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Energy-Dependent Relaxation Times in Electroacoustic Absorption*
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The effect of energy-dependent relaxation times in the theory of the electronic absorption of acoust.'c
waves in nondegenerate semiconductors is considered in this paper. This effect becomes negligible in the
two limits of low (gl«1) and high (car))1) frequencies, but for "intermediate" frequencies relative differences
as high as 100'Po have been found in the absorption coeKcient for the two cases considered here. These two
cases are for r (e) as given (i) by acoustic-phonon scattering and (ii) by ionized-impurity scattering. The
comparison is made with the simple case of constant relaxation time.

I. INTRODUCTION

HE electronic contribution to the absorption of an
ultrasonic wave in semiconductors has been ex-

tensively investigated in the last few years. In the
earliest theory by Hutson and White, ' the electronic
transport phenomenon is handled through a constant
conductivity ao, and the diffusion is included through
the Einstein relation for static field. These assumptions
confine the validity of the theory to the range of fre-
quencies such that q/«1, where q is the acoustic wave-
vector, and / is the mean free path of the carriers.
Subsequent theories' ' were similar in methodology to
the theoretical analysis of the electronic attenuation in
metals. These theories have been extended later' to
include the possibility of nondegenerate distribution
functions. However, no theory at present has taken into
account the fact that the electronic lifetimes vary
greatly with energy in semiconductors, and because of
the nondegenerate distribution all electrons are avail-
able for interaction with the ultrasonic wave. The
purpose of this paper is to include the eRects of elec-
tronic relaxation times varying with energy in a theory
of ultrasonic attenuation appropriate to nondegenerate
semiconductors.

Taking the range of relaxation times 7 into account
appears necessary because of the importance of 7. in the
previous theories. The attenuation is quite different
when ql(1, ql)1 and osr(1, or car)1, where to/'2sr is
the sound frequency. Since the range in relaxation times
of the electrons which are strongly coupled to the
ultrasonic wave is at least one order of magnitude and
varies with the frequency, an appreciable fraction of
the electrons may have values of q/ or ~z different from
what is obtained taking a constant ro as given by the dc
conductivity 0-0.

In addition, large changes in ultrasonic attenuation
and amplification have been observed in the presence

* Work supported by the Advanced Research Projects Agency
of the Department of Defense.

)Now at Istituto di Fisica dell'Vniversita', Modena, Italy.' A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962).
2 H. N. Spector, Phys. Rev. 125, 1192 (1962); 127, 1084 (1962).
~ S. G. Eckstein, Phys. Rev. 131, 1087 (1963).
~ H. N. Spector, Solid State Phys. 19, 291 (1967).

j.

of a longitudinal magnetic field. ' ' Due to the geometry
of the self-consistent field, no such effect is predicted by
any existing theory based on constant relaxation times.
Good agreement with experiments is achieved, however,
by taking into account the effect of the magnetic field
on the energy-dependent relaxation time of the carrier. ~

A detailed analysis of the effect on the electronic
attenuation due to the energy dependence of the relaxa-
tion time is more complicated than simply averaging
the z-dependent attenuation over the energy. The
absorption coefficient n can be easily determined in
terms of two frequency-dependent transport coeK-
cients; the conductivity and the diffusion constant.
These two coefficients depend in different ways upon the
relaxation time and therefore they must be evaluated
separately over the distribution function of the
electrons.

In the q/«1 approximation, as mentioned above, the
two transport coeKcients are related to each other
through the Einstein relation and they have the same
value as for a static uniform field. In this case no
difference is expected for energy-dependent 7. The limit
of very high frequency is the same as the limit of
infinite z for all electrons and again no effect of lifetime
range is present. However, for "intermediate" fre-
quencies, where q/&1 and cog&1 neither one of these
two limits are applicable. ' Under these conditions we
expect the dependence of the electronic relaxation time
v on the energy to aRect the final result of the theory.

In the evaluation of the transport coefficients, the
weighting of 7- over the distribution function is charac-
teristic of the dominant electron scattering mechanism.
We consider two particular cases where the electron
mobility is limited primarily (i) by acoustic-phonon
scattering and (ii) by ionized-impurity scattering. The
relative difference of the absorption coefficients in these
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cases reaches values of 100%%u~ in the region of "inter-
mediate" frequencies, while at the two limits of low and
high frequencies the previous results of the constant z
theories are reproduced, as expected.

In Sec. II we review the general formal theory for the
electronic absorption of an acoustic wave in a non-
degenerate semiconductor. The theory is linear in the
acoustic amplitude and it follows the lines of the well-

known paper by Cohen, Harrison, and Harrison. ' In
Secs. III—V we give explicit solutions for the case of 7.

due to acoustic-phonon scattering (Sec. IV) and due to
ionized-impurity scattering (Sec. V); for comparison we
include (Sec. III) the results obtained in the case of
constant 7., already given in the literature. ' "In Sec. VI
we present some numerical results for a physical
example; these results are analyzed in Sec. VII, where a
detailed physical discussion of the whole phenomenon
is given.

where

and

j = a (E+Cq'u/ieto) enrv, R—,

'vt fpdv

KTq v, +i/(qr) v, —

(4)

Here fp is the Maxwell-Boltzmann distribution func-
tion; n& is the deviation of the carrier density n from its
average value np, e, is the velocity of sound; v is the
electron velocity; E is the Boltzmann constant and T
is the absolute temperature; C is defined in such a way
that q C «=qCu; and the direction s has been taken
parallel to the wave vector q. In Eq. (3) we have con-
sidered the piezoelectric and deformation potential
interactions dominant. All other effects such as collision
drag or purely electromagnetic forces are considered
negligible.

According to Eq. (3) the ac current which is generated
by the wave is parallel to s and its value is given by

II. FORMAL THEORY OF ELECTRO-
ACOUSTIC ABSORPTION

'l. &~ pd&

tor[v, +i/(q r) v,]— (6)

The model considered in this paper consists of an
acoustic wave with velocity field

«(r t) —«ei (q r (u t)—
propagating in a continuous elastic medium with back-
ground charge density npe and np carriers per unit
volume with charge —e and scalar effective mass m,

obeying classical statistics. The elastic medium interacts
with the carriers through its charge, a deformation
potential, and a piezoelectric polarization. In non-

degenerate semiconductors we can neglect the first
interaction with respect to the last two. Furthermore,
we can assume that the force acting on the electrons due

to the acoustic wave is parallel to the wave vector q;
this is always true for deformation potential inter-
actions and for non-negligible piezoelectric forces. Con-

sequently, no magnetic field accompanies the wave, and
the total force acting on the electrons can be written as

F= —e[E+ (q C «/ieto) qj, (2)

where E is the self-consistent electric field and C is the
deformation-potential tensor.

By means of Chambers' method, "with an electronic
relaxation time 7- considered constant during each

single portion of an electronic path included between
two successive collisions, we can write the electronic
distribution function to first order in n as'

nq

f(r,v, t) =fp 1+—
n torp[v, +t'/(qr) v.g-

e7. ZV see Cq'u
I
E+ (3)

KT tor[v, +i/(qr) v,jk—
9 M. H. Cohen, M. J.Harrison, and W. A. Harrison, Phys. Rev.

117, 937 (j.960).
"H. N. Spector, Phys. Rev. 165, 562 (1968).
tt R. G. Chambers, Proc. Phys. Soc. (London) A65, 458 (2952);

Proc. Roy. Soc. (London) A238, 344 (2957).

The constitutive equation (4) can be solved with the aid
of the continuity equation and the Maxwell equations.
The resulting self-consistent field is

Equations (4) and (7) can now be used together with the
continuity equation to obtain the dissipated power per
unit volume and the absorption coe%cient o., which then
takes the familiar form

t'ttqC) p o.'
e+( [

Re ——t-
%4~e)P&s &p-3

where p is the density of the sample.
This expression gives the electronic acoustic absorp-

tion, once the transport coefficients in Eqs. (5) and (6)
are evaluated. The angular part of the integrations in
those equations can be easily accomplished and the
resulting forms are particularly suitable for numerical
integration,

2i

op 7l gtp

p+1
xp pin — —2 e *dx,

p —1

oo &1/2 p+1
pin e dg, (10)

iequ+i—o'Cq'u/(eto)

OP O OP ZCO G07

where o'=o/(1 —Jt') and co4 .
v/ trpivs the dielectric

relaxation frequency; o.
p is the dc conductivity of the

sample; I(, is the dielectric constant and |.'is the appro-
priate piezoelectric constant, de6ned in such a way that
the piezoelectric polarization, by assumption parallel
to q, is given by

P = —(u/v, )e.



RELAXATION TIMES IN ELECTROACOUSTI C ABSORPTION 699

where
x= e/KT,
p= p(x) = u, /s+i/q/,
i=l(x) =or,

/p= &p~p,

wo
——(2KT/m) 't'

rp= 0'pm/rtoo

e being the electronic energy.

III. CONSTANT RELAXATION TIME

When ~ is equal to a constant zp, the integrals in Eqs.
(9) and (10) can be exactly evaluated or reduced to
well-known special function. The results are a special
case of the transport coeS.cients given in Refs. 8 and
10. We report them here for completeness

o/op o ./——r p (2/qlp)
——g(sr' 'gw(g) ig, (1—1)

R=R'= (~r )p-'L~'»g w(g) ij, — (12)

t 4pr~' o, eo+(ttqC/4re)'
n~ ""'& / p:1+(./ )'L1+(q/~. )'3'

P4~q ' ~o e'+(~qC/4~e)'
tro —

~

—
~

pn'"q4) , (18)'""' E t4 ) pv, o (4o„/4o)'L1+(q/kg)')'

7=7 6 =7~88 Vq (19)

as given by the deformation potential interaction with
thermal acoustic phonons. ' In this case, it is convenient
to first perform the integration in energy and then in
the polar angle in Eqs. (5) and (6). After the first
integration the resulting expressions are:

where k~ is the reciprocal of the Debye length

r, = (~KT/47m pe') "'

IV. ACOUSTIC-PHONON SCATTERING

For acoustic-phonon scattering we assume a relaxa-
tion time of the form

where

g = (O./&o) (&+i/4oro)

cc e
—tdt

w(s) =e—"erfc( —is) = Im(s) )0. (13)
7i p

and w is simply related to the error function" (erfc)

where

0-" 4i
y'R(y) dy

~o ~'"q/p -~

2i
y~(y) dy,

607 g

(20)

(21)

It is of some interest to note that the following
relationship exists between the transport coeKcients
(11) and (12):

F(y) = (r/2s) {1—'7r" 'r+r' —rr't'r'-
+isrr4w( —r)+r4e r'Ei( —r') ), (22)

aild

R= —i(q/s, )D, (15)

o. /op=2(o, /op)'(1+i/4orp)R . (14)

Since E is related to the diffusion constant D by the
equation

r=r(y) = .
i/ql. —y

/a=&p7a)

s=os/op ~

(23)

Eq. (14) reduces to a generalized Einstein relation
between the diffusion constant and the mobility p, .'

w is defined as above, and Ei(s) is the exponential
integral function

t = —(eD/KT) (1 i4oro) . —(16)

This expression has been obtained by Cohen, Harrison,
Harrison' for Fermi statistics. The transition to classical
statistics can be simply achieved with the substitution
3E& —+ Et, where Ep is the Fermi energy of the system,
due to the particular ways in which the two distribu-
tions depend upon the local density of carriers. However,
for energy-dependent relaxation times there is no such
simple relation between p and D as w enters in different
ways in the integrals for 0- and R.

Substitution of Eqs. (11) and (12) into Eq. (8) gives
the absorption coefficient in terms of known quantities
for the case of constant relaxation time. The final
expression takes the forms given by Hutson and White'
and by Spector" for q/p((1 and q/p))1, respectively,

'~ Handbook of Matlzematical Injunctions, edited by M. Abramo-
witz and I.A. Stegun (National Bureau of Standards, Washington
D. C., 1964)."H. N. Spector, Phys. Rev. 125, 1880 (1962).

&t(s) = —dt.
t

arctan(q/. )~A 3

(ql.)' q/,

arctan(q/, ) (q/, )4

E1+(q4)'1'
arctan(q/, ) 1 (q/, ) '

(24)
ql, 2 1+(ql,)'

gp

—3$2 1—

3i(+sr)s

'4 See, for example, W, Shockley, Electrons and Holes in Semi-
comdlctors (D. Van Nostrand, Inc. , Princeton, N. J., 1950).

In the Appendix it is shown that it is a very good
approximation for all frequencies to take only the 6rst
three terms in Eq. (22) to evaluate o." and R". When
this is done, the following results are obtained after
integration in 9:



700 C. JACOBONI AND E. W. PROHOFSKY

arctan(q/. )
E.' =— (q/ )~

1+(q/ )'
2i

7I MT~

arcta, n(q/. )
X

(q/. )'—s' — . (25)
[1+(q/„) ']'

Substitution of these results into Eq. (8) gives the
acoustic absorption due to electrons interacting with
acoustic phonons.

For q/, «1 the resulting expression is equal to Eq. (17)
when we take into account that, to obtain the same dc
conductivity, r must be taken equal to 4' ' 7p. This
result is expected, as mentioned in the Introduction.

For cow.&)1 the result is again what is expected for
the limiting case of infinite collision time, which is the
r-independent expression given in Eq. (18). However,
the condition q/&)1. is not enough to ensure that the
infinite collision-time approximation is valid; in fact, in
the case of q/&)1 and o&r,«1, the expression for n
reduces to

4irq' op ~'"
q e'+(~qC/47re)'

~A
qla))1 z ) pp 3 8 ) (pp / )2[1+(q/P )P]P

(26)

which diifers from Eq. (18) by a factor of 47r. We return
to this point in the final discussion.

V. IONIZED-IMPURITY SCATTERING

When the dominant scattering mechanism for the
electrons in the crystal is the Coulomb interaction with
ionized impurities, the relaxation time, as given by
Brooks and Herring" is

Instead, to simplify Eqs. (9) and (10), we note that o,
is much less than v in most of the important range of
integration, so that the logarithmic term in these
equations can be expanded to first order in s/x"'.

Two problems can arise with this expansion. First, if
G0T is much larger than unity when x=s', then a reso-
nant contribution to the logarithmic term comes from
a range of x in which the expansion is inaccurate.
However, when x=s', P is much less than unity in
practical cases. For P«1, the denominator in Eq. (27)
reduces to 1// so that r =r;p /8(KT) x'1P. For g=g
pearl is then of the order q/;e, '/8, where

1;=Vpv;

and
e, = e,/KT.

For the validity of our expansion we therefore assume

q/, «8/e, '. Since in most of the cases of practica, l interest
e,«1, the condition stated above holds even for values
of ql, much larger than unity.

The second problem which can arise with the ex-
pansion of the logarithmic term is related to the con-
vergence of the integrals. Even though the expression

p l (I+1)/(P —1)—2

vanishes at x= 0 for v = 7-, the linear expansion becomes
infinite as x —+ 0. However, the other factors present in
the integrals for the transport coefficients ensure their
convergence.

After a few simple calculations the resulting expres-
sions are

arctan(q/r))

gl»

where

(27)
2gl»

+s' arctan(q/r) — e—*dg, (30)
1+(q/ )'-

r;= r'(2m)"'[(KT-)'~'/7re'lV1 j
P=4p/p„p, = h'/2mr, ',

(28) o 4&
Im—

.(29) o.
p ir'1Pq/p

arcta, n(q/r)
x'~' 2— —1

qt»

and .V» is the density of ionized impurities.
In the evaluation of the dc conductivity o'p, fol' KT/A

greater than the plasma frequency o&„= (4iro.p/Krp)'1,
the denominator in the right-hand side of Eq. (27)
can be taken constant at the value of // for which
the electronic energy is 3ET. When this is done,
the normalization to 0-p provides the value of the con-
stant E». On the other hand, when u is not zero, the
condition for the validity of this approximation is more
involved because the range of electronic energies which
is most important in the determination of the transport
coefficients depends upon the value of the frequency.
Furthermore, the use of such an approximation is not
of much help, if any, in the evaluation of the integrals.

~'H. Brooks, Advan. Electron. Electron Phys. 7, 85 (1955).

Re(Rr) = x'"

arctan(q/r)
- e 'dx, (32)

1+(q/') '-

2
Im(Rr) =

's

x arete (qv))

qV ql»

ql»
+S2 e

—'dx, (33)
1+(q/ )'

s' (q/r)'
+ — e *dr, (31)

1+(q/r)2 gll2 1+(q/1)2
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where lr =err. Making use of the conditions ql;((Se, and
v,((v again, the terms proportional to s' in Eqs. (30),
(31), and (33) may be neglected. If what is left is then
substituted in Eq. (8) for cr, we obtain

10

10

cr'= cr) X$.(q/;, e,), (34)

where cr~ is the expression (18) for cr at the limit of
infinite r, and

(R(q/„, e,) =
~I/2

"arctan(q/')

VI. NUMERICAL EXAMPLE

A numerical example has been fully developed for
n-type GaAs at 77'K. To avoid complications with
mixed frequency dependences, we considered a trans-
verse wave propagating along a L110] direction, with
polarization in the t0011 direction. In this case no
deformation potential interaction is present (C= 0) and
e=e~4. The following set of parameters were chosen:
crp=2X10" sec ' np=1. 7X10"cm ', ,v=3.3 5X1 Oc /m

TABLE I.Values of the ratio R ' for several values of qt; ' and e,."

0.01 0.05 0.1 0.5 1.0

0.01
0.02
0.04
0.07
0.1
0.2
0.4
0.7
1.0
2.0
4.0
7.0

10
20
40
70

156
78.4
39.5
23.0
16.5
9.13
5.53
4.01
3.39
2.64
2.24
2.06
1.99
1.92
1.92
1.95

116
58.0
29.4
17.3
12.5
7.14
4.51
3.39
2.93
2.37
2.07
1.94
1.89
1.85
1.85
1.88

98.0
49.2
25.0
14.8
10.8
6.28
4.06
3.10
2.71
2.23
1.98
1.86
1.82
1.79
1.80
1.82

57.9
29.2
15.1
9.17
6.86
4.23
2.93
2.36
2.12
1.83
1.67
1.59
1.56
1.51
1.48
1.46

41.7
21.1
11.0
6.85
5.21
3.34
2.41
1.99
1.82
1.59
1.46
1.39
1.36
1.31
1.28
1.27

a See Eq. (&5).

arctan(q/r)) x
1—

~

—e-'dr. (35)
0 qlr /q/r

In deriving Eq. (34) we used the condition s((1 and the
assumption was made that when q) 0&, then pip))$. The
simplification based on this assumption, which is
generally valid in all cases of interest, is equivalent to
neglecting the term 1 in the denominator of Eq. (17).
See also the discussion in Sec. VII.

The ratio (R has been evaluated numerically for
several values of ql, and e„and the results are shown in
Table I. It is interesting to note that in the region where
q/;))1 (but cor, (1),61 is close to a constant value, and
that if ql is constant in Eq. (3.35), we obtain for q/))1
(R=~vr in agreement with the results found in the
acoustic phonon case, in which l is indeed a constant.

0
10

E

10

10

10

10

I

10

I I

10 , 10
u(r ad%ec)

I

10 10

FIG. 1. Absorption coefFicient versus frequency in GaAs for the
difFerent scattering mechanisms considered in this paper. The
acoustic wave is propagating in a [110]direction with polarization
in the [001] direction. No deformation potential coupling is
present. The parameters used are those given in Sec. VI.

VII. DISCUSSION

A. Local Theory, q)(($

In this section we discuss in detail the physical con-
tent of the calculations developed in Secs. I—VI. For
simplicity, consider the case with no deformation

sec, cc= 12.5, et4 ——6.8X10' esu/cm', ns=0.0667 nap (ncp
being the mass of the free electron), p=5.35 g/cm'.

The results are shown in Fig. 1.For qlo((1 the absorp-
tion coefFicients obtained for the different collision
mechanisms coincide with what is obtained in the local
Hutson and White theory. For coro))1 again the result
is independent of the scattering because this is equiva-
lent to the result of the infinite r theory. However, as
expected, the diff erent scattering mechanisms give
different results in the region of q/0& 1, co7-0& 1. It is
apparent in Fig. 1 that the curve for the impurity
scattering mechanism differs from the limiting curves
for low and high frequencies in a wider range of fre-
quencies. Furthermore, the z= const curve overlaps the
limiting curve at ql))1 even though coTO is still smaller
than unity. Ke discuss the physical reason for this in
Sec. VII.

The relative differences between the curves corre-
sponding to different scattering mechanisms become as
high at 100%. The ratio cr"/oco approaches the value
mrs- as in Eq. (26) at co 3X10"rad/sec, where q/, 10
and. corp 0.1, while nr/cre 1.7 in the same region.

In plotting cr~(co) no appreciable difference has been
obtained between the exact numerical evaluation of the
integrals in Eqs. (9) and (10) and the use of Eqs. (24)
and (25). For crr the difference between the exact
numerical calculation and the approximate Eq. (34) is
shown in Fig. 1.
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5
10

4
10

I I

11 —1.0 =1x10 sec
0

12 —1————0.=1x10 sec0

equation j=rpE is then replaced by

Op

j=r'E, O-'=

1+i(q/p/2s)
(40)

3
E10
V
C9

Substitution of Eq. (40) into Eq. (36) leads to results
which are exactly like the case with no diffusion with
the replacement of o-p and ~ by

10

aild

Op

o„=Reo =I

1+(q/p/2s) ' (41)

10
10 10 10 10

u(rad/sec)
10 10

FIG. 2. Absorption coefEcient versus frequency as given in Eq.
(43) Lor Ect. (17)g by the local theory. The numbers on the curves
give the values of the product IJ,T in gauss units.

4pr (rp„/rp) (qtp/2s)
s'=ir —I—m(o') =lr 1+ (42)

rp 1+(q/p/2s) '

respectively. We therefore obtain, when the diffusion
is taken into account,

potential coupling and ql«1' 4 " The deformation
potential, when present, just adds to the constant e' a
term proportional to co'.

Our geometry is such that no magnetic Geld accom-
panies the wave. Therefore, the sum of the true current
and the displacement current must be identically zero

where

and

Ap

1+(rp,'/pp)'

np' ——(4~/ir') '(e'/pv, ')o „'

cp„'= (4v/Ir')o „'.

(43)

j= torP = —s|.'Qg, for cp«cp„. (37b)

In the first case no electronic screening is present; the
dissipated power is proportional to ~'. In the second
ease the screening is complete; j, and therefore E, are
proprotional to the time derivative of I', that is, to co .
Consequently, the power dissipated is proportional to
cv4. The absorption coefficient n is independent of co in
the case of no screening and proportional to co' when
the screening is complete. Making use of Eqs. (37),
we have

-', ~p f~ f'

—,'p fu f'v.

—',p fuf'v,

4i' e'
op= np, for .rp—»rp„. (38a)

Ir i pv, '

C 4) CXp

for rp«cp„. (38b)
pv, 'o p (rp„/cp) '

If any amount of partial screening is considered, then
the full Eq. (36) must be taken and the result is simply
for any co

n= np/1+ (cp„/rp) '. (39)

To include diffusion for ql« 1, we can use the Einstein
relation, together with the continuity condition. The

'P A. Rose, RCA Rev. 17, 98 (1966); 17, 600 (1966); 18, 634
(1967).

j—~f (K/4~)Z+~3= 0. (36)

Here j represents the electronic current since the ionic
current is assumed to be negligible, and I' is the piezo-
electric polarization. For q/«1 and in absence of
diffusion j=o.p E and Eq. (36) gives

E= —(4rr/lr)P = (4pr/ir) (u/pp) eq, for rd»rp„(37a)

Equation (43) is identical with the Hutson and White
result and it can be put into the more familiar form of
Eq. (17) by straightforward manipulation. The diffusion
becomes effective when the wavelength is comparable
with the Debye screening length r, . In the limit of high
frequency (q))ks) the diffusion dominates the process
(in the ql«1 theory). Since no screening is present at
this limit, the Geld is still given by the Eq. (37a).
However, the diffusion now essentially reduces the
current in phase with the Geld by a multiplicative factor
proportional to (oped)

' so that the absorption coefficient,
which would have been proportional to o.pN without
diffusion becomes proportional to op Gl due to the
diffusion.

Figure 2 shows the absorption coeKcient versus
frequency as given in Eq. (43) or Eq. (17) for several
values of the conductivity and the temperature. The
values of the parameters have been chosen so as to
make apparent the three regions of or dependence: cv'

(screening), &ps (no screening, no diffusion), and rd '
(diffusion). However, in actual physical cases the
diffusion becomes important at frequencies where the
screening is still important, so that physical curves
always have the characteristic bell shape of the curve
indicated by I' in Fig. 2.

It is interesting to note that, in spite of the fact that
the diffusion does not affect the absorption until q=kd,
the limit of rr' for pp —+ 0 is not ir+27roprpvps/v, ', which is
in general much larger than ~. As a result, the term
(cp„'/rp)' in Eq. (43) can be negligible even in some of the
ascending part of the curve of n versus co, where the
screening dominates the phenomenon. In this case Z
is much larger than it would have been without diffusion.
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FIG. 3. Real part of the conductivity with and without diffusion,
as function of frequency. I, C, A, and L have the same meanings
as in Fig. 1. The values of the parameters are those given in
Sec. VI.

The additional field counter acts the tendency to
diffusion, it is out of phase with the current and there-
fore does not contribute to the absorption. The com-
ponent of E which is in phase with the current and does
contribute to the absorption is independent of diffusion
as long as we have complete screening.

B. Intermediate Frequencies, qt& 1

When the mean free path of the electrons is compa-
rable with or longer than the acoustic wavelength, the
current is produced by electrons coming from different
regions of the wave. The correlation between the field
and the current is decreased and therefore the con-
ductivity is decreased. V/e refer to this effect as the q/

effect. Equation (43) is still valid if o' is evaluated with
exact transport coefficients obtained in Secs. I—VI.

In the case of total screening, the decrease in con-
ductivity due to the q/ effect requires a larger field to
maintain electrical neutrality and the total absorption
is increased. More formally we can say that a decrease
in o. produces an increase in n in the case of total screen-
ing because Eq. (38b) contains 0. in the denominator.
This explains the larger values of o. for the exact
solutions as compared with the local theory in the
ascending part of o, versus cv in Fig. 1.

Now it can be seen why the impurity scattering curve
in Fig. 1 is higher than the constant z curve, and why
the acoustic-phonon curve is lowest in the ascending
part of the 0. curve. For, when q/ reaches values com-
parable with unity, electrons with higher velocity
average their contributions to zero over several wave-

C. High Frequencies and the High-Frequency Limit

In the limit of q/))1 the picture of the phenomenon
is completely different: The electronic contribution to
the absorption comes from the resonant interaction of
the carriers traveling along with the wave with e,=z, .
This can be seen directly from Eq. (5), which in the
case of constant 7- gives

2oo e—t'$'d$
o'r =

2o)ro (1—g/s)~+(1/(pro)
(47)

lengths (vo))rt, ). The effective average electron energy
is thus lower than for the case of dc conductivity. Going
to lower energies rr(e) decreases, and therefore the
decrease in o- due to the g/ effect is enhanced. On the
other hand, r"(e) increases for decreasing electron
energies and the q/ effect is less effective in reducing the
conductivity.

Since w,«mo, from Eqs. (41) and (42) it is apparent
that, unless co, is exceedingly large, the second term in
the denominator of Eq. (43) is negligible when q/&1.
Furthermore, in the limit of high frequency z' ap-
proaches f~:. Therefore for q/&1 the behavior of o. is
determined by the behavior of o.„'.

a„'= [(1—R„)0„—R;0; j/[(1+R„)'+RE, (46)

where o-„, o-;, R„, R; are the real and imaginary parts of
o- and R. Figure 3 shows plots of o-„and o-„' as function
of frequency. It is apparent there that the 6rst effect
of q/ approaching one is the decrease in o-, and the corre-
sponding increase in o. discussed above.

At somewhat higher values of the frequency the
picture is more complicated as shown by the crossing
of the curves for o.„versus co in Fig. 3. To understand
this crossing we have to consider that the change in g
with energy alters q/ itself. In the case of acoustic
phonon scattering / is a constant so that q/ increases
with frequency only because of the q factor. In the case
of constant w, besides the increase in q with increasing
frequency, there is a decrease in l due to the lowering of
the effective electronic energy seen before. This de-
crease in l is still more important in the impurity
scattering case in which the relaxation time also de-
creases with decreasing electronic energy. At high
enough frequency this relative reduction of q/ becomes
so important that the q/ effect in the I case is actually
less effective in reducing o- than in the C case, and in the
C case is less effective than in the 3 case. Therefore, the
simple dependence of o. upon the scattering mechanism
which we have seen before is reversed. However, at
these frequencies the electronic bunching is essentially
reduced and so is the diffusion current. Therefore, a'
and o- become similar in meaning, contrary to the local
theory, and no crossing appears in o.„'. In other words,
at these frequencies the screening is no longer present
and higher o. produce higher absorption so that no cross-
ing appears in o..
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where P represents v, /vo. The width of the resonance at
$=s, i.e., at v. =v„ is 2/(q/o). At the peak the integrand
is approximately (s&uro)', for s«1. Therefore the con-
tribution to 0-„due to the resonant electrons is approxi-
mately 4s'0-0/(ir'~'ql, ). At the limit of infinitely large cur
the exact value of O.„is in fact

a„(~)= (2z' /glo)s'0'o. (48)

This limiting expression, which is independent of 7-p, is
obtained both for r= ro and for r= r~(e), and we can
expect to be valid for any form of r(e) because it
corresponds to the limit of infinite relaxation times.

The nonresonant part of the integrand is essentially
different from zero in a range of $ of the order of unity
and it has an average value on this interval of the order
of s' for q/p))1, so that the contribution of the non-
resonant electrons to ~„ is of the order of s'00/(coro)'.
Therefore, the condition for 0-„ to be determined essen-
tially by resonant electrons is that (harp))1/s. This
condition is not only stronger than ql))1, but it is even
stronger than cof'p))1. In Fig. 3 it can be actually seen
that the various O.„do not reach the limiting curve even
at corp) 1.

However, in the evaluation of fr„' the terms containing
1/(~ros) cancel in the numerator of Eq. (46). A physical
interpretation of this fact can be given by saying that
the diffusion tends to destroy residual bunching due to
finite collision time.

In the expansion in 1/(q/) the next correction over
the high-frequency limit is of the order of 1/(ql)
&&1/(~rs)=(1/ra&)'. There is again a cancellation of
these terms in the evaluation of 0-„'. This time, however,
the cancellation, which occurs between numerator and
denominator in Eq. (46), is exact only for the case of
constant z where no different weighting occurs in the
evaluation of a and E. In the case of rl(e) and of r"(e)
the cancelation is not complete. When coro«1 (but
pip))1) the corrections of order (1/~ro) ' are dominant
and the exact form of the corrections depends on the
weighting of r(e) in 0 and R. This is the origin of the
constant factors seen in this range of frequency in
Secs. IV and V.

It is clear now that the high-frequency limit is reached
for ~7))1 and not for q/))1 in the general case of energy-
dependent relaxation times. In Fig. 3 it can be seen
that the various 0-„' do join at cv7.p)1. Only in the
case of constant r do the corrections due to finite aT
cancel exactly and the ~r))1 limit is already reached
when q/))1. The curve I in Fig. 1 approaches the high-
frequency limit at higher frequencies than the curve 3
because the (1/~r)' corrections are larger in the former
case due to the decrease in zl and the increase in r~ at
lower electron energy.

In the limit of &ur))1 the denominator of Eq. (46)
reduces to one. The numerator reduces to 0-„(m) as
given in Eq. (48). Then o,' becomes equal to O.„and,
contrary to the local theory, the diffusion has no effect
in the high-frequency limit. As we ha,ve seen the
diffusion does, however, affect the frequency at which
the limiting case is achieved.
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APPENDIX

In this Appendix, we show that in the evaluation of
the transport coefficients 0" and E~ treated in Sec. IV,
it is sufficient to keep only the first three terms in the
expression (22) for the function Il(y).

First, we note that the special functions Ej and zv

which appear in Eq. (22) can be put into the form"

where y~ represents the Euler constant.
We then note tha, t the maximum value of

~
r j, as

given in Eq. (23), is cur Therefor. e, for &ur,«1 it is
sufficient to keep the terms with the lowest powers in
r in Eq. (22).

If coo., is not much less than one, then ql&)1 because
v.((tp. I et us take a general term of the form

Substitution of I"„into the integral in Eq. (20) for 0~
leads to a straightforward integration, and the result
has the form

2i6

(igy])" ~ (i$—1)"
where 8= 1/q/, . For B«1 these terms become small at
least as s". It is therefore a very good approximation to
keep only the first three terms in the expression (22) to
evaluate 0- . An essentially identical argument h, olds for
the evaluation of R~.


