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Piezoelectric semiconductors such as cadmium sulfide exhibit a strong coupling between conduction
electrons that are present in the substance and acoustic waves that are propagated along certain directions
in the material. This energy exchange mechanism is highly nonlinear, and thus the simultaneous introduc-
tion of several collinear acoustic waves into the substance generates new signals at the conbination (sum
and diiference) frequencies. A theoretical explanation of this interaction mechanism, based on consideration
of the nonlinear cross term present in the current-density equation, has been developed, and the validity of
this method of analysis has been tested and qualitatively confirmed through experimentation.

I. INTRODUCTION

STUDY of the propagation of ultrasonic waves
in a substance provides substantial information

about the electrical, mechanical, and thermal properties
of the material. In particular, the use of finite-ampli-
tude acoustic waves facilitates the investigation of the
various interaction mechanisms present. These non-
linear effects are quite small in ordinary solids and
rather difficult to detect experimentally.

For the case of piezoelectric semiconductors, how-

ever, as first noted by Hutson, ' acoustic waves propa-
gating in such materials can produce strongly coupled
electric fields and space-charge waves with the non-
linear electron —electric-held interaction resulting in the
generation of new electrical and acoustical signals. ' '
This fact, together with the use of direct ultrasonic
amplification in these substances, permits a significant
increase in the signal-to-noise ratio for the observation
of these nonlinear acoustic effects, and greatly simplifies
the investigation of multiple wave interactions in these
materials.

In order to describe these phenomena quantitatively,
we have extended White's analysis' to obtain general
expressions for both the acoustical and electrical signals
that are generated as a result of the nonlinear in-
teraction of several collinear acoustic waves of dif-
ferent frequencies. Further, experimental results are
presented to illustrate the salient points of the theo-
retical study.

We will demonstrate that the derived general three-
wave-interaction expressions for the acoustical signals
can be readily reduced to those of Kroger' and Tell3

* Research supported in part by the National Science Founda-
tion, under Grant No. GK-1257.

t Portions of the work submitted in partial fulfillment of the
requirements for the Ph. D. degree in Electrical Engineering at
the Polytechnic Institute of Brooklyn, Brooklyn, N. Y. Present
address: U. S. Army Electronics Command, Fort Monmouth,
N. J.

A. R. Hutson, Phys. Rev. Letters 9, 296 (1962).
'H. Kroger, Appl. Phys. Letters 4, 190 (1964). The authors

wish to thank H. Kroger for sending us the second-harmonic
derivation appearing in this reference.

' B. Tell, Phys. Rev. 136, A772 (1964).
4 C. Elbaum and R. Truell, Appl. Phys. Letters 4, 212 (1964).' R. Mauro and W. C. Wang, Phys. Rev. Letters 19, 693 (1967).
6 D. L. White, J. Appl. Phys. 33, 2547 (1962).

on second-harmonic generation, and that the expression
for the electrical signal can be reduced to Wang's7
result for the acoustoelectric voltage. In addition, for
acoustical signal generation, the phase-matching con-
dition k&+ks ——ks, which must be strict1y observed in
the case of ordinary parametric interactions, is shown
to be relaxed in the amplifying media because of the
participation of the drifted electrons. Further, we will
establish that the generated electrical signals have
amplitudes that are inversely proportional to their
respective frequencies. As a result, the magnitude of
the difference-frequency signal will be shown experi-
mentally to be very much greater than those of the
second-harmonic or sum frequencies.

II. DERIVATION OF PARTICLE DISPLACEMENT

u(x, t) =P A, (x)e&&"'* ""&

jV(g t) =+s+Q +.(~)eel&i*—~it) (ib)

rs(x, t) =Is++ n, (x) e&

7 W. C. Wang, Phys. Rev. Letters 9, 443 {1962).

Consider that, when a composite acoustical signal of
frequencies co& and co2 propagates in a properly oriented
piezoelectric semiconductor, an ac longitudinal electric
field is produced and travels with the acoustic wave.
As the acoustic wave propagates, it will be progressively
distorted because of the nonlinear interactions between
the free carriers and the wave via the produced travel-
ing ac electric field. With the assumption that the

magnitudes of the second-harmonic and sum and dif-
ference frequencies are very much smaller than those
of the fundamental frequencies coI and cv2, we present
a small signal analysis that gives an estimation of the
magnitude of the generated nonlinear components.

Following White's notation and derivation, ' the par-
ticle displacernent I, electric field E, carrier density e,
electric displacement D, current density J, sound ve-
locity v, wave vector k, and attenuation coefficient b

are given as
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D(x t) =D +P D (x)et'("*—")

J(x,t) =Jp+Q J;(x,t)e'("" "") (1e)

(1d) Jb=j p)3D3=tbq(tbpE3+233Ep)
Bs3

+ttq(231E2+232E))+qD. . (2)
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—hk;,

+2 1+p) /tt)Dy2+ p), /2ttD)y22

2 1+(tp 2/y2(p') (1+(p'/tp, cuD)2
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Combining this result with the second piezoelectric
equation of state D= pE+eS, we may express the
electric field E3 at the sum frequency in terms of the
strain S3 and the fundamental acoustic-signal-source
term 221E2+232E1 as

and

2( p), 2 )2-—1

b, =
"r'V)8 J — (pM t ( p) t tp D f

e (y+j td, /p)D)$,
E1 )

p "r+j(td /td)+M)/p)D)

e (7+jtd 3/p) D)S3
(1h) E,= ——

3 P+j (P),/P)3+P)3/(PD)

tbq()31E2+332E1)
(3)

j~bpLV+ j(~./~3+~3/~D) j
where the conductivity-relaxation frequency cp, =tT/p,
(=22'.), the diffusion frequency p)D = 2),2//D„, the
square of the electromechanical coupling coefficient
E =2e / 2c,pthe nondispersive wave vector k;p ——p);/v„
and y= 1 )3Ep/t)„a rn—easure of the relative electron
drift velocity as compared to that of the acoustic wave.

Initially, let us consider the sum-frequency case
p)3= p)1+(p2 and employ differentiation approximations
similar to those used by Armstrong et al. ,

' who essen-
tially assume that the loss or gain per acoustic wave-
length is small. From the continuity equation, Gauss's
law, and the definitions of current density, we may
write

Substituting Eqs. (1b) and (ic) into Eq. (3), and
Eq. (3) into the first piezoelectric equation of state
T= cS—eE) the modified wave equation is

8 N3 BS1 8 Nq BQq 8 N1—C3 =P3
Bx —Bx Bx Bs Bx

where c3 is the effective second-order elastic constant,

V+j ~3/~D
cb=c 1+—

pc p+j (~,/~3+~3/~D)

and P3 is the effective third-order elastic constant,

p8 M L~+i ~1/~D3+h+i ~ /~D j
(t)3 LV+ j(td /tdl+p)1/tt)D)$[7+j ((t) /(d2+td2/tt)D) j/7+j (td /p)3+tdb/tdD) j

It should be noted that, for p=0, i.e., for drift velocity equal to the sound velocity, if we let co1——co& and ~3=~»
=2~1, where co&~ is the frequency of the second-harmonic signal, these results reduce to those obtained by Tell
for the case of second-harmonic generation.

In order to solve Eq. (4), we assume that, for small incident strains, to a good approximation, the fundamental
'acoustic waves are unaffected by the nonlinearity. Thus, they may be represented by

N((x t) g e
—bi@et'(ktx —(hatt)

1 ~ ) 1 )

N2 (x t) —g 2e btzet(ktx rett—)— (7a)

(7b.)

where A 1 and A2 are constants. In the remainder of the paper the imaginary part of Eq. (7) will be employed.
Substituting Eq. (7) into (4), and employing the differentiation approximations, the second-order differential
equation may be reduced to the first-order differential equation

c)233(x) pbk(k221A2 ki+k2
+b3233(x) = ~

—( by+ b2) x~y (ki+Ic2—k3) z

which, subject to the boundary condition 233(0,t) =0, has the solution

-ppk(k2/1+2(ki+k2)(e btt'etktx tttt e
—(b&+32—)t'etf(kt+—k2)x ~tt]}

143(X t) =
4ck3(pb3 (bi+b2) j——jLk3 —(k(+k2)]}

=PI3(x)e'("' " '))

J. A. Armstrong, Q. Bloembergen, J. Dreuing, and P. $. Pershan, Phys. Rev. 127, 1918 (1962).
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(9b)
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or, taking the imaginary part of Eq. (9a), we obtain the actual solution

~
p3~ kik2A1A2(ki+k2) {e "*cos(kpx —(ppt+1I') —e 'b'+"i' cos[(ki+k2)x —(opt+Cd}

u3(x, t) =
4ck,[(b,—b, —b,)'+ (k, —k, —k,)27»2

(9c)

where C is the phase angle associated with (—j)P3 and
the complex denominator term in Eq. (9a). Note that
in deriving Eq. (8), a correction factor of —

2j was
included to account for the multiplication of the com-
plex exponential terms. Kroger' has discussed the case
of second-harmonic generation. His results are obtained
by setting ~~~=~2, k~=k~, b~=b2, and ~3=~2II=2~y in
Eq. (9). To obtain the solutions for the difference-
frequency case, merely replace co& by —co& and k& by—k2 in Eq. (9).

These solutions for the acoustic waves are quite
similar to those obtained when considering finite-
amplitude acoustic-wave propagation in lossy-dispersive
nonpiezoelectric materials. However, in Eq. (9c), using,
for example, the second-harmonic case for y(0 (drift
velocity greater than the sound velocity), the attenua-
tion coefficients b will be negative, giving rise to an
arnplification of the second-harmonic acoustic wave.
In general,

~
b2~( W

~
2bi~, so that one part of the solu-

tion will overtake the other. If p is adjusted for the
gain condition, and (p, chosen so tha, t

~
b2Ir

~
) ( 2bi (, the

second harmonic produced initially near x=0 will be
amplified at a rate greater than that at which new
harmonic is being generated by the growing funda-
mental signal. For the opposite case,

~
bprr

~
( ) 2bt(, the

second harmonic that is produced is locked in phase
with the fundamental, . and will travel and grow with
it. Note in particular that, under gain conditions,
beating (see the y(0 curve of Fig. 1) does not occur
in either case, since one of the sinusoidal ternis in Eqs.
(9) always grows out of proportion to the other. Thus,
the rigidity of the selection rule k~~= 2k~, so important
for large harmonic production in lossless materials, is
relaxed in this collinear amplifying case. For the sum-
and difference-frequency cases, a similar, though not
entirely analogous, argument may be employed. The
variation of second-harmonic amplitude with distance
is indicated in Fig. 1. In Fig. 2 we present the results
of a typical interaction experiment; in particular, it
illustrates the variation of the second-harmonic output
with F, and drift voltage p, and agrees qualitatively
with the theory developed in this section.

into the wave equation

8N3 8 Q3 BEq
p —C = —8

193 Bx
(10)

E3(x t) = j P3klk2(kl+k2)A 1A 2

2ekp[(b3 —b2 —bi)+ j(kp —k2 —ki) j
y{[(bt+b2)+ j(t1kt+gk2)]e —(bl+b2)*e1((bl+»&*—~31l

(b3+jDk )e b*e „(b—* 31l }
—(12)

Integrating the electric field along the length L, of the
crystal, the terminal voltage is obtained. Let us first
examine a special case of the difference-frequency
signal, that of the dc acoustoelectric voltage, for which
(pp, ks, and b3 are zero in Eq. (12), and (p2, k2, and &ks
in the equation are replaced by —~&, —k&, and —~k&,
respectively. Equation (12) is then reduced to

tbe2 [klA 1(0)$22ye
—2 1

jvBC

2 e' 21,[y'+ ((p,/(p, +tp 1/o1D)' j
Integrating along the length of the crystal from 0 to
I-, and utilizing Eq. (1f) for bi, one arrives at the result
obtained by Wang, who used Weinreich's formulation. '

The general expressions for the terminal voltages at
the sum and difference frequencies are lengthy. They
are simplified, however, by multiplying by 1/jk„p to
approximate the integration of Eq. (12). This is valid

fu

and recalling that A3(x) varies very little per acoustic
wavelength, we may readily show that

E3(x,t) = (2c/e) (()A 3/()x) e"»3* ""' (11)

where kpp ——kb+Akp, as stated in Eq. (1g), and is the
nondispersive wave vector at co3. The expression for
the electric field is obtained by combining Eqs. (9a)
and (11) to yield

III. ELECTRICAL SIGNALS

In Sec. II, the nonlinear wave equation was solved
for the particle displacement at the sum frequency to
illustrate the form of the new acoustic waves that are
generated. Now we will investigate the electrical signals
of different frequencies that are generated across the
piezoelectric semiconductor via the nonlinear inter-
action of the acoustic waves. By substituting Eq. (9b)

"0 PXO 4xo

l'IG. 1. Second-harmonic generation as a function of distance with
drift voltage y as a parameter (xp=1rr12/41d, ~e, —22jr ~).

' G. Weinreich, Phys. Rev. 107, 317 (1957).
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under the assumption that k;o&)b; and Ak;, which is the x=1.boundary, and that no drift voltage is applied
usually the case. If we further assume that the funda- (&=1), the voltage at the sum frequency (cvs=&u&+res),
mental acoustic waves are completely attenuated at in particular, may be written

( RL ) —jR'P~, (2+j~s/~D) [-',cS&(0)S&(0)]e&'""

(RL+Z'- j ~s' [1+j(~./~s+~s/~~) j[1+j(~ /~t+~&/~&)3[1+ j(~ /~a+~&/~&) j
Note that the term RL/(RL+Z; ) represents the load-
ing eGect, where EL, is the external load resistor, and
Z; = (Gs+ jcuCO) ' is the internal impedance of the
crystal, with Go asA/L a——nd Cs=Ae/L.

y=-2

Expressions similar to Eq. (13) can also be developed

by direct analogy for the second-harmonic and diGer-
ence-frequency amplitudes; these will be indicated by
V~II and Vq, respectively. In addition to the voltages
at the sum and difference frequencies that are produced
via the nonlinear interactions, there are terminal volt-
ages induced by the fundamental waves at their re-
spective frequencies or& and co2. The magnitude of the
voltage at ~~, for example, is simply equal to the
integral of Eq. (1i). Assuming complete attenuation of
the fundamental wave at the x= I.boundary, we obtain

t' Rr. ) & ~R (0) 1+j~t/~n

ERL+Z; J — M1 e 1+j (07 /Ml+G71/MD)—

LLJ

0'

LLJ

lL

-40—
—42

0.2 5 I 5 l0
F (MHz)

50 IOO

FIG. 2. Second-harmonic generation as a function of conductivity
PIi, = {t/2s.)o/e], with drift voltage as a parameter.

Since the terminal voltages are approximately in-

versely proportional to their respective frequencies,
the difference-frequency voltage Vq should be con-
siderably larger than V&, U3, and U2II. In order to
compare the relative orders of magnitude of these
signals to the dc acoustoelectric voltage V„,for sim-

plicity neglect loading (RL~~) and diffusion, apply
no drift voltage, and assume that the incident strain
amplitudes at ~t and te& are equal, i.e., St(0) =Ss(0).
If, for example, we further let St(0)= 10 ', and ~s rvt

=20cod, then the relative signal magnitudes are given

by I
v./v. .l

=1,
I
v/v. .i=10 ', IvsIL/v. .l=&x10 ',

and
I
V,/V. .I=10-r.

= 8.5MHz Fp =9.25MHz

Fp = B. I MHz F2 =9.0 MHz

Fp =7.5MHz Fp = 8.85MHz

Fi = 9.5 MHz

FIG. 3. Magnitude of the difference-frequency electrical signal as a function of the difference frequency (F&—F2).
Arrows indicate the direction oi increasing time {2psec per large scale division).
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Thus, when the difference frequency cod is small
compared to those of the fundamental signals, and the
conductivity relaxation frequency co. is chosen to maxi-
mize the attenua, tion of the fundamental (re. =&or), the
detected difference-frequency signal amplitude at cog

will be comparable to that of the dc acoustoelectric
voltage, and both will be much greater than the second-
harmonic and sum-frequency amplitudes. The sequence
of photographs presented in Fig. 3 illustrates the
inverse frequency dependence of the difference fre-
quency and, further, confirms that for small co& this
detected voltage is comparable to its dc counterpart.
This is to be expected since, in the limit as cog —+ 0, the

difference-frequency acoustoelectric voltage becomes
the dc acoustoelectric voltage.

These results describing the direct-voltage measure-
ment of nonlinear acoustic-wave interactions in piezo-
electric semiconductors may prove significant, since
they indicate that an ultrasonic amplifier employed
under gain conditions is capable of amplifying a modu-
lated acoustic wave, detecting the modulation, filtering
out the carrier and harmonics of the original signal,
and converting the modulation portion of the acoustic
wave directly into a large-amplitude voltage. This
detected modulation signal is, of course, directly analo-
gous to the aforementioned difference-frequency voltage.
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Carrier recombination under (a) arbitrary steady-state and (b) small-signal near-equilibrium transient
conditions has been studied theoretically for a two-interacting-level (ITL) model and a two-independent-
level (1DL) modeL Analytic solutions for carrier lifetimes have been obtained and manipulated into a form
which facilitates comparison between the two models, as well as comparison between the steady-state and
transient lifetimes as predicted by each model. It is shown that under small-signal steady-state and transient
conditions the two interacting levels may be treated, with little loss of accuracy, as two independent levels,
provided we describe the eRective Qaw density at each level by interacting-level equilibrium statistics.
However, under appropriate conditions, the use of either ITL or IDL equilibrium statistics leads to essen-
tially the same lifetimes; the ITL model is then indistinguishable from the IDL model. A comparison of
the steady-state and transient lifetimes, whether of two interacting or two independent levels, shows that
in certain circumstances the transient lifetime can exceed the sum of the steady-state electron and hole
lifetimes, a possibility which does not exist if only one level is present. As a numerical example, the lifetimes
in gold-doped silicon have been calculated and compared. Some possible applications of this work are
proposed.

I. INTRODUCTION

HE recombination statistics for holes and elec-
trons through a set of single-level Qaws have been

treated extensively in the literature. ' ' In the classic
treatment by Shockley and Read, ' steady-state solu-
tions were obtained for the lifetime of electrons and
holes. The extension to the small-signal' transient situa-
tion was given by Sandiford' and Wertheim4 and
recently by Sah' who, in applying the equivalent-circuit
approach to single-level Raws, also examined the

'W. Shockley and %. T. Read, Jr. , Phys. Rev. 87, 835
(1952).

s R. N. Hall, Phys. Rev. 83, 288 (1951);87, 287 (1952).
3 D. J. Sandiford, Phys. Rev. 105, 524 (1957).
4 G. K. Wertheim, Phys. Rev. 109, 1086 (1958).
5 Chih-Tang Sah, Proc. IEEE 55,- 654 (1967).
6K. C. Normura and J. S. Slakemore, Phys. Rev. 112, 1607

(1958); 121, 734 (1961).' Small signals are taken to imply small departures from equi-
librium condition, except in the case of Refs. 5 and 17.

transient case of small signals superimposed on arbitrary
steady-state conditions. As pointed out by Xormura and
Hlakemore, a complete analytic solution is not possible
for transient decay involving signal levels and Raw den-
sities of arbitrary magnitude; but some numerical cal-
culations, with analytic approximations in various
ranges, have been given by these authors.

An obvious extension to a set of single-level Aaws is
the case of two or more sets of single-level Raws acting
in concert. Steady-state solutions for arbitrary Raw
densities in a two-independent-level (IDL) model were
obtained by Okada' and Kalashnikov, while the small-
signal transient solution was given by Wertheim4 for
n-type material with the restriction that the total den-
sity of Qaws is less than that of the free carriers. The
IDL case is reducible to the trapping model of Hornbeck

J. Okada, J. Phys. Soc. Japan 12, 1338 (1957).
9 S. G. Kalashnikov, Zh. Tekhn. Fiz. 26, 241 (1956) LEnglish

transl. : Soviet Phys. —Tech. Phys. 1 237 (1956)j.




