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Thus, when the difference frequency cod is small
compared to those of the fundamental signals, and the
conductivity relaxation frequency co. is chosen to maxi-
mize the attenua, tion of the fundamental (re. =&or), the
detected difference-frequency signal amplitude at cog

will be comparable to that of the dc acoustoelectric
voltage, and both will be much greater than the second-
harmonic and sum-frequency amplitudes. The sequence
of photographs presented in Fig. 3 illustrates the
inverse frequency dependence of the difference fre-
quency and, further, confirms that for small co& this
detected voltage is comparable to its dc counterpart.
This is to be expected since, in the limit as cog —+ 0, the

difference-frequency acoustoelectric voltage becomes
the dc acoustoelectric voltage.

These results describing the direct-voltage measure-
ment of nonlinear acoustic-wave interactions in piezo-
electric semiconductors may prove significant, since
they indicate that an ultrasonic amplifier employed
under gain conditions is capable of amplifying a modu-
lated acoustic wave, detecting the modulation, filtering
out the carrier and harmonics of the original signal,
and converting the modulation portion of the acoustic
wave directly into a large-amplitude voltage. This
detected modulation signal is, of course, directly analo-
gous to the aforementioned difference-frequency voltage.
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Carrier recombination under (a) arbitrary steady-state and (b) small-signal near-equilibrium transient
conditions has been studied theoretically for a two-interacting-level (ITL) model and a two-independent-
level (1DL) modeL Analytic solutions for carrier lifetimes have been obtained and manipulated into a form
which facilitates comparison between the two models, as well as comparison between the steady-state and
transient lifetimes as predicted by each model. It is shown that under small-signal steady-state and transient
conditions the two interacting levels may be treated, with little loss of accuracy, as two independent levels,
provided we describe the eRective Qaw density at each level by interacting-level equilibrium statistics.
However, under appropriate conditions, the use of either ITL or IDL equilibrium statistics leads to essen-
tially the same lifetimes; the ITL model is then indistinguishable from the IDL model. A comparison of
the steady-state and transient lifetimes, whether of two interacting or two independent levels, shows that
in certain circumstances the transient lifetime can exceed the sum of the steady-state electron and hole
lifetimes, a possibility which does not exist if only one level is present. As a numerical example, the lifetimes
in gold-doped silicon have been calculated and compared. Some possible applications of this work are
proposed.

I. INTRODUCTION

HE recombination statistics for holes and elec-
trons through a set of single-level Qaws have been

treated extensively in the literature. ' ' In the classic
treatment by Shockley and Read, ' steady-state solu-
tions were obtained for the lifetime of electrons and
holes. The extension to the small-signal' transient situa-
tion was given by Sandiford' and Wertheim4 and
recently by Sah' who, in applying the equivalent-circuit
approach to single-level Raws, also examined the

'W. Shockley and %. T. Read, Jr. , Phys. Rev. 87, 835
(1952).

s R. N. Hall, Phys. Rev. 83, 288 (1951);87, 287 (1952).
3 D. J. Sandiford, Phys. Rev. 105, 524 (1957).
4 G. K. Wertheim, Phys. Rev. 109, 1086 (1958).
5 Chih-Tang Sah, Proc. IEEE 55,- 654 (1967).
6K. C. Normura and J. S. Slakemore, Phys. Rev. 112, 1607

(1958); 121, 734 (1961).' Small signals are taken to imply small departures from equi-
librium condition, except in the case of Refs. 5 and 17.

transient case of small signals superimposed on arbitrary
steady-state conditions. As pointed out by Xormura and
Hlakemore, a complete analytic solution is not possible
for transient decay involving signal levels and Raw den-
sities of arbitrary magnitude; but some numerical cal-
culations, with analytic approximations in various
ranges, have been given by these authors.

An obvious extension to a set of single-level Aaws is
the case of two or more sets of single-level Raws acting
in concert. Steady-state solutions for arbitrary Raw
densities in a two-independent-level (IDL) model were
obtained by Okada' and Kalashnikov, while the small-
signal transient solution was given by Wertheim4 for
n-type material with the restriction that the total den-
sity of Qaws is less than that of the free carriers. The
IDL case is reducible to the trapping model of Hornbeck

J. Okada, J. Phys. Soc. Japan 12, 1338 (1957).
9 S. G. Kalashnikov, Zh. Tekhn. Fiz. 26, 241 (1956) LEnglish

transl. : Soviet Phys. —Tech. Phys. 1 237 (1956)j.
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and Haynes, " if the capture asymmetry at one of the
levels is very large. ' ""

In ascribing a single energy level to the Qaws, the
implicit assumption is that only two charge states are
effective for each Raw. However, as is well known, im-
purities which are most effective as recombination cen-
ters in silicon and germanium are multiply charged,
with more than one energy level. The equilibrium sta, tis-
tics for this case are formally different from those for
the same number of independent levels, since the
occupancy of the different levels is now interdepend-
ent. " The nonequilibrium statistics for multiply
charged Aaws have been considered in detail by Sah and
Shockley' under steady-state conditions. Explicit solu-
tion for the small-signal steady-state carrier lifetimes for
divalent centers has been given by Kalashnikov and
Tissen" and by Laff and Fan."More recently, Sah" has
developed a small-signal equivalent circuit model for
the general interacting-level time-dependent case. The
effect of coupling between the levels could not be ex-
pressed in terms of a convenient circuit element, how-
ever, and it was necessary to resort to the use of a.

negative capacitance to represent this effect. Both
steady-state and transient solutions were considered by
Sah, but explicit solutions for the transient time con-
stants were not given.

Although the statistical theory of the two interacting-
level (ITL) model is formally diferent from that of the
IDL model, it has often been supposed that the two
cases are indistinguishable if their energy levels are
more than a few kT's apart. Sah and Shockley' have
shown this to be the case in terms of the steady-state
recombination rate. However, it should be pointed out

"J. A. Hornbeck and J. R. Haynes, Phys. Rev. 97, 311 (1955)."J.S. Blakemore, in Semiconductor Statistics, edited by H. K.
Henisch (Pergamon Press, Inc. , New York, 1962), VoL 3."B.G. Streetman, J. Appl. Phys. 37, 3137 (1966).

'3W. Shockley and J.T. Last, Phys. Rev. 107, 393 (1957).' C. T. Sah and W. Shockley, Phys. Rev. 109, 1103 (1958).
'5 S. G. Kalashnikov and K. P. Tissen, Fiz. Tverd. Tela 2, 2743

(1960) I-English transl. : Soviet Phys. —Solid State 2, 2443
(1961)j.' R. A. Laff and H. Y. Fan, Phys. Rev. 121, 53 (1961).

"Chih-Tang Sah, Proc. IEEE 55, 672 (1967).

Fi(-. 1. Transitions between the bands and the flaws in a IDL
model are (a) electron capture, (b) electron emission, (c) hole
capture, and (d) hole emission.

that any conclusion regarding the recombination rate
does not necessarily apply to the lifetimes even in the
steady state, since when trapping effects occur, the
electron and hole lifetimes cannot be determined from
the recombination rate alone.

The purpose of this paper is to obtain, from a ITL
model and a IDL model, analytic solutions for carrier
lifetimes under (a) arbitrary steady-state and (b) small-

signal transient conditions, and to use these solutions as
the basis for comparison between the two models, as
well as comparison between the steady-state lifetimes
and transient lifetime, as predicted by each model.
Both the steady-state and transient solutions are valid
for arbitrary Raw densities in both n- and p-type ma-
terial. The transient solution for the IDL case is there-
fore an extension of Wertheim's result, while that for
the ITL case is, to our knowledge, not available
elsewhere.

Il. THEORY

We assume that the semiconductor is homogeneous
and nondegenerate. Moreover, we exclude any con-
sideration of the effects due to excited states and spin

degeneracy, so that the energy associated with each
recombination level is an effective energy. ' " With
little loss of generality, our treatment will be confined to
a system of two, rather than an arbitrary number of
recombination levels, since no more than two levels are
generally effective at any one time. Although some of
the results obtained are, as pointed out in Sec. I, already
available in the literature, the derivation of these and
other new results will be given in order to show the basic
similarities and differences of the IDL and ITL models.
The results to be presented have been manipulated into
a form which facilitates comparison between the two
models.

We shall begin with the IDL case which is algebrai-

cally simpler than the ITL case.

A. IDL Model

1. Rate Equations

Suppose that there are two sets of centers lying at
energy E& and E2, respectively, in the band gap of a
homogeneous semiconductor. Their densities will be,
for the moment, distinguished by X& and E2, although
later for comparison with the ITL case they will be
made equal. Each flaw of type j(j= 1, 2) is capable of

capturing one electron at an average rate c„; when

vacant, and one hole at a rate c». when occupied by an
electron. The number of filled and empty centers are
denoted by E, and E,+, respectively, and these are
related by the totality condition

N; +N;+=N, .

The four transition processes which occur between

each set of Aaws and the valence and conduction bands
are shown in Fig. 1 where we have used the parameters
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following expressions valid for arbitrary signal levels:

./ -=~p/~- = (1+v .-,)/(1+v. .„),
n, and p; to denote the equilibrium carrier densities
when the Fermi level passes through the Raws lying at

For these two quantities, the following relation-
ships apply: (j=1, 2) (9)

r =[Po+&P+(r /r )no]P (c c„.'t';/H, ), (10)n, =nopo/p, =noN, o+/N, o

= no exp[(E, —F)/kT]
=N, exp[(E;—E,)/kT], (2) where

ti-, =c-P'13+!Hl, (11)

(12)

(13)

where we have used the subscript 0 to denote equi-
librium quantities, F is the Fermi level, and E, is the
effective density of states at the conduction band edge
jV,

The rate equations describing the interaction of the
Raws with the conduction and valence bands are

tl»=c;N;o /H, ,

H, =c„,(no+Dn+n, )+c„,(po+hp jp,).
Although not required in the above solutions, the

following relationship is useful for subsequent compari-
son with the ITI model:

dn/dt = —Q R.,+G,
(3)

where

d'1'; /dt=R, R„,, —(j=1, 2)

R„,=c„,(nN, +—n, N, ),
R»= c»(pN1 pP'+), —

and G is the generation rate of electron-hole pairs due
to external excitation. VVe assume that charge neutrality
conditions apply so that, in terms of deviations from
equilibrium densities, we have

~p ~n P~N, -=0. —

The above system of Eqs. (2)—(4) is valid for arbitrary
values of excess carrier concentrations. For small devia-
tions from thermal equilibrium condition such that
An((no and 2 p«po, the equations are linear, and may
by written in operator form as follows:

N~+/N; = (c„;n,+c,p)/(c„,n+c,p;) .

In general, Eqs. (9)-(13) can be solved only by di-
rectly or indirectly (through G) specifying either Ap or
5n, but not both, since these two quantities are implic-
itly related by Eq. (9), which contains H, as a function
of An and hp. To find An explicitly in terms of Ap or
vice versa would involve the solution of a cubic equa-
tion. The resulting solution is by no means compact and
wi11 not be given here.

However, a convenient explicit relationship between
Ap and An exists for signal levels where Ap«(po+p, )
and An(&(no+n;). Then,

r='= (2 r'~ ')/(1+2 tl»'), (15)

r. '=(2 r' ')/(1+2 tl-'), (j=1,2) (16)

where the superscript 0 is used to designate equjljbI jum
values,

2 g O
—.$T 0+

~c».~ & Ro 0 JI 0, f7
QT .

2

D+aii
G2I D+ a22

ay3 An g
a23 X ~p = g

D+ a33 AN2 0
(6)

H o= - ( o+ )+"(po+p, ).
3. Transient Lifetimes

where g is the small-signal component of the excitation
function, D is the operator d/dt, and the a,,'s are func-
tions of the equilibrium statistics and capture coeK-
cients, as given by Eqs. (A1) in the Appendix.

Z. Steady State Lifetimes-

In the steady state, the time derivatives in Eqs. (3)
disappear. By dehnjtjon, the lifetimes for electrons
and for holes r„are given by

r,„=An/Q R.;,

where
D +Q2D +121D+123=0 (19)

&0 (alla22a33+ a12a23a32+ a13a21a32)

(alla23a32+ a12a21a33+ aloa22a31)
q

121 (a 1la22+ a22a33+ alla33) (20

(a12a21+a23a32+ al oa31) q

In a study of transient decay such as the photocon
ductivity decay, the main concern is usually with the
time constants of the system which are given by the
negative inverse of the roots of the characteristjc equa
tion for the system matrix [Eq. (6)]

r.=~p/2 R». (8) 122= ail+ a22+a33 ~

A general solution for the time constants cannot be
Prom Eqs. (3) then, along with Eq. (5), we obtain the obtained in any convenient analytical form unless cer
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while for n-type material,

c lnN -1 c lnlN c 2nN c 2n2N +l

c lpN plpl s-1 p2p s+1

E2

El

p22 s

The result for n-type material under similar condi-
tions has been given by %ertheim, ' but in error. In his
lifetime expression, the rj ' terms do not appear on their
own as in Eq. (26), but are each multiplied by a factor
(1+t ~').

B. ITL Model

Frc. 2. Transitions between the bands and the Qaws in a ITL
model are (a) electron capture, (b) electron emission, (c) hole
capture, and (d) hole emission.

tain simplifications are made. In most practical situa-
tions of interest, either one or two of the time constants
are dominant. The measurement of photoconductivity
decay would normally yield the longer time constants
since these control the final transient decay.

When two of the constants are longer than the third,
they are given approximately by

., =( /2 .)~L( /2 o)'—( / o)j'" (21)

If only one time constant is dominant, it is then given
approximately by

&=Ay EXO. (22)

The solution for the case of a single dominant time
constant is often the most useful, and this is found from
Eqs. (22), (20), and (A1) to be

„—'=(g r;s ')/(1++ &~s), (2—=1, 2) (23)

When the total density of Qaws is smaller than that
of free carriers, i.e., Nt+N2((no+ pe, some simplifica-

tion results:

where

&,'=. ,'(1+..')+...'+(;II')
(iW j;i, j= 1, 2) (24)

and

r, '= c.,c,,N';(no+ po+—N, o N, o+/N))/&; o

(j=1,2). (25)

1. Rate Equations

Ke consider a set of Raws with three possible charge
states, (s—1), s, and (s+1) of electronic charges. For
amphoteric impurities such as gold in silicon, s= 0, while
for divalent donors and acceptors, s= —1 and +1, re-
spectively. Ke assume that the energies associated with
the transitions, Et for (s —1) +~ s and E2 for s+~ (2+ 1),
along with their capture coefficients, are identical to
those for the IDL case. The law densities in the three
charge states are denoted by E. ~, E„and E,+~, and
these are related by the totality condition

)21 )20pp/pl rtoN 2 /1V

=&' expL(& —R)/»j
=N, expL(E& —E,)/kTj,

ns npPO/Ps=no% /N +2-—'
=)So expL(E2 —F)/kT1

expL(E'2 —R,)/kT j,

(31)

(32)

where the superscript 0 denotes equilibrium conditions.
The above equations also give the relationship of the

equilibrium law densities in the various charge states
to the Fermi level. From this equation and the totality
condition, Eq. (30), the number of flaws in each charge
state can be determined for a given value of Fermi level.

From Fig. 2, the rate equations are given by

¹t+N,+N,+2 1Vh,
——

where Xf is the total Aaw density.
The interaction of the laws with the valence and

conduction bands is shown in Fig. 2. The parameters
nt, pt, n2, and p2 are defined by analogy to single-level
flaws as follows":

where now

« '= (Z r ')/(1+2 vjd),

-'( o+ )+.(po+p)

co)c»N)(22p+po)

(26)

(27)

drt/dh =P R„,+G,

dP/dt=Q R»+G, (j =1, 2)

diV, +2/dt =R„2 R~2, —(33)

Equation (27) is simPly the Shockley-Read lifetime for whirr~
the individual levels.

For p-type material, further simplification is possible,

V,s =
h -'2&+(c.;(po+ p )/&'o) j

(i'; i, j=1,2) (28)

d~V, /dh =R~t Rr 2 dlV,~S//dk)— —

R 2 c„t(221V, 2
—n,N, ), ——

R„,= c„t(pN, ptN, 2), -
Rn2 cs2('+No 222N)+1) )

R„2=c„s(pN,+2 p2N, ) . —
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Z. Steady State Lif-etirles

Following the same procedure as in the IDL case, we
obtain the following expressions for the steady-state
lifetimes of electrons and holes, valid for arbitrary signal
levels:

P'P2+ (1+Ps)&"1+(1+Pl)&"2

r. 622 1 —plp2+ (1+ps)tt, l+ (1+pl)tt»

Tn =LPP+P+(Trt/Tn)rto][cnlcrtl(N« 1+1Vs)/

(35)

Hl+cnsc„2(N, +N,+1)/H2 j, (36)

The charge neutrality condition expressed in terms
of deviations from equilibrium condition is now given
by

/t.P /t n —/t. N—, BN—,pl = 0. (34)

Comparison of the rate equations, (33), with those
of the IDL model, Eqs. (3), shows that their main
difference lies in the appearance of the last term in Eqs.
(33). This term expresses the fact that the creation of
a flaw in the s+1 charge state corresponds to the anni-
hilation of a Qaw in the s charge state. The inclusion of
this term indicates that the Qaws in the s charge state,
being common to both the upper and lower levels, par-
ticipate in all eight transitions as shown in Fig. 2, in-
stead of four in the case of Qaws in other charge
conditions.

The small-signal expansion of Eqs. (33) leads to a
3&&3 matrix equation in the variables, /ttn, hp, and
AN, ~1, of the same form as Eq. (6) for the IDL case.
The matrix elements are different, however, as given
by Eqs. (A2) in Appendix.

(1 plop20) (220+po)

+(1+psp)N, '1V. 10/(N, 0+1', 20)

+ (1+plpp20)N, 0N, +10/(N, +10+N,o), (4/)

plo =N, 10/(N. '+N.—1')
= {1+expL(F—El)/AT/) ', (48)

pso =N,+1%(N,0+1V,+10)
= {1+exp&(Z,—Z)//Tj&- . (49)

In a study of divalent donors, LaR and Fan'6 have
given the solutions for the electron and hole lifetimes.
Their result for r~/r„ is in agreement with ours, but
their expression for g is incorrect, since it can be shown
that when the Fermi level is well below level 1, their 7

tends to inanity. 18

3. Trallsient Lifetirtzes

The time constants for the ITL case are found in the
same manner as the IDL case. The result for the case of
a single dominant time constant is

« '= (Tlt '+ Tst ')/(1 —plop20+vlt+vst), (50)

"alt tlnl [~+tlrt2 + (Cn2N0/H20) j
+t »'Ll+ (c»p2/H20) 1+(rlH20) (51)

|'2t ttn2 $1+Pttl + (cnl221/H10)$

+P» [1+(c»po/H») j+(rsH10), (52)

rl ' c„lc„,(1V,
—'+——¹1)[no+ Po+N'N. 1'/—

(1V.'+N, 1')$/H 10, (53)

where II1,2 are as given in the IDL case, but r2 ' c„sc„2(N,'+——1V,pl') [np+ po+1V, '/tt, +1'/
(1V,0+1V,+10)j/Hsp. (54)(37)tln2 =Cn2Ns'/H2,

ttttt2 Cts2Ns+1 /H2 t

Pnl =CnllVs —1 /Hlt

tl„l=c~lN, 0/Hl, (38) For Qaw densities which are small compared to the
free carrier densities N/«no+ po, rt reduces to

39N 1/1V = (C 1221+C lp)/(C 1S+C lpl)

N /N +1 (c 2rt2+crt2P)/(c 2m+ cy2P2)

Pl=N, 1/(1V,+N, 1),

P2 =N, gl/(N, +1V,+1) .

(40)
« '=(1 plop20)(rl '—+T2 ')/

(1 plop20+plt+—72t) t (55)
(41) where

&nl 00 +1 &yl 0 1
~1

Cnlc pl(/ ts +tVs —1 ) (rto+Pp)
(42) (56)

For near-equilibrium conditions, the following sim-
pli6cations apply: c 2(rto+N2)+c»(po+p2)

r2-
c„sc„2(N,'+N „+10)(rtp+p 0)

(57)
Tn =(Tlt +T2t )/L1 —plpp20+(1+p20)ttt»

+(1+plo)/, 2'),

Trt (Tlt +T2t )/I 1 plop20+ (1+p20)ttnl

+(1+plo)tt 20j,

(43)
71 and r2 are the Shockley-Read lifetimes for effective
Qaw densities of (N, '+1V, 10) and (1V,0+N, +10) at the

(44) lower and upper levels, respectively.

where

rlt ' ——c„lc»(N,0+N, 10)X/Hlo,

rpt ' csc„s(/ttr, o+1V,+10)X/H20, ——

Using I.a6 and Fan's notation, their Eq. (22), when corrected,
should read

..= «(i+"") '(ti —«s"—"+«,"—") '(', t'„'~).
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For p-type material, in particular,

pic =p.i'{1+&20 '[6,1(po+pi)+ Cn2n0]),

y2c =p.2'{1+&&10 '[6,2(po+ p2)+6.1221]),

while for n-type material

'rlc @pl {1+I120 [~ni(220+221)+cp2p2]) y

72 =p„2'{1+&10'p 2(260+222)+0 ipo]) ~

(5g)

(59)

(60)

(61)

III. DISCUSSION OF RESULTS

A. Comparison of IDL and ITL Lifetimes

Comparison of the solutions for the IDL and ITL
steady-state lifetimes, as given, respectively, by Eqs.
(9), (10), (35), and (36), shows that they are identical in
f m aside from the appearance of the additional ac-

ftors pi and p2 in the ITL solutions. In the absence o pi
and p2, the two interacting levels would behave exactly
as two independent levels with a total eRective Qaw

density of (N, 1+N,) and of (N,+N,+1) at the lower

and the upper level, as pointed out by Sah and
Shockley'4 in their study of steady-state recombination
rate.

The presence of pi and p2 is clearly the result of the
d amic interaction of the two levels, but, as we s ah 11ynaml )

hnow show, their eRect is small in most cases. From t e1r

FIG. 3. Dependence of small-signal steady-state electron and
hole lifetimes on Fermi level in gold-doped silicon, based on an ITL
model and an IDL model.

defining equations (41) and (42), we observe that Pi
and p2 are simply the fractions of empty and filled states
at the lower and upper levels, respectively, and obvi-
ously neither quantity can exceed unity. For arbitrary
signal levels, a determination of pi and p2 would require
a solution for hn and Ap from Eq. (35), and, as men-
tioned earlier, this goes beyond the scope of the present
paper. However, in the limit of very large signal levels
such that n p&)Nr, we have p„;, p»«1 in Eq. (35), so
that the presence of pi and p2 is immaterial.

For near-equilibrium conditions, Eqs. (48) and (49)
sllow that pi0 and I920 are governed by the position of
the flaw levels in relation to the Fermi level. The prod-
uct pi0p20 depends specifically on the energy separation,
and even for energy separation as small as 1kT, it is
less than O. I5. A survey of multiply charged impurities
in silicon and germanium indicates that the interacting
levels are seldom less than a few kT apart, so that for
most practical purposes, pinp20 is negligible.

In view of the inequality, pinp»(0. 15, if pi0—1,
f20(0.15, and vice versa, so that, at most, only one of
these factors is likely to matter in any given circum-
stance. If pi0—1, the corresponding pn2' or p2, 2' in Eqs.
(43) and (44) will be multiplied by, at worst, a factor of
2 instead of 1. The latter two quantities are, moreover,
associated with level 2, and if the Fermi level is such
that pi0—1, they are not likely to be important anyway.
These considerations suggest that the presence of p10
and f20 does not have a significant effect on the stea, dy-
state lifetimes.

Turning now to the transient lifetimes as given by
Eqs. (23)—(25) for the IDL and Eqs. (50)—(54) for the
ITL model, we note that the same factors pi0 and f20
recur in the ITL solution. The foregoing remarks for
the steady-state lifetimes apply here as well in compar-
ing the two models. There are, however, additional
"coupling" terms in the ITL solution which did not
appear in the steady-state lifetimes, but these terms are
again always less than unity, and their eRect is of the
same order as $10 and $20.

The above discussion indicates that at least for small-
signal conditions, we may regard the two levels in the
ITL model as essentially independent, or, to be strictly
accurate, as quasi-independent. The reason that the two
levels are not truly independent is that we still have to
describe the eRective Qaw density at each level by inter-
acting-level equilibrium statistics, rather than by
independent-level statistics. To illustrate some of the
consequences of this distinction between the quasi-IDL
and the real IDL models, consider a simple situation
where the Fermi level is, say, well above E2. Under such
conditions, E,+~'))E,'))E, ~', and E,+j'—E~, i.e.,
the lower level in the quasi-IDL model practically
ceases to exist. If we now set E~=E2=Ey, we 6nd that
since Ey0 pp+yp and E20 ))Q'20 we have Eyp
=E~ and A20=Ã2=E~. It is apparent that in such
circumstances, while the effect of the upper level on
lifetime would be the same in both the quasi-IDL and
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mation of a single dominant time constant, and the exact solutions
for the three time constants, r~, rf„and 7,

The recombination parameters clearly satisfy two of
the conditions required for the ITL and IDL models
to yield the same steady-state lifetimes, expL(E2

Eg)/k Tj» (c &/c„2), (c„2/c„t); (c &/c„2)»1; however,
the condition (c~&/c„&)&&1 does not strictly apply.
Also, since (c„2/c„2)p~&&(c ~/c„~)n2, we must have
Nf ((cy2/cn2)p&, or a flaw density of less than. 10'~

cm ', for the ITL and IDL transient lifetimes to be
identical.

The results of the calculations are shown in Figs.
3—5. As we see from Fig. 3, the ITL and IDL steady-
state lifetimes are in excellent agreement, except for
a consistent, but small, difference in extrinsic n-type
material for F—8,)25k T. The difference, which
amounts to about 20%%u~ regardless of the flaw densities,
is due to the fact that the condition (c~2/c~x)&&1 does
not strictly apply, and this difference can be readily
estimated by restricting ourselves to the Bat portion of
the r„curve. As may be seen from Fig. 5, in this region
the lower level in the ITL model practically ceases to
exist; Neo =N.+P, Pro«1, P20=1. Moreover, in both
the ITL and IDL lifetime expressions p, „~P, p,„~'((1,and
p„P«1, so that (r„/r„) is identical in both models.
However, r~(IDL) =(c~~N~+c„2N2) ', as compared to
r„(ITL)= (c„2N,+P) '=(c~2Nr) '. The extent to which
these two lifetimes differ depends therefore on the ratio

(c~~/c„2)=0.2 which accounts for the 20'Pc difference
noted above.

The above discussion also serves to explain why in
extrinsic p-type material the presence of the upper level
in the IDL model does not result in any significant
difference between the IDL and ITL lifetimes. Here,
the effect of the upper level is governed by the ratio
(c„2/c„q) and is negligible if (c„2/c„~)&&1.In the present
example this ratio is 0.025.

In this connection, it is worth mentioning that for
divalent donors the consideration of the Coulombic in-
teraction between the Raw and the carrier leads to the
inequality c„»c„&)c»)c», while for divalent ac-
ceptors c~2) c~~)c„~)c„2. As an example of a divalent
acceptor, nickel in germanium gives (c„q/c„2)(0.35 and
(c 2/c„~) = 0.12";both ratios are quite small.

As shown in Fig. 4, the agreement between the ITL
and IDL transient lifetimes is again satisfactory. The
discrepancy in the extrinsic n-type region occurs for
the same reasons mentioned above. There is, however,
in addition a small difference in the near intrinsic region
which begins to develop for gold concentrations greater
than 10"atoms cm ' when Nr) (c~2/c„2)p~. The origin
of this difference can be traced to the product term
p„gp„20 which occurs in the denominator of Eqs. (23)
and (50) through p2z and p2, , respectively. Figure 5
shows that in this region E,'=E~p+, but E,'(E10—,
hence, p P(IDL) =p„P(lTL), but p„P(ITL) =c„~N.'/
Hyp(p&P(IDL) =cy&Nyp /H&p It is clear. , however, that
since p„1'p„~' involves the square of the Raw density,
its contribution to lifetime rapidly decreases at the lower
Qaw densities, and the difference between the ITL and
IDL lifetime vanishes.

The transient lifetimes considered thus far have been
obtained from Eq. (22) based on the assumption of a
single dominant time constant. It is of interest to com-
pare these solutions with the exact solutions obtained
by numerically solving the cubic equation (19). The
results for %~=10' cm, given in Fig. 6 for both the
ITL and IDL models, are typical and show that the use
of Eq. (22) is a reasonable approximation to the largest
time constant over nearly the whole range of Fermi
levels considered. We have also used Eq. (21) to give a
better approximation than Eq. (22) and obtained results
practically indistinguishable from the exact solutions.
These are not shown in the figure.

C. Comparison of Steady-State and
Transient Lifetimes

As originally pointed out by Sandiford' for a single
level of fiaws, the transient lifetimes are not necessarily
identical to the steady-state electron and hole lifetimes
when the Raw density is sufficiently large. The diver-
gence of the transient lifetimes from the steady-state
lifetimes in a two-level situation, as shown in Fig. 7 for

F. M. Klaassen, J. Blok, and H. C. Booy, Physica 27, 48
(~96~).
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X = 10"cm ' and 10"cm ', is therefore not surprising.
We shall presently show, however, that there are a num-

ber of interesting new features in a two-level system,
which do not occur in a single-level system. In view of
the close similarity in the lifetimes calculated from the
IDL and ITL models, only one of these models need be
considered, and we shall use, as the basis of our com-

parison of steady-state and transient lifetimes, the
much simpler expressions for the IDL model.

We begin by considering the simplest situation where
the Saw density is sufficiently small that no trapping
effects occur. Under such conditions, P p„P«1,
P p» «1, and P y;q«1, and hence r~=r„=« This.
type of behavior is observed in Fig. 7 at either end of
the plots (particularly in the case of /V~ ——10" cm '),
where the majority carrier density no or pp»1Vy. It is
interesting to observe from Eqs. (26) and (27) that rM
and &2~ are now the Shockley-Read lifetimes due to the
individual levels and that they add in parallel. The pres-
ence of the other level therefore tends to reduce the
over-all lifetime.

The situation is much more complicated when trap-
ping e6ects become important. In the steady state,
trapping is deemed to occur when r„/7.„and arises
because Q p„P and P p„P»1, while in the transient
decay, trapping is evidenced by an increase in the life-
time beyond the value (rzd '+ rM '), because P y,&»1.
As shown in Fig. 7, trapping behavior can be observed
over the major portions of the curves. We note that for
Ef=10"cm ', where r„»r» ry= r~. However, as the
Aaw density is increased, an unusual e6ect comes into
play, as shown in the plots for N~=10" cm '. Thus,
while it remains true that where r„))7-„ for F—8,
)25k2", «=T there exists a region 15k2'((F 8„)—
&25kT, where 7. &7-„, but where &z now actually
exceeds (r +r„).This effect is peculiar to the two-level
system, and as we shall show below, does not occur in
a single-level system.

In order to understand the relationship between the
transient and steady-state lifetimes, we combine Eq.
(23) with Eqs. (15) and (16) to give

«Ir. = (1+2 V~')/(1+2 p-~'),

«/r-= (1+2V~~)/(1+2 p.F)

It is clear, therefore, that if r ))r~, implying P p„P»g p„,', and if furthermore, P yjg=Q pyj «—T .
This accounts for the equality between the transient
lifetime and the longer of the two steady-state lifetimes
in Fig. 7. However, it is equally apparent that if the
presence of terms other than P(p„;o+p~P) is important
in Q y;z, we may have a situation where g(p„,'+p„P)
»1, but more importantly, P y;q)g(p„P+p~, o), so
that «) (r„+r~), as observed above in connection with
the plots for g~= TO" cm '.

Consider now the situation where a single leve] of
Qaws exists. The lifetime expressions reduce then to the
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FIG. 7. Comparison of small-signal, steady-state, and
transient lifetimes in gold-doped silicon.

well-known results

r,=(1+p i')ri,
r = (1+p i )rr,
«= (1+p„x +p~P)rx,

and, therefore, the inequality must apply:

«& (r„+r„).
From the above discussion, we conclude that while

the transient lifetime can exceed the sum of the steady-
state lifetimes in a two-level system, this is not true of
a one-level system. " This result has an interesting
application, since it can be used to distinguish experi-
mentally a single-level system from a two-level system.

Included in the region where «) (r„+r~) for
Ef=10"cm ' in Fig. 7y there is a position at ED where
g„——7„. It may be shown that here p„2, p~2'&&1, and
although p„P, p~P) 1 (which normally implies trap-
ping), p„P=p„P, so that in the steady state the electron
and hole lifetimes are identical. This unique situation
was first pointed out by Kalashnikov' for a single level
of Raws and later elaborated on by Blakemore" who
also showed that in this circumstance, the transient life-
time is indistinguishable from the steady-state lifetime.

2 Both the one-level and two-level transient lifetime expressions
under consideration were based on the assumption of a single
dominant time constant. The latter restriction can, however, bq
removed without invalidating our conclusion.
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This is not the case, however, in the present two-level

system, as shown by the considerable difference which
exists between the transient and steady-state lifetimes
in Fig. 7. This difference is attributed to the presence of
the term (r2EI10) ' in y2q, which now has a dominant
effect. A conclusion from this result is that the transient
lifetime is much more sensitive to the presence of the
second level than the steady-state lifetimes.

IV. CONCLUSIONS

We have shown that under small-signal, steady-state,
and transient conditions, two interacting Raw levels may
be treated as two independent levels, so long as we de-

scribe the effective Qaw density at each level by inter-
acting-level equilibrium statistics. However, under cer-
tain conditions, the use of either interacting-level or
independent-level equilibrium statistics leads to essen-

tially the same lifetime; the ITL model is then indis-

tinguishable from the IDL model. Some of the possible
applications of this result are: (a) simplification in the
small-signal equivalent circuit proposed by Sah" for the
ITL model, since the negative-capacitance element
used to express the dynamic coupling eRect between the
two levels may be removed with little loss of accuracy.
The resultant network in the case of a homogeneous
semiconductor is simply a parallel combination of two
"tee" networks each representing one of the levels, as
may be obtained by a simple extension of Shockley's
one-level equivalent circuit modei23; (b) applicability in

lifetime analysis of the much simpler IDL lifetime ex-

pressions as a good first approximation to any two-level

system, interacting or otherwise.
A comparison of the steady-state and transient life-

times has shown that the latter is more sensitive to the
presence of a second level. Under certain circumstances,
the transient lifetime can even be larger than the sum

of the steady-state electron and hole lifetimes, in con-

trast to a single-level system where this possiblity does
not exist. This implies that whenever the condition

rz) (r„+r„) is observed experimentally, a model in-

volving at least more than one level must be invoked.
In this connection, it is interesting to note that in life-

time analysis, the presence of a two-level system is
usually deduced from the temperature dependence of

28 W. Shockley, Proc. IRK 46, 973 (1958).

either the transient or steady-state lifetimes. This
procedure is subject to uncertainties, since it has often
been found that the temperature dependence can be
equally well explained in terms of a single level with
temperature-dependent capture cross sections. The
present work suggests that if circumstances allow the
inequality r&) (r +r„) to be observed, a comparison
of the transient and steady-state lifetimes should resolve
this ambiguity.

all C 1(n0+ni+lV10 )+C 2lV20

a12= —c„l(no+nl),
a13—C 1(no+nl) —C 2(no+ n2)

a21= —c~l(pp+ pl) ~

a22 Cyl(pp+pl+~' 10 )+C3|2V20

a = —c (po+ p )jc (p,+p ),
a3g ——Cn2N 20+,

~32 ~@2+20

a33 C 2(no+ n2)+cy2(po+ p2) ~

(A1)

For the ITL model,

all = C„l(no+ni+lV, 1')+C„2P','—np),

a12 c 1(np+ nl)+ c 2'no

a13——c„l(no+2nl) —c„2(2no+n2),

a21 col(po+pl)+cy2p2 y

a22 cyi(po+pl+1VB )+cp2(lV8+1 p2) y

a23 cyl(2po+ pl)+ cy2(po+ 2p2) )

a31 c 2K np)+c 2P2

a32 C 2no+C 2(lV +1 p2)

a33 = C~2(2np+ n2)+ cy2(po+ 2p2) .

(A2)

'4 J. E. L. Hollis, S. C. Choo, and E. L. Heasell, J. Appl. Phys.
BS, 1626 (1967).

APPENDIX: RATE EQUATION MATRIX OP
IDL AND ITL MODELS

The elements of the rate equation matrix for both the
IDL and ITL models have previously been given'4 in
a slightly different notation. They are repeated here for
easy reference.

For the IDL model,


