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Callaway's model of lattice thermal conductivity has been modi6ed by introducing an arbitrary relation
between the phonon frequency and the phonon wave vector, to take account of (i) the phonon dispersion,
and (ii) the number of phonon states in the wave-vector space, allowing for separate contributions of the
transverse and the longitudinal phonons. Three-phonon relaxation times that have di6'erent temperature
dependence for different temperature ranges have been used. Application to silicon has been made success-
fully. It is observed that the four-phonon processes play an important role at high temperatures, and that
the major contribution to the lattice thermal conductivity comes from the transverse phonons.

INTRODUCTION

A SATISFACTORY formulation of the lattice
thermal conductivity of solids at low tempera-

tures has been given by Callaway. ' On account of its
simple form, many authors' ~ have studied and applied
his model to a number of thermal conductivity data.
The success of his model lies in the fact that the Debye
approximation for the phonon frequency co as a func-
tion of the phonon wave vector q, is a valid assumption
at low temperatures, where only low-frequency phonons
are excited. At high temperatures, however, high-
frequency phonons whose dispersive nature cannot be
ignored, become more important in thermal transport.
Moreover, a distinction between the longitudinal and
the transverse polarization branches is also required to
be made in view of the possibly different relaxation
times for the corresponding phonons. Taking these two
points into consideration, Holland' modified the
Callaway model, making it applicable at all tempera-
tures, and applied it to silicon and germanium quite
successfully. His formulation has drawn the attention
of many authors who have applied it to a number of
materials. 9 "

Holland has taken account of the phonon dispersion
by considering the longitudinal and the transverse
polarization branches separately, and by using suitably
averaged values of the phonon velocity for the low- and
the high-frequency phonons (the two transverse
polarization branches are assumed to be degenerate).

~ J. Callaway, Phys. Rev. 113, 1046 (1959).' J. Callaway and M. C. V. Baever, Phys. Rev. 120, 1149
{1960).' A. M. Toxen, Phys. Rev. 122, 450 (1961).

4 B. K. Agrawal and G. S. Verma, Phys. Rev. 126, 24 (1962).' B. K. Agrawal and G. S. Verma, Phys. Rev. 128, 603 (1962).' B. K. Agrawal and G. S. Verma, Physica 28, 599 (1962).
7 C. T. Walker and R. O. Pohl, Phys. Rev. 131, 1433 (1963).

M. G. Holland, Phys. Rev. 132, 2461 (1963).
~ C. M. Bhandari and G. S. Verma, Phys. Rev. 138, A288

(1965).' C. M. Bhandari and G. S. Verma, Phys. Rev. 140, A2101
(1965)."Y. P. Joshi, M. D. Tiwari, and G. S. Verma, Phys. Rev.
{tobe published).

On account of the strong temperature dependence of the
phonon distribution function, one does not expect such
a weighted averaged value of the phonon velocity to be
a constant at all temperatures. According to Holland, '
the low-frequency phonons have an average velocity
that is more than two times greater than that of the
high-frequency phonons in silicon. We shall see later
that such a large difference between the two is not
justified. In fact, a proper distinction between the
phonon group and phase velocities is required to be made
for at least high-frequency phonons, and in this regard
the phonon velocity bears an ambiguous meaning.

Still more important is the fact that even at present,
we lack exact analytical expressions for the different
phonon relaxation times. On account of the complex
structure of the Brillouin zone and the strong tempera-
ture dependence of the phonon distribution function,
the relaxation time expressions have a complicated
dependence on the phonon frequency and the tempera-
ture T. These expressions cannot be of much help in
analyzing the thermal conductivity of solids even if
their exact functional forms are known. For practical
purposes, it is desirable to express the phonon frequency
and temperature dependence of the relaxation times by
simple exponents. This is not a very serious problem at
low temperatures, where the phonon scattering due to
crystal boundaries, and to isotopes and point defects,
etc. , is more important, since the corresponding relaxa-
tion times are sufhciently accurately known. At high
temperatures, the three-phonon processes dominate
over the others, and one has to be careful about the
accuracy of the corresponding relaxation time expres-
sions. Guthrie'2 has suggested that the temperature
dependence of the three-phonon relaxation times can
be effectively expressed by T™,where es is an exponent
that is a function of T. It is dificult to express m as a
function of temperature and to use it in the analysis of
thermal conductivity. One, therefore, has to seek an

"G.L. Guthrie, Phys. Rev. 152, 801 (1966).
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alternative. It should be noticed that Holland has not
made use of this fact.

In the present work, we have assumed a quadratic
expression for the phonon wave vector as a function of
the phonon frequency so as to be able to express the
phonon group and phase velocities as functions of the
phonon frequency. We have assumed that the Brillouin
zone is spherically symmetric, and that the two trans-
verse polarization branches are degenerate. We also
define diferent temperature ranges such that for each
range, one constant value of m is used in the three-
phonon relaxation time expressions. An application of
the formulation has been made to silicon, getting good
agreement with the experimental results. It has been
found necessary to include the four-phonon relaxation
times in the thermal conductivity analysis of silicon at
temperatures above 400'K.

FORMULATION

Callaway' expressed the lattice thermal conductivity
as a sum of two terms. One of the terms, which we shall
refer to as the first one, consists of a single integral and
has the structure that one would have obtained if one
had ignored the fact that the normal processes by them-
selves do not cause any thermal resistivity, and had
added the various inverse relaxation times as usual.
The second term, usually called the correction term,
has a much more complicated form and is obtained
because the normal and umklapp processes behave
differently. However, Callaway has shown that the
correction term is usually small compared to the first
term at low temperatures, where the phonon scattering
due to the crystal boundaries and isotopes, etc. , is
important. We believe that the three-phonon umklapp
processes dominate over the normal ones at high tem-
peratures, so that the correction term is again small.
We shall, therefore, neglect the correction term at all
temperatures, although it definitely forms a finite
fraction of the total. The contribution of the optical
phonons, if any, is also assumed to be negligible. We
further assume that the Brillouin zone is spherically
symmetric, and that the three polarization branches,
one longitudinal and two transverse, contribute sepa-
rately to the thermal conductivity. The contribution of
each branch can be given by an expression of the form

1 $2~2 ghee/kT

Tg'Vg g dg,
6ws Pz's (ca&a/kT 1)s

where the integration is performed over the first
Brillouin zone. Here v, is the total relaxation time, which
will be defined later, and ~, is the phonon group velocity
corresponding to the polarization branch under
consideration.

In real crystals, the two transverse polarization
branches are degenerate in only certain symmetry direc-
tions. Nevertheless, the phonon frequencies of the two

q=a&v '(1+u~). (2)

An equally good choice is to take a cubic term instead
of the quadratic one in Eq. (2). This would modify the
results to some extent, but the main features would
remain of the same nature. Moreover, whether a
quadratic or higher degree term should be taken in

Eq. (2) will depend upon what choice proves to be the
best representative of the observed phonon dispersion.

It is evident that in Eq. (2), the constant c is the
low-frequency phonon velocity corresponding to the
polarization branch under consideration. The constant
u is evaluated by using the fact that the total number of
phonon states per polarization branch in a given crystal

'I J. de Launey, in Solid State Physics, edited by F. Seitz and
D. Turnhull (Academic Press Inc. , New York, 1956), Vol. 2,
p. 237.

~4B. N. Brockhouse, in Aarhus Summer School Lectures, D'63
edited by Thor A. Bak (W. A. Benjamin, Inc., New York, 1964),
p. 22i."P.S. Yen and Y. P. Varshni, Phys. Rev. 164, 895 (1967).

'6 J. L. Waren, J. L. Yarnell, G. Boiling, and R. A. Cowley,
Phys. Rev. 158, 805 (1967)."W. J. L. Buyers, Phys. Rev. 153, 923 (1967).

'8A. A. Maradudin, in Aarhus Summer Schoo/ Lectures, 1963
edited by Thor A. Bak (W. A. Benjamin, Inc., New York, 1964),
pp. 466, 499.

branches are usually very near to each other and much
diferent from the corresponding longitudinal phonon
frequency for most of the directions of the wave vector
in the reciprocal lattice space; it is often a good assump-

tion to take the transverse polarization branches to be
degenerate. The contribution of either of the transverse
polarization branches is then given by the same

expression.
It is desirable to express Eq. (1) as an integral in

terms of the phonon frequency co. A convenient approxi-
mation that is often used is to assume a linear relation
between co and q, which is, in fact, far from reality.
~ is generally a function of the magnitude as well as
the direction of the wave vector g. Under the present
assumption that the Brillouin zone is spherically sym-

rnetric, ce is a function of q only. Looking at Eq. (1),
one finds it convenient to express g as a function of co.

This function has a form that is a characteristic of the
crystal, and is determined by its structure and con-
stituting atoms. Thus, for a monoatomic one-dimen-

sional crystal lattice with nearest-neighbor force
constant" only, cv is a sine function of q. Experimental
studies'4 '~ of the dispersion curves show that the
phonon frequency ~ is generally an increasing function
of q, with the co-q curve gradually bending towards the

q axis. There are, however, exceptions to this rule. "
It appears that it is possible to express q as a poly-
nomial in co. In order to avoid the determination of the
parameters that would be involved, and the complica-
tion that would arise in evaluating Eq. (1), we shall

write q as a very simple function of ~. Since we are
interested in showing how such an approximation leads
to better results, we assume
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is equal to the number of the lattice points available.
If e is the number of lattice points per unit voll&me of
the crystal, then one can show that

u =or,„—'L(6nrr') '/'ir/or„— 1j,
where the subscript m denotes the maximum value of
or. Subscripts L and T should be attached to n, v, and

in Eq. (3) to specify the polarization branches.
The phonon phase velocity e„and the phonon group

velocity v, are given by or/q and Bor/Bq, respectively.
Using Eq. (2), one can express ir~ and p, in terms of or.

We rewrite Eq. (1) as

~4e'
7 C (~&1

~ s (ez 1)s

where p=nk/A.

RELAXATION TIMES

There can be many phonon-scattering processes that
lead to thermal resistivity in semiconductors. It has
been shown that the thermal conductivity at the
lowest temperatures can be explained very well on the
basis of the boundary scattering. " " According to
Casimir, ' the boundary scattering relaxation time 7-&

"H. B. G. Casimir, Physica 5, 595
20R. Berman, F. E. Simon, and

Soc. (London) A220, 1/1 (1953).
2~ R. Berman, E. L. Foster, and J.

(London) A231, 130 (1955).
2' P. Carruthers, Rev. Mod. Phys.

(1W8).
J. M, Ziman, Proc. Phys.

M. Ziman, Proc. Phys. Soc.

33, 92 (1961).

where x=or/1//pT and 0=or k//p. Equation (4) differs
from that given by Holland' in that here we have
w, /n„' instead. of 1/c. It is evident tha, t c„'/ir, has the
dimensions of velocity and is a constant for a given
phonon. But it is not proper to call c„'/c, the phonon
velocity, since it is not a velocity in the ordinary sense.
According to Holland, e, the phonon velocity, which
occurs in place of c~'/~„ is a sufficiently rapidly de-
creasing function of cu such that its averaged value for
low-frequency phonons is more than two times larger
than that for the high-frequency phonons. Since ~,
decreases more rapidly than v„as co increases, one cannot
expect the high-frequency value of c„'/c, to be very
small compared to the low-frequency value. This point
is clear at least for those phonons for which v, tends to
zero. Using Eq. (2), one can express rr„'/c, in terms of or

and find that this does not vary rapidly with co. 'tA'e

have found that c~'/rr, is almost a constant for the
longitudinal phonons, and that its value at co=co
is about one and a half times the low-frequency value
for the transverse phonons in silicon.

Finally, from Eqs. (2) and (4) one obtains

/p'T' e/r x'e' (1+PTx)'
E'= —— — T. — dx, (5)

6rr'vh' p (e' —1)' (1+2PTx)

is given by 1./ir, where c is the phonon velocity and I is

a chracteristic length associated with the specimen
under study. Since boundary scattering is important
for low-frequency phonons, it is immaterial whether
'U ls thc gloup ol phase velocity. It is sufficlcnt to use a
low-frequency value for v. Holland has used the same
weighted averaged value of e for all the polarization
branches. There seems, however, no reason why v.

&

should be the salne for all phonons. Studying Casimir's
derivation, we believe that it is a better approximation
to use the respective low-frequency velocity for the dif-

ferent polarization branches. That this is a better
choice also appears from the recent work of Hamilton
and Parrott. "The characteristic length L is determined

by crystal dimensions and is assumed to be the same
for all phonons. The value of L given by theory usually
does not give a good agreement with experiment. It is
better to treat L as an unknown parameter which is

assigned the value that gives the best fit to the experi-
mental results. This value differs from that given by
theory by a factor approximately equal to unity.

The scattering due to isotopes, point-defects, etc. ,
is the most important relaxation process at tempera-
tures about the conductivity maximum. At such tem-

peratures, the high-frequency phonons are not excited
to a large extent, and it is reasonable to use Acv4 for
the corresponding inverse relaxation time rp~ . This
expression was initially obtained by Klcmens, '4 and
is particularly valid for low-frequency phonons. ""
A careful analysis of clemens's approach shows that A

should increase with frequency, and that it should be
considerably different for that longitudinal phonon
whose frequency lies above the maximum of the
transverse polarization branches. As the longitudinal
phonons are found to contribute little" to the thermal
conductivity, one need not take this possibility into
consideration.

The three-phonon processes dominate over the
others at high temperatures. These processes are not
negligibly small at low temperatures, and play an
important part even in the vicinity of the conductivity
maximum. It is dificult to give a simple expression for
the three-phonon relaxation time 7 Qph In general, 73ph is
different for the longitudinal and the transverse
phonons. Many authors have calculated approxi-
mate expressions for 7&ph Their results suggest that
it is a reasonably good approximation to assume the
frequency dependence of r3ph to be co and cv' in the

'3 R. A. H. Hamilton and J. E. Parrott, Phys. Rev. 178, 1284
(1969).

s4 P. G. Klernens, Proc. Phys. Soc. (London) 68, 1113 (1955).
» B. K. Agrawal, J. Phys. C2, 252 (1969).
2'P. C. K. Kwok, in Solid State E'hys~cs, edited by F. Seitz,

D. Turnbull, and H. Ehrenreich (Academic Press Inc. , New York,
1966), Vol. 20, p. 214."P. G. Klemens, in Solid State E'hysics, edited by F. Seitz
and D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7.

'8 P. G. Klemens, Phys. Rev. 119, 507 (1960).
C. Herring, Phys. Rev. 95, 954 (1954)."P. G. Klemens, Proc. Roy. Soc. (London) A208, 108 {1957).
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(6)g 4&h =BIIG) T ~

The total relaxation time v., is now given by

Tc —rB +rpt +rsph +&4ph (7)

where the g's have been de6ned above. In order to
specify the polarization branches, one has to attach
subscripts I and T to the terms occurring in Eq. (7).

In view of the assumed degeneracy of the transverse

"E.F. Steigmeier and I. Kudman, Phys. Rev. 141, 767 (1966)."E. F. Steigmeier and I. Kudman, Phys. Rev. 132, 508 (1963).
"C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134, A1058

(1964)~

'4 I. Pomeranchuk, Phys. Rev. 60, 820 (1941}."I.Pomeranchuk, J. Phys. USSR 4, 259 (1941}."I.Poraeranchuk, J. Phys. USSR 7, 197 (1942l.

case of transverse and longitudinal phonons, respec-
tively. We have neglected the exponential factor in the
expression for r»h given by Klemens, "and assume that
the normal and umklapp processes have the same fre-
quency dependence. Truly speaking, the thermal con-
ductivity is not very sensitive to the frequency de-

pendence of 73ph particularly at high temperatures.
This is evident if one neglects all the other relaxation
times at high tempera, tures and evaluates Eq. (5). On
the other hand, the thermal conductivity is very much
sensitive to the temperature dependence of
Guthrie" has pointed out that a fixed temperature
dependence of the type T' or T4 is valid for low tem-
peratures only, and that it changes as the temperature
does. He has shown that v-»h

—' can be effectively taken
proportional to T, where m is an exponent that depends
on the temperature. The low-temperature values of m
are 3 and 4 for the longitudinal and the transverse
phonons, respectively, and m tends to unity at high
temperatures, " irrespective of the phonon polarization
state and the nature of the process, normal or umklapp.
These results are in contradiction to Holland's' assump-
tion. It is very difficult to determine an exact variation
of m with temperature. A possible approximation,
crude yet instructive, is to define temperature ranges
for each of which a constant value of m may be taken
as valid. This apparently leads to a large number of
parameters. These parameters are not arbitrary, how-

ever, since the relaxation time expressions should be
smoothly joined at the temperatures that define the
temperature ranges. Thus, a single parameter is asso-
ciated with v-sph.

It has been observed"" that at temperatures of the
order of 1000'K, the thermal conductivity falls with
temperature more rapidly than expected if only three-
phonon processes are considered. Such behavior of the
thermal conductivity can be explained in terms of an
additional phonon-scattering process that is more
strongly temperature-dependent than the three-phonon
processes. We believe that the four-phonon processes
play an important role at high temperatures. ""This
point was erst suggested by Pomeranchuk" " who
calculated r4ph, the four-phonon relaxation time, given
by

APPLICATION TO SILICON

The lattice thermal conductivity of silicon has been
analyzed by numerical integration using the relaxation
times listed in Table I. An order-of-magnitude estima-
tion of the parameters is obviously not difFicult. An
exact estimation, however, requires simultaneous con-
sideration of all the relaxation times, and one has to
perform complicated integrations numerically. We
have done this to obtain a final set of parameters that
lead to the best fit to the experimental results. "'~ '9

Table II lists all the parameters used. Holland has
already given values of O'I. and 0'r, making explicit
use of the phonon dispersion in silicon. 4 He has also
calculated the low-frequency phonon velocities,
and v~, using elastic constants of silicon. We have made
use of the atomic weight a and density p of silicon, and
of Avogadro's number, to calculate the number of
lattice points per unit volume of silicon crystal, keeping
in mind that there are two atoms per lattice point.
Finally, nr, and n& are calculated making use of Eq. (3).

The low-temperature data of Holland and Neuringer'
require a value of I. that is slightly different than that
given by theory (Table II). Glassbrenner and Slack"
have reported a theoretical value of L, that is an order
of magnitude larger than what our analysis requires. 4'

TAsl, E I. Inverse relaxation time expressions used ln the analysis
of the phonon conductivity of silicon.

Type of
scattering

Boundary'
Isotope, etc."
Three-phonon'

Four-phonond

Symbol

TQ
1
—1Tp't —1T3ph

T4ph

Tl ans-
verse

vz/J.
ACo4

By coT4
BI'IGJT
BggGOT

B+3coT
BIIQp T

Longi-
tudinal

vJ./I.
ACO4

BI.u'T'
BIQ) T
Bl ]co T
BggGD T

Temperature
range ('K)

all temperatures
all temperatures
T «43
43 ~& T ~&190
190 ~& T ~&280
280~& T
High temperatures

a See Ref. 19.
b See Ref. 24.
e See Refs. 8, 27-30; the temperature dependence of the three-phonon

relaxation times is based on the results of Ref. 12.
d See Refs. 34, 35.

H. R. Shanks, P. D. Maycock P H Sidles and G
Danielson, Phys. Rev. 130, 1743 (1963).

38 M. G. Holland and L. J. Xeuringer, in Proceedings oj the Inter-
national Conference on the Physics of Semicondlctors, Exeter,
196Z (The Institute of Physics and The Physical Society, London,
1962), p. 475.

» W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves,
and D. L. McElroy, Phys. Rev. 167, 765 (1968).

40 B. N. Brockhouse, Phys. Rev. Letters 2, 256 (1959)."The reported value of L appears to suffer from a misprint.
This value is so large that its use in the analysis leads to a par-
ticularly large phonon conductivity at low temperature, with the
result that one is compelled to seek some extra scattering mech-
anism, which we do not believe to exist.

branches, the total lattice thermal conductivity E is
given by

E=E'r,+2Ep. (g)
Using Eqs. (5) and (7), explicit expressions for Er,
and K& can be written. We notice that K involves only
two integrals corresponding to KI. and E~.
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TAsLz II. Parameters used in the analysis of the
phonon conductivity of silicon.

a(at. wt)
p (density)
ep
O~L

Pp
'VL

Lc
Ie
A
By
BL
J3H

28.1
2.33 g cm '~
210'Kb
570'Kb
5.86)&10' cm sec '
8.48)&10' cm sec ' b

51.9)&10 "sec
3.94)&10» sec
2.600(0.295) cm ~

0.716(0.660) crn ~

0.248&10 4' sec'
4.17)(10 i3 deg 4

1.54&&10~' sec deg '
1.70)&10 "sec deg~

a See Ref. 39.
b See Ref. 8.
6 See Ref. 33.
~See Ref. 41; the bracketed value is experimental and the other is

theoretical.
e See Ref. 38.

The evaluation of A is often carried out by binomially
expanding the expression for T, at low temperatures,
treating Tp& as a small quantity compared to Tg '.
It is a question of common reasoning that such expan-
sion is not valid even at low temperatures, since the
inequality Tpp QTQ does not hold for all values of x
lying within the integration limits. A binomial expan-

sion is not valid particularly when the upper integra-
tion limit is replaced by infinity. What one can do is to
evaluate the integrals numerically without any approxi-
mation of this type. Nevertheless, a binomial expansion
of T, is valid at high temperatures, where Tpp (T3ph
is satisfied for values of x within the integration limits.
The value of A given in Table II leads to a good agree-
ment with the data of Glassbrenner and Slack."The
dashed curve in Fig. 1 is the fit with the data of Holland
and Neuringer. " The agreement is poor. We have
observed that a 20% lower value of A proves satis-
factory for these data. The difference between the two
values of 3 that the two sets of data require may be due
to the different crystalline structures and impurity
contents of the corresponding specimens.

It has been observed that good agreement with
experimental results is obtained only up to about
400'K, if one does not consider the four-phonon proc-
esses. The dotted curve in Fig. 1 shows the possible
behavior of E in the absence of four-phonon processes.
By taking T4ph into consideration, one can obtain agree-
ment with experiment up to temperatures as high as
1400'K.

We have found that the agreement of theory with
experiment requires a small contribution of the longi-
tudinal phonons. At low temperatures, E~ is about

&0-2

e-

~ ~ eH+~~g
'/

HOLLANn 4 MEUAiNGER

GLASSBRENNER g SLACK

o FULKERSON ET 4L.

)0-

Q0
6
%7

~ 2-
hC

I
II

I
I
I

FIG. 1. I.attice conductivity of
silicon. The solid curves are the
analysis of the data of Glass-
brenner and Slack. Curves marked
with EL and 2Ez represent the
contributions of the longitudinal
and the transverse phonons, re-
spectively. The third solid curve
represents the total lattice con-
ductivity and is equal to E'L+2Ez.
The dashed and dot-dashed curves
are the analysis of the data of
Holland and Neurin ger. The
dashed curve corresponds to a
value of A equal to that given in
Table II; and the dot-dashed
curve, to a 20% lower vaiue. The
dotted curve shows the trend of
the theoretical results in the
absence of four-phonon processes.
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one-fourth of 2Ez, the transverse contribution. Such a
result is expected because of the fact that there are two
transverse branches and that the phonon velocity e&

is smaller than eL,. In other words, the transverse
phonon states are more densely packed in energy space
than the longitudinal phonon states. At high tem-
peratures, Kz, is below 10%%u~ of the corresponding trans-
verse contribution. These results are in agreement with
the recent results of Hamilton and Parrott" in the case
of germanium. That the transverse phonons give a
major contribution to lattice thermal conductivity
was also pointed out earlier by Parrott. "It should be
noticed that in Holland's analysis, the longitudinal
contribution is small compared to the transverse one at
low and high temperatures only. At about 100'K,
the two are comparable. In Fig. 1, we have plotted
EI. and 2ICp for comparison. It will be noticed that
at high temperatures, the two have almost the same
slope, and it is not possible to decide from the high-
temperature thermal conductivity data how much one
or the other of the two contributes.

Finally, one point that deserves attention is that it
is difficult to simplify the integral in Eq. (5) to express
E as a simple function of temperature. This is because
of the fact that each of the relaxation times is dominant
over the others at one temperature or the other. At
high temperatures, one can approximate x'e*/(e* —1)'
to unity for x&1. The boundary scattering may be

~ J. E. Parrott, Proc. Phys. Soc. (London) Sl, 726 (1961).

neglected. The integrals so obtained can easily be
evaluated analytically.

CONCLUSION

The most signihcant point of the present analysis
is the introduction of an arbitrary relation between the
phonon frequency and the phonon wave vector. We
do so because we believe that it is possible to find some
empirical relation between ~ and q that represents the
phonon dispersion in a crystal most effectively so far as
thermal conductivity is concerned. We have indicated
that the most important relaxation process is the three-
phonon one, and that one has to be particularly careful
about its temperature dependence. In the present case
we have written the lattice conductivity as the sum of
two integral expressions rather than three, as done by
Holland, ' to represent the separate contributions of the
longitudinal and transverse phonons. It is recalled that
the transverse phonons give a major contribution to
the lattice conductivity of silicon at all temperatures.
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