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Comparison of Theoretical and Experimental Charge Densities
for C, Si, Ge, anfI ZnSef
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Fourier transforms of the charge densities of C (diamond), Si, Ge, and ZnSe are calculated using the
self-consistent orthogonalized-plane-wave (OPW) programs developed at the Aerospace Research Labora-
tory. Results obtained with the Slater, Kohn-Sham, and Liberman exchange approximations are compared
with the most reliable experimental results and with previous theoretical results (obtained for diamond
only). While the results are better than the free-atom form factors, there are still significant discrepancies
between theoretical and experimental values.

I. INTRODUCTION

HE purpose of this paper is to present calculations
of charge densities of C (diamond), Si, Ge, and

ZnSe and to compare the results with the measured

charge densities. To make this comparison, one needs
first to assess the crystal x-ray scattering data to
determine the most valid measurements. Then the
theoretical results, which were obtained by using a
self-consistent orthogonalized-plane-wave (SCOPW)
model developed at the Aerospace Research Labora-
tories (ARL), ' can be evaluated by. comparison.

The SCOPW model was originally developed for the
calculation of electron energy bands in crystals. Calcu-
lations have been performed' on C, Si,' Ge, ZnSe, '
ZnS, ' CdSe, ' CdS,"GaAs, 4 GaP, ' AlAs ' and A1P.
The calculated one-electron energy differences (band

gaps, es peaks and conduction-band minima) have been

compared with experiment, and the eGects of various

exchange approximations (Slater's, ' Kohn and Sham's, '
and Liberman's's) upon the band energies have been
discussed. ""It was found that the use of Slater's
exchange potential for all the above crystals gives band
energies in surprisingly close agreement with experi-

ment, whereas for atomic systems, Liberman's approxi-

t The Lincoln Laboratory portion of this work was sponsored
by the Department of the Air Force.
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niation is the best of the three. Consequently, it is of
interest to test results other than one-electron energies
obtained by the SCOPW method, using the different
exchange approximations. In particular, the Fourier
transforms of the electron charge density, i.e., the x-ray
form factors, have been investigated as functions of the
exchange approximations.

Previous theoretical form-factor calculations for
diamond have been performed by Kleinman and
Phillips " Bennemann '4 Clark, '5 and Goroff and
Kleinman. "While the earliest calculations involved the
pseudopotential technique with all of its limitations,
the calculation of Goroff and Kleinman is conceptually
quite satisfactory. They used the orthogonalized-plane-
wave (OPW) formalism with Slater's exchange and
iterated the valence charge density to self-consistency.
The core 1s wave function was not iterated, and the
free-atomic wave function was used throughout the
calculation. The core energy was adjusted, however, for
the crystalline environment. They used a simplified
method of Fourier transforming the exchange potential.
Their charge density was averaged over six points
(P, X, I., W, Z, and 6) in the Brillouin zone (see Fig. 1).
They obtained remarkably close agreement with the
experimental results. Therefore, it is of interest to
compare the results of their model with those of the
present model.

In Sec. II, we discuss the accuracy of the available
experimental results and select those which in our
judgment are the best. The theoretical SCOPW model
is briefly outlined in Sec. III. Particular attention is
paid to the convergence of the results with respect to
the number of OPW's used in the calculation and with
respect to the number of points used in averaging the
charge density over the Brillouin zone. Section IV
presents the theoretical results and compares them with

'3 L. Kleinman and J. C. Phillips, Phys. Rev. 125, 819 (1962)."K.H. Bennemann, Phys. Rev. 133, A1045 (1964).
~5 H. Clark, Phys. Letters 11, 41 (1964), quoting S. Gotlicher
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the previous calculations for diamond a,nd with the best
experimental data. Section V then summarizes the
findings of the paper.

II. EXPERIMENTAL SITUATION

The magnitude of the Fourier components of the
charge distribution can be measured by x-ray diffraction
from ideally perfect or ideally imperfect crystals. The
formalism is different in the two cases, as are the scat-
tering processes involved. The di6iculty is to establish
unambiguously that a particular sample represents one
of the two ideal cases. This is particularly important
since most crystals, although clearly imperfect, are not
completely so, and a departure from the ideal mosaic
arrangement results in a decrease of the amplitude of
the scattered wave (extinction). This effect, when small,
can easily be mistaken for a crystal-6eld effect, since it
primarily sects the first intense lines, to which the
contribution of the outer electrons is greatest.

A. Powder Case

Attempts to obtain ideally imperfect samples by
using cold-worked powders, "where mechanical strains
should yield an ideal mosaic, have been mildly success-
ful. Although the x-ray measurement is in principle
straightforward, the number of parameters to be care-
fully controlled is too large to permit high accuracy,
simply because of the accumulation of partial errors.
Sample preparation becomes a crucial problem, and in
many cases it is simply impossible to obtain samples
free of extinction, porosity, surface roughness, and
preferred orientation, to cite only a few of the possible
sources of error. At this time the highest degree of
accuracy, attainable only in a few optimal cases,
appears to be +1.0% on the first few structure factors.
At larger angles the uncertainty in quantities, such as
the Debye temperature, the thermal diffuse scattering,
and the polarizing properties of the monochromating
crystal, reduces the accuracy to the 3—5% range.
Furthermore, it is not clear that we fully understand all
the parameters influencing the experiment at the level
of a few tenths of a percent.

All of these difficulties should be kept in mind as one
compares the published results with a theoretical model.
However, it is important to realize that with all their
shortcomings the powder measurements have yielded
valuable, though limited, quantitative information. In
particular, they have shown the spreading out of the
outer electrons in the case of many simple metals. This
has been thoroughly discussed by Weiss, " especially
from the point of view of comparing the powder results
with perfect-crystal results in the case of Cu, "and with
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Rev. 135, A1612 (1964).

Fro. 1. Zinc-blende Brillouin zone, showing the following points:
I'(0,0,0), X(1,0,0), L(-,',-'„-,'), IV(1,0,-'), 6(-', ,0,0), A(-', —,',-'), and
Z (-', ,—,',0).

with

and

Ii (s) =fg(s)+i"+'+'fg(s),

f(s) =Ef'(s)+&f'+t~f"j expL »'3—
s= [ZJ/4,

where f'(s) is the free-atom form factor, hkl are the
Miller indices or components of the scattering vector
X, hf', and Af" are the real and imaginary parts of the
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imperfect-crystal results carefully corrected for second-
ary extinction, in the case of Al" and Fe."The agree-
ment between these various experiments is satisfactory.
In general, the observed structure factors agree with the
free-atom relativistic Hartree-Fock calculation (RHF)
for the high-order peaks, " to which the major con-
tribution comes from the closed-shell electrons, while
they depart from the calculation for the first two peaks.
For these, the structure factors are lower than the
RHF values, suggesting a spreading out of the outer
electrons. The picture has been further confirmed by
recent work on powders, by transmission on Al2' and by
reflection on Al,"' Cu,"and Ni."

These experiments on simple metals, however, are
somewhat insensitive to a small redistribution of the
outer electrons, since the largest contribution to the
total scattering comes from the inner electrons, which
are essentially unaffected by the crystal field. Structures
of high symmetry and two kinds of atoms 3 and 8 have
an interesting property that emphasizes the modifica-
tion of the valence electron density. In the zinc-blende
structure, for instance, the structure factor can be
represented by
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TABLE I. Comparison of observed x-ray intensities for ZnSe with
values calculated using optimal temperature factors 8'z„=1.34,
WH, ——0.68.

hkl

111
200~
220
311
222 ~

400
331
420'
422
440
531
620
622 '
444

28
(deg)

27.25
31.57
45.23
53.58
56.16
65.84
72.63
74.83
83.46

100.38
106.93
118.41
128.58
140.50

Observed
intensity

195983
1567

135351
83934

455
20821
31064

808
38516
12451
23065
20558

725
7534

Calculated
intensity

195982
1210

138672
81575

547
21067
31726

1252
39999
12451
23064
19885
1277
7189

Ratio
100

(lobe/Iogl, )
100.00
129.50
97.60

102.89
83.18
98.83
97.91
64.54
96.29

100.00
100.00
103.38
56.73

104.78

a DifterenCe lineS.

» P. M. Raccah, R. J. Arnott, and A. Wold, Phys. Rev. 148,
904 (1966).

correction for anomalous dispersion, and 8' is a quantity
proportional to the mean-square amplitude of vibration
called the Debye-Wailer factor.

Such a representation corresponds to a simple super-
position of atomic charge densities. If (h+k+l) is an
even number not divisible by 4, the structure factor
E(s) is the difference between the scattering f~(s) of A
and the scattering fs (s) of B.If 2 and 8 are in the same
row of the Periodic Table, the core distributions will be
very similar and largely cancel each other's contri-
butions. The intensities of "difference lines" will then
mostly reQect the differences in outer-electron distri-
bution between A and 8.

The results of a measurement performed on ZnSe
powder'~ are presented in Table I. The calculated
intensities have been obtained using the theoretical
Hartree-Pock free-atom form factors and optimizing
the scaling factor and the two temperature factors
(Wz„and Ws,) to 6t the observed intensities. As can be
seen by comparing the third and fourth columns of
Table I, the intensities of difference lines are very far
from the values calculated by Eq. (1), which represents
a simple superposition of the neutral free atoms.
Furthermore, the temperature factors 8'z„and 8'8, are
very different, which is improbable because the two
atoms have very similar masses. A possible explanation
for this is that the atoms have very different radii, that
of Zn being much smaller. This would imply that the
outer electrons have been redistributed, with some of
them spending more time on the Se than on the Zn.
This possibility has been investigated by assuming a
distribution in real space for the electrons transferred.
A number of different functional representations were

used, such as

are —~i "i ar'e ~i "i', and ae ~t"i',

where n, pz„,ps„Wz„,and Ws, were determined from
the experiment. The results for this case are presented
in Table II; they are indistinguishable from those ob-
tained using any of the other representations for the
electron distribution. In all cases n, the parameter
representing the total number of electrons transferred
from Zn to Se, was found to be 0.7~0.1, while 8'g„and
Ws, converged to 0.97&0.07 and 0.74&0.01, respec-
tively. The latter values show that, under the given
hypothesis, the mean-square amplitudes of vibration,
which are proportional to the 8"s, are no longer un-
acceptably different. Table II also shows convincingly
that the discrepancies affecting the difference lines have
disappeared while the fit to the other lines has not
worsened. It follows that the modeI proposed can
effectively represent the data. However, it is very
phenomenological and therefore yields little more than
a qualitative con6rmation of the charge-transfer
hypothesis, A more fundamental quantum-mechanical
model would be submitted to a very stringent test on
its ability to yield detailed wave functions. This is why
these data for ZnSe, corrected for thermal vibrations
using Wz„=0.97 and Ws, =0.74, were chosen for a
comparison with the SCOP% results discussed later.

B. Perfect-Crystal Case

The kinematicaI theory, which describes accurately
the scattering processes in the ideal mosaic situation,
does not apply to perfect crystals, where there is an
interaction between the incident and diGracted beams.
The perfect-crystal problem, which consists of solving
the Maxwell equations for a medium with a periodic

TABLE II. Comparison of observed x-ray intensities for ZnSe
with values calculated for Gaussian distribution of transferred
electrons assuming for the parameters 8'z ——0.9879, 8's, =0.7361,
e 0 7 is Pzxr 11 45~ Ps~ 14 92

ill
200
220
311
222
400
331
420
422
440
531
620
622
444

28
(des)

27.25
31.57
45.23
53.58
56.16
65.84
72.63
74.83
83.46

100.38
106.93
118.41
128.58
140.50

Observed
intensity

195983
1567

135351
83934
455

20821
31064

808
38516
12451
23065
20558

725
7534

Calculated
intensity

189606
1567

135224
79969

454
20849
31354

854
40131
12644
23064
20424

725
7458

which lead to various expressions for the structure
factor. In the case of the Gaussian, for instance, one
obtains the expression

F(hkl) =Dz„(hkl)—n exp —Pz~s~jexp —Wz s2

+&"+'+'Pfs.(hkl)+n exp —Ps,s'jexp —Ws.s',
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complex dielectric constant, has received a great deal of
attention. The formalism developed is known as the
"dynamic theory, " and Batterman and Cole" have
recently reviewed the subject.

The experimental procedures used" for measuring
diffracted intensity are only slightly diferent from the
powder case, and the sources of inaccuracy in the
measurements proper are very similar. The errors due
to the condition of the sample, on the other hand, are
largely eliminated. Once the crystal's purity and
"perfection" have been established, for example, by
mass spectrography and Lang topography, the char-
acterization is complete. Such effects as extinction,
porosity, preferred orientation, and particle-size line

broadening have no equivalent here. Perfect crystals,
however, have been grown for very few materials,
principally Ge and Si, on which Jennings'~ has recently
performed high-accuracy measurements of diffracted
intensity.

An alternative experimental method was developed
bv K.ato and Lang, "who showed that a phenomenon
predicted by the dynamic theory, the pendellosung
effect, could be observed in perfect crystals and used to
determine the structure factor. Here the errors are
confined to the measurements of the wedge angle and
the interfringe distance. This technique has been mostly
applied to Si. The first extensive work was done by
Hattori, Kuryiama, and Kato," who obtained an
accuracy of &1.5% in the form factor. More recently
Hart and Milne" have measured the 220 form factor
with an accuracy of the order of &0.4%.

The experimental form factors appearing to be the
most dependable at this time are: for Si, the 111and 222
measured by Jennings, '9 the 220 measured by Hart and
Milne, " and all the other refiections measured by
Hattori, Kuriyama, and Kato"; for Ge, the 111 meas-
ured by Jennings. "These results together with those of
GOtlicher and Wolfel" on diamond are used in Tables
VII—X.

III. SCOPW MODEL

The SCOPW programs used to calculate the crystal
structure factors have given surprisingly good one-
electron band energies for numerous compounds with
the diamond, zinc-blende, and wurtzite structures, as
listed in the Introduction. For ZnS and Si, where rela-
tivity is not important, the unadjusted band energies
fit all known experimental facts when Slater's exchange
approximation is used.

The basic Hamiltonian for the model is

' B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681
(1964)~' L. D. Jennings (private communication).

'0 N. Kato and A. R. Lang, Acta Cryst. 12, 787 (1959).
"H. Hattori, H. Kuriyama, and N. Kato, J. Phys. Soc. Japan

20, 1047 (1965).
"M. Hart and A. D. Milne, Acta Cryst. A25, 134 (1969).

Relativistic corrections are ignored. Vo,„i(r) is the
electron Coulomb potential energy resulting from all
the charge in the crystal. p(r) is the electron number
density. The Hartree-Fock exchange term is approxi-
mated either by Slater's average exchange E,=1; by
Kohn and Sham's minimization of the total energy of a
free-electron gas E,=3; or by Liberman's approxi-
mation' E,(r) =4/3f(k/ks), in which

1 1—e' 1+v
f(e) =- + ln

2 4e 1—e

The Fermi-Thomas model is used to obtain k and
ks. k~, the Fermi energy, is L3n-'p(r)]'13, and k is
(2'(E„—V(r)))'~', where E„is the one-electron energy
of the state being calculated.

In the OP% model, "the electronic states are divided
into tightly bound core states and loosely bound
valence states. The core states must have negligible
overlap from atom to atom. They are calculated from a
spherically symmetrized crystalline potential. The
valence states must be well described by a modified
Fourier series,

—P, e'"~'R P, A,„g,(r—R,)j, k„=ko+K„
where ko locates the electron within the first Brillouin
zone, K„is a reciprocal-lattice vector, r, is an atom
location, 0, is a core wave function, and 00 is the volume
of the crystal unit cell. The coeKcients A,„aredeter-
rnined by requiring that %z, (r) be orthogonal to all
core-state wave functions. Variation of the 8„to
minimize the energy then results in the valence one-
electron energies and wave functions.

The dual requirements of no appreciable core overlap
and convergence of the valence wave-function expansion
with a reasonable number of OPW's determine the
division of electron states into core and valence states.
The states taken as valence states are the 2s and 2p for
diamond, 3s and 3p for Si, and 4s and 4p for Ge, Zn, and
Se. Good convergence of the Fourier series is obtained
with 229 OP%'s. '' The OPW convergence of ZnSe
Slater structure factors is illustrated in Table III, where
self-consistent results are given for 137 OPW's (at the
I' point and a comparable number at the other high-
symmetry points) and for 229 OPW's. The differences
are small —less than 0.07—and should indicate an upper
limit to the error due to lack of OPW convergence.

The calculation is self-consistent in the sense that
core and valence wave functions are calculated alter-
nately until neither changes appreciably. The Coulomb
potentiaI due to the valence electrons and the valence
charge density are both spherically symmetrized about

3' C. Herring, Phys. Rev. 57, 1169 (1940); T. O. Woodruff, in
Sobd State Physics, edited by F. Seitz and D. Turnbull (Academi&
Press Inc. , New York, 1957), Vol. V, p. 367.
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TABLE III, Convergence of theoretical Slater structure factors
for ZnSe with respect to the number of OPW's used in the valence
wave-function expansion. Structure-factor units are electrons per
crystallographic unit cell.

hkl

111
200
220
311
222
400
331
420

157.66
11.73

191.09
126.37

9.54
163.52
11).07
10.80

157.68
11.72

191.14
126.40

9.61
163.57
111.13
10.85

a For 137 OPW's.
h For 229 OPW's.

TAsLE IV. Theoretical Slater self-consistent structure factors
for ZnSe. Structure-factor units are electrons per crystallographic
unit cell. These structure factors were calculated by using three-,
four-, and six-point averages over the Brillouin zone. Three-point
weightings over F, X, and L are 0.125, 0.375, and 0.500. Pour-
point weightings over I", X, L, and 8' are 0.1258, 0.1731, 0.3600,
and 0.3411. Six-point weightings over F, X, L, 8', 6, and Z are
0.03125, 0.09375, 0.125, 0.1875, 0.1875, and 0.375. Self-consistency
was obtained in each case.

hkl
Structure factor

Three-point Four-point Six-point

iii
200
220
311
222
400
331
420

i57.86
11.78

191.14
126.35

9.58
163.53
111.13
10.84

157.68
11.74

191.15
126.41

9.61
163.57
111.13
10.85

157.61
11.63

191.12
126.41

9.63
163.56
111.10
10.85

I"F. Herman and S. Skillman, Atomic Struetlre Calcllatiog
(Prentice-Hall, Inc. , Englewood Cliffs, N. J., 1963).

each in equivalent aton~ site. With these valence
quantities frozen, new core wave functions are calcu-
lated and iterated until the core wave functions are
mutually self-consistent. Modified Herman-Skillman"
programs are used for the core wave-function calcu-
lation. Then the total electronic charge density is
calculated at 506 crystal mesh points covering 1/24 of
the unit cell, and the Fourier transform of p(r)"' is
taken. The new crystal potential is calculated from the
old valence charge distribution and the new core charge
distribution. New core-valence orthogonality coeK-
cients A,„arecalculated. The iteration cycle is then
completed by the calculation of new valence energies
and wave functions. The iteration process is continued
until the valence one-electron energies change less than
0.01 eV from iteration to iteration. The form factors
then fluctuate less than 0.03. For compounds such as
ZnSe the procedure for incorporating I iberman's ex-
change is slightly diQerent. It is discussed at length in
another paper. "

The appropriate charge density to use for both the
self-consistent potential calculation and the form-factor
calculation is the average charge density of all the
electrons in the Brillouin zone. For most of the self-

TABLE V. Theoretical band energies (relative to the I'zz„) for
ZnSe (Slater exchange) when Brillouin-zone averages were taken
only at F, only at L, and over the three, four, and six points given
with their weightings in the caption to Table IV. Self-consistency
was obtained in each case. All energies are in eV.

+15c

I 15v

I lv

L1,
L3,
Llc
L3„
L1„
L1„
X3c
X1,
X5„
X3„
X1.

4.64
1.65
0—11.86
9.65
5.62
2.08—0.91—5.72—10.46

6.43
2.75
0—11.83
9.57
7.11
3.59—0.66—4.53—10.81

Three-
point

6.35
2.70
0—11.83
9.68
7.05
3.51—0.67—4.57—10.80
4.22
4.00—1.72—4.51—10.42

Four-
point

6.66
2.94
0—11.82
9.72
7.32
3.79—0.64—4.40—10.84
4.49
4.19—1.65—4.31—10.48

S1X-
point

6.75
3.01
0—11.81
9.78
7.41
3.88—0.63—4.34—10.85
4.58
4,28—1.63—4.25—10.50

where p„(r)contains the plane-wave —plane-wave terms
and p, (r) contains the terms involving the ortho-

35 R. N. Kuwema, D. J. Stukel, T. C. Collins, J, S. DeWitt, and
D. G. Shankland, Phys. Rev. 178, 1419 (1969).

consistent calculations presented here, this average is
approximated by a weighted sum over electrons at the
F, I, I., and 8' high-symmetry points of the Brillouin
zone, shown in Fig. 1. The weights are proportional to
the volumes within the first Brillouin zone closest to
each high-symmetry point. 35 The adequacy of this
approximation is illustrated for ZnSe, where separate
self-consistent runs were made for each of several
diGerent zone averages. Table IV gives resulting three-,
four-, and six-point self-consistent form factors. Table V
gives the band energies for the three-, four-, and six-
point iterations, as well as for iterations where only the
l'-point charge density or only the I.-point charge
density was used. Clearly the L-point charge density is
much more representative of the zone as a whole than
is the I'-point charge density. This is not surprising
since most of the electrons are in the outer regions of the
zone. The valence-band energies change a maximum of
0.06 eV from four to six points, but the conduction-band
energies change considerably more. The form factors
change a maximum of 0.11 from four to six points.
Clearly, convergence with respect to Brillouin-zone
averaging is not complete even when six points are used,
but the error in the calculated form factors is probably
less than 0.20 for ZnSe when four-point results are used.
Four- and six-point self-consistent runs were also made
for diamond. The results, included in Table VI, again
show almost complete convergence. The form factors
quoted in the remainder of the paper will be four-point
form factors unless otherwise noted.

The form factors are obtained in the following way.
One can write the valence charge density as
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T VI C arison of experimental and calculated structure factors for diamond.ABLE . Omp
Structure-factor units are electrons per crystal, ograp

'
l ra hic unit cell.

hkl

111
220
311
222
400
331
422
511
333
440
531

Expt

3.32
1.98
1.66
0.14
1.48
1.58
1.42
1.42
1.42
1.28
1.26

RHF

3.03
1.96
1.76
0.00
1.59
1.52
1.44
1.40
1.40
1.33
1.29

S6'

3.30
1.95
1.66
0.12
1.53
1.53
1.41
1.37
1.34
1.31
1.27

Sb

3.33
1.97
1.66
0.14
1.53
1.55
1.42
1.37
1.34
1.31
1.26

KSc

3.23
1.92
1.64
0.12
1.52
1.52
1.40
1.35
1.32
1.29
1.24

3.19
1.88
1.61
0.14
1.51
1,53
1.41.
1.36
1.33
1.29
1.25

S6-RHF'

3.30
1.95
1.65
0.12
1.52
1.53
1.40
1.36
1.33
1.30
1.26

3.33
1.97
1.65
0, 14
1.52
1 ~ 55
1.41
1.36
1.33
1.30
1.25

3.23
1.93
1.65
0,12
1.53
1.54
1.41
1.36
1.34
1..30
1.26

3.19
1.89
1.61
0.14
1.52
1.53
1.42
1.37
1.35
1.31
1.26

S-RHF' K.S-RHF' L-RHF~

nd six- oints averages over the Brillouin zone.a S6 is SCOPW using Slater exchange approximation an six-po'
b S is SCOPW using Slater exchange approximation.
e KS is SCOPW using Kohn and Sham exchange approximation.
d L ' SCOPW using Liberman exchange approximation.
e S-RHF is Sl valence charge density + RHF core cha g

is s
core char e density.

ar e densit + RHF core charge density.
'- RHF h d itg L-RHF is Liberman valence charge density ~ core c a

gonalitv functions when 4'~, (r) is squared. The p
term is around 10% of the plane-wave term p~„.It is
large only where the core charge density p, is large, as it
involves core wave functions. This p, term is spheric-
ally syrnmetrized about each atom location for the
self-consistent runs and for the form-factor calculations.
The Fourier transform of the spherically symmetric
terms is then taken in the well-known way:

p(k) = e~" rQ Lp~, (r —Ra)+pc(r —RN) j~r

sinkr
=4+ O'"'"' Lp, (r)+p, (r)] 47rr~dr, -

kr

where the sum is now over the two atoms in the basic
cell at (0,0,0), and (~a ~a ~a) and. where four basic
cells make up the usual crystallographic cell. The pp„
term is already dehned by its Fourier components, an
the absolute square then involves merely a sorting out
of exponents.

IV. RESULTS

Tables VI—IX compare the experimental structure
factors, corrected for thermal vibration and anomalous

dispersion, with the results of several diferent SCOP%'
calculations for C, Ge, Si, and ZnSe, respectively. The
theoretical procedures differ by the method used to
approximate the exchange potential. The columns
headed RHF are obtained by the superposition of
relativistic Hartree-Fock free atoms. Those headed S
contain results obtained using a Slater p't3 approxi-
mation, while KS and L indicate the use of Kohn-Sham
and Liberman exchange, respectively. The symbol
RHF added to any of these headings means that RHF
cores have been substituted for those obtained in the
calculation.

The main interest in the SCOP W results centers on
the valence contribution to the form factors. For the
111 reflection, the valence contribution is around 47%
for C, 12% for Si, and 6% for ZnSe and Ge. RHF form
factors agree very closely with experiment for free atoms
(gases). And in our experience, SCOPW core form
factors vary little from free-atomic core form factors.
This is the reason for the inclusions giving RHF core
contributions together with SCOP% valence contri-
butions to the form factors. Because of the acciiracy of
the RHF form factors for gases, it is felt that most of
the remaining deviations of the SCOP%-RHF results
from experiment can be attributed to the valence
contribution.

TABLE VII. Comparison of experimental and calcu1 ulated structure factors for Ge.
Structure-factor units are electrons per crystallographic unit cel .

hkl

iii
220
311
222
400
331
422
511
333
440
531

Expt

27.5&0.12 27.38
23.79
22.36
0.00

20.45
19.49
18.08
1.7.34
17.34
16.23
15.63

27.81
23.94
22.37
0.27

20.59
19.83
18.36
17.60
17.57
16.53
15.91

27.54
23.63
22.07
0.24

20.27
19.47
18.00
17.24
17.21
16.16
15.55

27.56
23.69
22.15
0.23

20.35
19.52
18.04
17.27
17.24
16.17
15.55

S-RHF

27.73
23.78
22.18
0.27

20.36
19.59
18.11
17.35
17.44
16.27
15.65

KS-RHF

27.59
23.73
22.19
0.24

20.39
19.60
18.13
17.37
17.34
16.28
15.65

27.57
23.73
22.21
0.23

20.41
19.59
18.12
17.36
17.32
16.26
15.65
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YABr,E VIII. Comparison of experimental and calculated structure factors for Si.
Structure-factor units are electrons per crystallographic unit cell.

111
220
311
222
400
313
422
333
511
440
444

Expt

11.12+0.04
8.78&0.09
8.05&0.07
0.22+0.04
7.40~0.14
7.32+0.12
6.72a0.06
6.43+0.08
6.40&0.08
6.04+0.15
5.00&0.10

RHF

10.53
8.71
8.16
0.00
7.51
7.18
6.70
6.44
6.44
6.03
4.97

10.88
8.76
8.09
0.22
7.53
7.35
6.81
6.50
6.54
6.16
5.11

KS

10.70
8.63
7.99
0.19
7.42
7.22
6.67
6.37
6.41
6.01
4.95

L

10.64
8.60
7.98
0.23
7.45
7.26
6.71
6.39
6.43
6.03
4.94

S-RHF

10.86
8.72
8.03
0.22
7.45
7.27
6.72
6.40
6.45
6.06
5.00

KS-RHF

10.72
8.67
8.04
0.19
7.48
7.28
6.74
6.43
6.47
6.07
5.06

L-RHF

10.65
8.62
8.00
0.23
7.47
7.29
6.74
6.43
6.46
6.06
4.98

It can be seen that KS and L come very close to RHF
for the high-order rejections where the valence con-
tribution is almost negligible. In other words, these
treatments of the exchange potential give a description
of the core that is close to the true Hartree-Fock. One
also sees that the experimental results depart from the
free-atom RHF calculation for the 111 and 222 rejec-
tions in C; the 111and 222 in Si; the 111in Ge; and 111,
200, 222, and 422 in ZnSe. The departure, however, is
in the opposite direction from that observed for metals,
where the first Fourier components are lower than the
RHF values, indicating a delocalization of the outer
electrons. Here on the contrary they are higher, sug-
gesting a localization of the valence electrons. As can
be seen, most of the exchange-model results are in
qualitative agreement with the data. Thus, the band
calculation generally improves on the free-atom values.

Let us now consider the comparison between theory
and experiment in greater detail. For the 111 reRection,
it appears that the various exchange models are not as
satisfactory for Si as for the other crystals. This is in
contrast to the fact that, when Slater's approximation
is used for the exchange, the eigenvalues for Si are much
better than those of C. But the band values for all the
crystals are closer to experiment than the RHF values.

The 222 reQection has its surprises also. Here both
Si and C band calculations give results in excellent
agreement with experiment and improved with respect
to the RHF values. But this is not the case for ZnSe.
There the RHF value is too small, and the band calcu-

lations using any of the exchange approximations give
even smaller values. The same result is found for the
420 difference line of ZnSe. But this trend is not general
for all the difference lines, because one finds an im-
provement for the 200 coefficient over the RHF value.
However, the 200 values from the different exchange
approximations are not large enough to agree with
experiment.

The results of the present calculation for diamond are
compared with the results of earlier calculations in
Table X. To compare with other calculations that do
not include the core contribution, we have assumed that
the RHF calculation of the 1s state accurately gives the
core contribution. The 1s value listed in the second
column of Table X has been subtracted from the
measured value to give the experimental valence
contribution listed in the third column, with which the
remaining columns are compared. This line of reasoning
is consistent with the observation that large RHF
Fourier coefficients, which are mostly due to core
contributions, agree with experiment.

It can be seen that all the crystal calculations (fifth—
ninth columns of Table x) result in a higher (111)form
factor than the free atom (fourth column) RHF value,
correctly showing the localization of the valence elec-
trons. The results of the present ARL model and those
of GoroG and Kleinrnan both seem to be equally good
in matching experiment, and the results of Clark are
nearly as good. It should be noted that neither Goroff
and Kleinman (who used 130 to 140 plane waves) nor

TABLE IX. Comparison of experimental and calculated structure factors for ZnSe.
Structure-factor units are electrons per crystallographic unit cell.

hkl

iii
200
220
311
222
400
331
420
422
440
531

Expt

158.55&1.6
14.86+0.55

189.80m 2.0
129.10&2.0
11.63&0.6

162.31&1.8
109.55m 2.0
12.09+0.7

140.56&1.8
128.76&1.7
88.37&1.3

RHF

155.80
11.22

189.79
125.90
10.33

162.13
109.47
11.59

143.30
128.86
88.29

157.68
11.72

191.14
126.40

9.61
163.57
111.13
10.85

145.37
131.05
89.74

KS

156.22
11.15

189.48
125.50

9.50
162.51
110.34
11.08

144.43
130.19
89.18

156.48
11.60

189.10
125.02

9.93
161.43
109.45
11.33

142.89
128.34
87.82

157.31
11.90

189.94
125.37

9.94
161.79
109.81
11.19

143.39
129.05
88.36

KS-RHF

156.61
11.12

189.56
125.32

9.67
161.94
109.93
11.19

143.62
129.24
88.48

156.71
11.37

189.62
125.42

9.79
162.06
109.92
11.30

143.62
129.15
88.42
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TABLE X. Experimental and calculated valence charge densities for diamond. The RHF is-state value given in the second column
was subtracted from the experimental values of Table VI to get the experimental valence contribution of column 3. Structure-factor
units are electrons per crystallographic unit cell.

iii
220
311
222
400
331
422
333
511

1.92
1.79
1.72
0.00
1.62
1.56
1.47
1.42
1.42

Expt

1.40
0.19—0.06—0.14—0.14
0.02—0.05
0.00
0.00

RHF

1.11
0.17
0.03
0.00—0.03—0.04—0.03—0.02—0.02

1~ 24
0.01—0.20—0.15—0.13

1.29
0.12—0.14—0.13—0,11

Cc

1.39
0.15—0.03—0.06—0.05

1.43
0.22—0.05—0.11.—0.11
0.04
0.08
0.12
0.08

Aerospace
Research

Laboratory

1.38
0.15—0.07—0.12—0.10—0.03—0.06—0.08—0.06

a Reference 13.
b Reference 14.
e Reference 15.
~ Reference 16.

ARL (using 220 to 230 plane waves) obtained con-
vergence as to eigenvalues versus the number of plane
waves. However, this seems to have little eGect upon
the 111 Fourier coefficient of the charge density. The
other materials considered in this paper are well con-
verged with respect to both charge density and energies.

V. CONCLUSlONS

In most cases the SCOPW calculations predict quali-
tatively the departure of the experimental results from
the free-atom superposition model. The most clear-cut
example is given by the change of the 222 structure
factors for the group-IV elements from the RHF values
to the SCOPW values. That is, the covalent bonds,
pointing toward the corners of the tetrahedron, are
formed in the charge densities of the SCOPW results.
When charge differences (antisymmetric parts of the
potential) are allowed, as in the zinc-blende ZnSe, this
effect seems to be hidden. The correct trend (increase
in magnitude) is also found in the 111 coefficients of all
the crystals and the 200 of ZnSe.

On the other hand, the agreement with the experi-

ments selected is not in general quantitative. In other
words, this otherwise very successful model fails when
it comes to evaluate a ground-state property. One is not
necessarily surprised, since the quantity minimized is
the energy, which is very insensitive to details of the
wave function, while the charge density is strongly
affected by them. Since the outstanding approximation
here affects the exchange potential, it is natural to
associate it with this difhculty, as was done earlier by
Arlinghaus. 3 It follows that further improvements in
the treatment of exchange and correlation can benefit
from a comparison with accurate charge-density meas-
urements. These should become increasingly available
as further interaction with theory will show the need
for them.
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