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P. R. Curuist anp J. R. MaArko
Department of Physics, University of British Columbia, Vancouver, British Columbia
(Received 9 January 1969; revised manuscript received 14 July 1969)

The EPR spectrum for relatively dilute samples of phosphorus-doped silicon (<510 donors/cm3) has
been calculated in detail for an assumed random distribution of impurities. The system of donor electron
spins is treated as a collection of nearest-neighbor donor pairs. An expression is derived for the donor pair
exchange energy using Kohn-Luttinger wave functions and a general exchange-energy expression. The
resultant relationship contains an adjustable parameter a*, the “effective Bohr radius,” which is determined
from a comparison of the calculated spectrum and the experimental results obtained for the ratio C of the
central-pair and hyperfine line intensities. The resulting expression J (R), where J represents the exchange
energy and R the separation vector connecting the two pair donors, exhibits an oscillatory spatial dependence
due to interference from portions of the wave function arising from different conduction-band valleys. The
distribution of pair exchange energies is compared with earlier experimental determinations of this

distribution.

I. INTRODUCTION

HE electron-paramagnetic-resonance (EPR) spec-
trum of pairs of neighboring donor atoms in
semiconductors was first considered by Slichter.! In
that work, the line occurring midway between the two
donor hyperfine lines in phosphorus-doped silicon was
attributed to such pairs. This line was called the
central-pair line because it was flanked by weaker com-
ponents, also due to pairs, whose transition energies
were identical to those of the more numerous isolated
donors. In more concentrated samples, additional lines
were found corresponding to transitions in clusters of
three and four nearby donors.? Recently, one of us?
extended these calculations to pairs for which the ex-
change energy J is on the order of the hyperfine inter-
action energy A. The results showed the presence of
new lines outside the usual hyperfine lines as well as a
splitting of the central-pair line. When the distribution
of J values due to the random spacing of impurities
was considered, these pairs were found to be a most
likely source of a previously observed broad back-
ground line and related effects.?*®
This present work utilized a general calculation of
the EPR spectrum of phosphorus-doped silicon as a
function of J and an assumed random impurity dis-
tribution to determine the relationship J(R) between
the exchange energy and the spatial separation vector R
between the members of a pair. A general expression is
derived for J(R) in a calculation which does not
explicitly include the effective-mass anisotropy of the
silicon conduction bands. This neglect necessitates the
introduction of a quantity o*, the ‘“effective Bohr
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radius,” the value of which is determined by a com-
parison of the calculated and experimental spectrum.
This result is then compared with previous determina-
tions and its significance to other experiments is
discussed.

II. CALCULATION OF EPR SPECTRUM

The spin Hamiltonian for a pair of donor atoms can
be written

3C=gupH o(S1:4S2:)+ A (L1 S1+1-So)+T (S1-Ss), (1)

where 7 and S represent the nuclear and electronic
spins, respectively (I =.S=3 for phosphorus donors), J
is the exchange constant of the pair, 4 is the hyperfine
constant, g is the electronic g value, ug is the Bohr
magneton, and H, is the dc magnetic field. This ex-
pression neglects the very small Zeeman interaction of
the nuclear spins with the field H,. In the case where
J>>A4, a total electronic spin S=S;+4 S, may be defined
which enables Eq. (1) to be written as

Haiag=gupH oS+ 3A4S;(m1+m2)+3J (S2—%), (2)

where S. is the z component of the total electronic spin
and m; is the z component of the 7th donor nucleus spin.
In this expression, we have dropped all terms of the
hyperfine interaction which are off diagonal in a repre-
sentation which has, as its basis, the direct product of
the eigenstates of the z component of the individual
nuclear and electronic spins. This simplification is valid
in our case because the inequality |gusHotJ|>4,
which holds for essentially all donor pairs, guarantees a
negligible (for our purposes) mixing of states through
the perturbations introduced by these off-diagonal ele-
ments. The eigenstates of the operator in (2) are
similarly the direct product of these nuclear spin eigen-
states with the well-known singlet and triplet electronic
spin states of the pair. These electronic spin states are
analogous to those of the hydrogen molecule which arise
from the coupling of the two spin-} electrons into three
states of total spin S=1 and a single S=0 state. The
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1 DONOR PAIR EXCHANGE ENERGY IN P-DOPED Si

energy levels in this case are written simply as

Ep© G = gy s H M +2AM (mi+mo)+17  (3)
and
E,= _%J ’ (4)

where the subscripts 7" and S refer to the electronic spin
triplet and single states, respectively, and the super-
scripts on Er refer to the z component of the total
electronic spin of the pair M. Since it has been shown®
that J>0, the more energetic (for J> gupH y+%4) mag-
netic triplet states can become thermally depopulated
at low temperatures.
It can be seen that a perturbation of the form

3Crt=gupH1(S1e+Se2z) sinwt, (5)

representing the microwave field of intensity H; and
angular frequency w used in the observation of EPR,
will have no non-negligible matrix elements connecting
the electronic spin singlet and triplet states when J>>A4.
The resultant selection rule prohibiting the correspond-
ing transitions arises from the fact that, under such
conditions, the electronic spin interchange operator
commutes with the Hamiltonian giving a definite
parity to the energy eigenstates. As a result, 3C,s, which
is symmetric or, in other words, unchanged by an
interchange of spins 1 and 2, cannot connect the singlet
and triplet states which have opposite parity under the
interchange. Applying these selection rules [AS=0,
AM =41, and A(mi+ms)=0] to the triplet energy
levels of Eq. (3), we find “allowed” lines at the energies
gupHo+%A4 and one of double intensity (due to two
possible degenerate nuclear spin states) at gupH . These
are the so-called “pair lines.”? No electronic spin transi-
tions involving the singlet state are allowed when J>>A4.

Similarly, if we consider pairs such that mi=ms,, it is
obvious that interchange of the two electronic spins
will leave the energy of the pair unchanged, leading
again to the above selection rules for all values of J.

However, if m17%m, and J/A is no longer >>1, inter-
change of the two electronic spins does not leave the
energy unchanged [the spin interchange does not
commute with Eq. (1)], and the electronic spin states
no longer have a definite parity under such an opera-
tion. This, in effect, mixes the singlet and triplet states
and leads to a spectrum significantly different from
that in the J/4>>1 limit.

Our calculation diagonalizes Eq. (1), retaining only
the diagonal portion of the hyperfine interaction,
A (I12S1z+122S22), using direct product basis functions
of the form | M1,Ms,m1,m»), where M ; and m; correspond
to the z component of the electronic and nuclear spin,
respectively, of the ith donor of a pair. In addition, we
require the resultant eigenfunctions to have a definite
parity under simultaneous interchange of both the elec-
tronic and nuclear spins. This stipulation arises because
such an interchange leaves the energy unchanged and
commutes with the Hamiltonian for,all values of J.

6 D. Jerome and J. M. Winter, Phys. Rev. 134, A1001 (1964).
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Fic. 1. Energy-level diagram for a phosphorus donor pair. The
eigenstates are labeled numerically from 1 to 16 along with the
usual strongly coupled pair states (Ref. 6) to which each reduces in
the limit J/A>>1. The eigenvalues of the spin Hamiltonian are
given using the notation v,=gupH,.

In Fig. 1, we have presented graphically the energy
levels arising from such a diagonalization. The corre-
sponding eigenstates are labeled from (1) to (16) to-
gether with the strongly coupled state to which each
reduces in the J/A4>>1 limit. The notation for these
strongly coupled states is similar to that of Jerome and
Winter® where .S, 7', and 7'y refer to electronic pair
spin states and s, fy, and /1 refer to similar pair nuclear
spin states.

By taking the square of the matrix elements of 3C.¢
between any two of these eigenstates, the relative in-
tensities of the corresponding transitions were calcu-
lated. These relative intensities (normalized to transi-
tion @) and corresponding energies are listed in Table I
for all not completely forbidden transitions. Here again,
it is seen that the usual pair spectrum, with conservation
of total electronic spin, appears both in the strong
coupling limit and in pairs where mi;=m,. The latter
result is evident in the fact that the only transitions
linking states where mi1=m, (transitions a, b, ¢, and d)
occur at the energies gupHo+34 and with the proba-
bilities predicted by a simple application of 3C,¢ to the
(S=1) spin triplet.

The last eight transitions listed in Table I involve
states where mi><m,. In these cases, at low values of
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TaBLE I. Donor pair transitions having nonzero transition
probability. The relative transition probabilities and the transi-
tion energies A are given and ve=_gugH,.

P. R. CULLIS AND J.

Relative transition Transition

Transition probability energy (A)
a: (16) <> ( 9) 1 ve—%
b: (13) (5 1 vet+34
c: (9 (9 1 ve—3%
d: (S)e (1) 1 vet3A
e: (1) (8) 31T (PHA)IE]  yt (AR 3T
fr 9o (D) AT HAE] oy F (A
g (8)0 (3) A+T(PHAYI] =R (JhADa4LT
h: (7)o (2) 34T 2449712]  p,—5(24A4A)1243T
i (15) > (1) 3{A—T(PHAYR] = (PP AY4LT
it (190 (12) J[A-T(P+AD] =3 (P+AYE+ET
B (12) 0 (2) BQ—T(PHAYI]  pe d (AN
I: (1) o (3) [1—T24HA)12]  p b (2441244

J, the results deviate significantly from those of the
strong coupling limit. For example, the “central-pair
line,” at low values of J, splits into a component
(transitions e, f) at an energy 3(J*+A4%)'2—3J above
gupHo and a component (transitions g, %) at guzH,
—[3 (24 42)V2—1J]. In addition, widely split “satel-
lite” lines appear outside the usual isolated donor
“hyperfine” lines at gupH ¢ F[ 3]+ 3 (J*+ 4%)V%] (transi-
tions 4, 7, k, and ). As expected, all of these lines reduce
to give the two “hyperfine” line spectra of isolated
donors as J approaches zero. While, in the strong
coupling limit, the probability for the satellite lines
vanishes and the remaining (e, f, g, and %) transitions
coalesce to give the usual central-pair line.?

The calculations discussed thus far have been con-
cerned with the spectrum of a pair having a given ex-
change energy J. The observed EPR signal will be a
summation of these individual spectra over the quasi-
continuous range of J values made possible for pairs
by the random placement of donors in the host lattice.
This random impurity assumption has so far appeared
to be valid in other work involving similar samples.”
Using this assumption, and that of a continuous dis-
tribution of impurity positions, Chandrasekhar® has
derived an expression for W (R)dR, the probability
that a nearest-neighbor donor exists in the volume of an
imaginary spherical shell of radius R and thickness dR
centered on a given first donor atom. This probability
for a sample with N, donors/(unit volume), can be
written as

W (R)dR= (e~4~*Nol3) (47N 4R%R) . (6)

The first term in parentheses on the right-hand side of
this expression represents the total probability that all
positions at separations less than R, from the central
donor, are not occupied by a donor; while the second

M. N. Alexander and D. F. Holcomb, Rev. Mod. Phys. 40,
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factor corresponds to the probability that a donor
exists in the shell of radius R.

The treatment in this paper assumes that the net
EPR spectrum of the Ny donors/(unit volume) is de-
scribable in terms of 3V, nearest-neighbor pairs. The
distribution of pair separations in a unit volume
N (R)dR is obviously obtained from expression (6) as

N(R)AR=%3N (e 4B Noi3) (Ax N \R?%dR) . (7

This grouping of the donors into pairs is done even
though members of the large fraction of these “pairs,”
having very small J, will act as isolated donors. As it
should be, the spectrum of such pairs, on the basis of the
above calculation, becomes identical to that of isolated
donors. As pointed out elsewhere,® certain difficulties
do arise from such classification into pairs. For example,
the nearest neighbor of atom “4” may be atom “B”
whose nearest neighbor is, however, atom “C.” Classifi-
cation into pairs using expression (7) under such circum-
stances is ambiguous and, in fact, requires more detailed
treatment. However, for the donor concentration con-
sidered here (< 3.7X10' donors/cm?), such ambiguities
arise primarily in those pairs having very large donor
separations.’ Because of the very small J values of
such pairs, their spectrum is essentially independent of
J and effectively identical to that of completely isolated
donors. Consequently, errors in the calculated EPR
spectrum arising from such cases are negligible for the
sample concentrations considered. The absence of the
well-known spectra of three and four donor atoms
in our experiments similarly justifies our neglect of
these multiple couplings in the calculations for such
concentrations.

Thus, considering the donor spins to be a collection
of nearest-neighbor pairs, expression (7) can be used to
obtain the distribution of J values, N(J), in a given
sample if we have available an expression J(R) relating
the exchange energy of a pair to the displacement vector
R connecting its two donors. In obtaining such an ex-
pression, we have adapted a general expression for the
exchange energy of two electrons in an attractive
potential® into the following form:

J=—2 f Y (e (x) / Y () V (e (e2)drs dis

- f () e (r)drs i, (8)

Kolh—rzl

where y; and ; refer to wave functions centered on'the
two donor nuclei of the pair (¢ and j), r; and r, refer to
the spatial coordinates of the two donor] electrons,
K,=12 is the dielectric constant of silicon, and V (r.)
represents the attractive potential of the donor nucleus.
Following the approach of Jerome and Winter,® we have

? E. Sonder and H. C. Schweinler, Phys. Rev. 117, 1216 (1960).

10 P, W. Anderson, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1963), Vol. 14.
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expressed ¥; and ¢; in terms of the Kohn-Luttinger
donor wave functions!! which are of the form

=6
Y(n)= Zl Fi(r);(r), “)
-
where ¢;(r) is the Bloch function associated with the
jth of the six conduction-band minima of silicon and
Fi(r) is a hydrogenic envelope function in which the
effective mass at each of these minima has been as-
sumed to be isotropic. This latter assumption neglects
the observed anisotropy but simplifies the calcula-
tions greatly, since the envelope function can now be

written as
Fi(r)= (wa*3)12gIrlle* (10)

where a* is the effective Bohr radius of the donor
electron.

Following the substitution of Egs. (9) and (10) into
expression (8) and the subsequent evaluation of the
resulting integrals through the use of the earlier results
of Miller and Abrahams,? we have obtained the follow-
ing expression for the exchange energy of a pair having
a separation vector R:

J(R)= (¢/Koa*){(2/9)(1+D)(1+D+35D%)e P
— (1/45)[(25/8— (23/4)D—3D*— D%
+(6/D)(1+D+3D%?*(y+1nD) Je*”

— (1 —=D+3D*)E(—4D)e*?
+2(14+D+3D*)(1—D+3DHEi(—2D) ]}
X( > cosk;-R)?,

7=1,2,3

(11)
where

D=|R|/a*, v=0.57722, Ei(—zx)=—

0 e-—-l

—di,
s !
and the k;=0.85kmax represent the values of the wave
vectors at the conduction-band minima in three
mutually perpendicular [100] directions. It is important
to note the strong directional dependence of J upon R
introduced by the squared sum of cosines factor of
Eq. (11). This dependence comes from the interference
between those portions of the wave-function equa-
tion (9) which arise from different conduction-band
“yvalleys.” This interference factor has been omitted
both from the results of Jerome and Winter®*® and the
earlier evaluation of the second term of expression (8)
by Miller and Abrahams.!? The interference factor has
been retained in the present calculation. Before going
into the details of this calculation it should be empha-
sized that a*, the effective Bohr radius, will be regarded
as the sole adjustable parameter in expression (11) and

11 W, Kohn, in Ref. 10, Vol. 5.
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it]is our purpose to determine its value through a com-
parison of calculated and experimental results.

Because of the directional dependence of expression
(11), a more complete calculation required a considera-
tion of the discrete silicon lattice and thus the finite
set of values available for R. In this case, the probability
of a nearest-neighbor donor occupying a site of separa-
tion vector R can be written as

W (R)= (e7#mNIRIE) (No/N's3) , (12)

where Ng; represents the number of silicon lattice sites
per unit volume. This expression differs from the earlier
expression (7) primarily in that the probability of donor
occupancy of the given lattice site is now presented by
No/Nsi. The retention in (12) of the first factor of
expression (6) which represents the probability that all
sites interior to R are vacant of donors, is an approxima-
tion which is valid for all but the smallest values of R.
The statistical weight of these small R pairs is so small
that this approximation has negligible effect on our
results. V(J) is then obtained by computing the sum

N =30 WR), (13)

where R’ represents all those sites for which expression
(11) yields a value equal to J.

Given the distribution N (J), further spectral calcula-
tions require the assumption of thermal equilibrium at
the bath temperature 7. The population differences
between the various states involved in the transitions
of Table I are taken into account by assigning a thermal
weighting factor of unity to state (12) of Fig. 1 while
letting that of the sth state be e~ @i~Ew/ET, Together
with the relative transition probabilities calculated
earlier, this gives a relative, rather than absolute, value
for the EPR intensity at given energy A. This is
sufficient since our experiment measures only such
relative intensities, as calibration for absolute measure-
ments has been found unnecessary.

Finally, our calculation allows for the inhomogeneous
broadening of each transition into a Gaussian line shape
of half-width (in frequency units) of 8.0 MHz by the
nuclear magnetic moment of the Si¥® isotope present in
the host lattice. The resultant spectrum is calculated
by performing a computer sum over all pairs having
transitions at the various energies A, using the corre-
sponding transition probabilities of Table I, with N (J)
obtained as above, and with the obvious allowances for
the population weighting factor and Gaussian line shape.
The resultant calculated spectrum is a functionFof
temperature, concentration, and the effective donor
radius ¢*. However, because of the previously men-
tioned restrictions to relatively dilute concentrations,
we are confined experimentally to samples where the
“hroad background” portion of the EPR signal is so
weak as to preclude its detailed study by direct tech-

14 G. Feher, Phys. Rev. 114, 1219 (1959).
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niques. For this reason, in connection with our deter-
mination of the exchange energy J, it is sufficient to
calculate the ratio of the signal height at the “central-
pair line” peak (A=gupH,) to that at either “hyperfine
line” (A=gugH+3A4). This ratio is easy to determine
experimentally as a function of concentration and
temperature. In Sec. 111, we shall discuss such experi-
ments and the subsequent matching with the calcu-
lated results.

III. EXPERIMENTS AND RESULTS

The EPR spectra were obtained for four samples of
phosphorus-doped silicon having negligible acceptor
impurity concentration and having donor concentra-
tions of 0.8, 1.7, 2.3, and 3.7X10' donors/cm®. A
standard x-band spectrometer with 400-Hz magnetic
field modulation was used. The klystron frequency was
locked to an external wavemeter cavity to enable
observation in the dispersive mode. Temperatures rang-
ing from 1.05 to 4.2°K were available through con-
trolled pumping on a liquid-helium-4 bath.

The results of these measurements, at 7=1.05°K, of
C, the ratio of the central-pair to hyperfine line inten-
sity, are plotted in Fig. 2 as a function of the donor con-
centration. The results represented by the solid curve
in this figure were calculated on the basis of the
theoretical spectrum of Sec. IT and an assumed effective
Bohr radius a*=17.3 A. This value of a* gives the best
fit to all experimental data.

The error brackets on the experimental points of
Fig. 2 reflect both the limitations of our intensity mea-
surements and a possible ~==5%, error in our concen-
tration determinations made through the use of a
standard four-point probe resistivity technique. An
additional error could arise from the existence of
different EPR signal passage conditions for the fast

R. CULLIS AND ]J.
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relaxing pairs relative to the slower small exchange-
energy pairs.® To check this possibility, several param-
eters of the observation mode were varied in the
measurements. In particular, the magnetic field modula-
tion frequency was varied from 30 to 3000 Hz, and
several magnetic field sweep rates were used. Within
experimental error, C was found to be independent of
these changes in the observation parameters.

It is also important to note that care must be taken
to keep the microwave power used in signal observation
at its lowest possible value consistent with a useable
signal to noise ratio. This precaution was necessary
since the value obtained for C was found to increase at
high powers, most likely due to the broad saturation
effect reported earlier.® In this effect, off-resonant micro-
wave power was observed to reduce the size of the
hyperfine lines, presumably through spectral diffusion
from the saturated portion of the broad background
line. In the present case, the faster relaxing central
line would be less affected by this process than the more
slowly relaxing hyperfine lines, thus yielding a larger
ratio C at higher power levels.

On the basis of our exchange-energy determination,
the temperature dependence of the ratio C was calcu-
lated. The predicted value at 4.2°K was C=20.29, for
a 3.7X10' donors/cm? sample, which was in reasonable
agreement with our measured value of C= (20£2)%.

In estimating the maximum error possible in our
determination, we have calculated the values of o*
necessary to match the experimental points at the
limits of the error brackets of Fig. 2. The resultant
possible error is £0.2 A.

IV. DISCUSSION

The experimentally determined value of the effective
Bohr radius, ¢*=17.3 A, is very close to the 17.2 A

30 T T T

25f—

20—

[¢] 1 1 1

T

F16. 2. Plot of experimental points
and theoretically calculated values of
_ the ratio C(%) of the central-pair line
(A=gugH,) to intensity to that of
either hyperfine line (A=gupHo+34).
The solid curve represents the calcu-
- lated ratio for an effective Bohr radius
a*=173A.

(a*=17.3R)
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15 G. Yang and A. Honig, Phys. Rev. 168, 271 (1967).
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1
value obtained for the arithmetic mean of the three
previously estimated components of the anisotropic
donor radius.'? These latter values were derived from
optical and thermal data interpreted through correc-
tions applied to the effective-mass formalism.!! The
agreement obtained in our work would seem to indicate
that, at least in overlap calculations, the effective Bohr
radius of isotropic envelope wave functions should be
set equal to such an arithmetic mean radius. This has
not been done in previous calculations.!®
The errors introduced by the assumption of an
isotropic effective Bohr radius, while obviously im-
portant in determining the accuracy with which the
theoretical donor wave functions describe the physical
situation, should not greatly affect the resultant ex-
change-energy distribution. The experimentally deter-
mined normalized distribution N (J)/3N,, for samples
of concentrations No=4X10'" and 6X10' donors/cm?,
are plotted in Fig. 3. Of course, since the exchange-
energy distribution is not continuous, the plotted
curves represent suitable averages of the discrete

J-value distribution.

15
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We should now like to compare certain features of
these exchange-energy distributions with the corre-

I
104 10
EXCHANGE ENERGY = J(MHz)

sponding results of earlier experiments in this material.
In particular, our results indicate that the peak of the

distribution function N(J) for a 6X10%-donors/cm?

F1e. 3. A plot of the normalized distribution of pair J values,
N (J)/3N,, as a function of the exchange energy J for a 4X10%6-
donors/cm3 sample (solid curve) and a 6X10%-donors/cm? sample

(dashed curve).

sample, occurs at J~ 50 MHz. This value is much lower

than the previous estimate® of 1.35X10* MHz made

from ENDOR experiments. Part of this discrepancy is

due to the severe complications introduced into the
interpretation of the ENDOR experiments by the J de-
pendence of the pair electronic and nuclear spin-lattice
relaxation times. In addition, these latter experiments
involved only the more strongly coupled pairs having
exchange energies greater than a few hundred MHz.
For these reasons, we feel that the details of the ex-
change-energy distribution obtainable from ENDOR ex-
periments are quite limited.

Maekawa and Kinoshita,'” by measuring the tempera-
ture dependence of the central-pair line intensity, have
estimated the average J value for those pairs con-
tributing to this line to be 8 X10° MHz for a 4X10%-
donors/cm?® sample. This is greater, by a factor of ~35,
than a similar quantity obtained from our results.

Such a discrepancy can be accounted for by large
possible experimental errors, ambiguity in the definition
of the average exchange energy, and the fact that the
earlier work separated out the central-pair and back-

ground lines and treated them independently. As a

result, we feel that our unified treatment and direct

spectral measurements offer the more reliable informa-

tion on the distribution of exchange energies.
In conclusion, it appears that the excellent agreement
between the calculated and experimental results pro-

16 K. Sugihara, J. Phys. Chem. Solids 29, 1099 (1968).
17 S. Maekawa and N. Kinoshita, J. Phys. Soc. Japan 20, 1447

(1965).

vides strong support for the assumption of a random
impurity distribution and for the reasonable accuracy
with which expression (11) with a*=17.3 A represents
the exchange energy of a donor pair. The closeness of
this value of ¢* to the arithmetic mean of the three
anisotropic donor radii determined elsewhere!? indicates
the correctness of the use of this latter quantity in
similar calculations requiring the simplification of iso-
tropic envelope functions. The exchange-energy dis-
tribution resultant from the present calculation should
be useful in extensions of such spectrum calculations
to higher concentrations where larger donor clusters
must be considered as well as in a detailed study of the
so-called concentration-dependent spin-lattice relaxa-

tion processes.'s
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