969)

We have undertaken the complete temporal description of pulsed emission by a homogeneously broadened
laser, including the effects of spontaneous emission, the detailed geometry of the laser cavity, and the
variation of atomic polarization and level populations over wavelength distances. The model is based on
traveling-wave equations which are derived from Maxwell’s equations and solved in conjunction with
boundary conditions imposed at the cavity mirrors. Thus, any direct assumptions concerning the nature
of the laser’s longitudinal mode structure is avoided. Variations in polarization and population over wave-
length distances are treated by means of expansions in spatial Fourier series, having as fundamental a
half optical wavelength. The Fourier series are truncated after the first harmonic. The treatment differs
from earlier work in that the dephasing of the dipole moment is treated exactly without a rate-equation
approximation. Spontaneous emission is simulated both as to spectrum and Gaussian character by including
in the dipole equations stochastic shot-noise sources. The model equations are solved numerically, and
results include the details of Q-switched pulse evolution from noise for both passive and active switching.
In the case of an actively switched laser, the two-photon fluorescence intensity pattern has been calculated.
It reveals a well-defined structure of subsidiary intensity maxima, even though subcavities are not assumed
in the calculation. The pattern can be correlated directly with the emission pulse structure, and should
vary from shot to shot. No single point in the pattern is suitable for a peak-to-background ratio determi-
nation. However, if the background is averaged over a distance in the fluorescing medium equal to twice
the separation between cavity mirrors, the peak-to-background ratio would be =~1.6, indicating a highly

uncorrelated spectrum.

pulsed emission has heightened in recent years as the
result of discoveries that solid-state lasers can emit
trains of pulses having durations of the order of 1012
sec, not only when mode locking is brought about,**
but even when mode control is not attempted.®-® Much
of the underlying detail of the resulting pulses cannot
be resolved on available oscilloscopes. As a consequence,
experimenters have made use of nonlinear optical

INTRODUCTION

HE emission of radiation by lasers as a succession
of pulses, under various conditions, has been a
familiar phenomenon for some time.'™'° Interest in

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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