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An investigation of the effects of heavy doping has been carried out in the case of the system CdS,Se;_,.
For CdS containing a low concentration of Se, the dopant acts as a heavy impurity and gives a gap mode
at wg gre=182.5 cm™ and wg g1.= 187 cm™. An increase in the Se concentration brings into prominence
two constituents of the wg band having, respectively, the character of a longitudinal mode wro® and a
transverse mode wro®. The frequencies wro% and wro® are dependent on the impurity concentration and
tend toward the normal-mode frequencies of CdSe in the high-concentration limit. S in CdSe gives two
localized modes, wz, Ene=266.5 cm™ and wz g1.=269 cm™, whose frequencies are also concentration-
dependent and at high S concentration reach the normal-mode frequencies for CdS. The localized-mode
frequencies of S in CdSe and the resonance-mode frequencies of Se in CdS have been investigated by
Green’s-function techniques. A model assuming a random arrangement of impurities, developed by Elliott
and Taylor, has been applied to the study of mixed CdS.Sei—., using the now available CdS Green’s
function. Up to an impurity concentration of 209, the calculated optical properties (such as the normal-
mode and impurity-mode frequency shift, oscillator strength, and absorption coefficient) compare satisfac-
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torily with the experimental data.

I. INTRODUCTION

PTICAL measurements in the region of normal-

mode frequencies in a great number of ternary
alloys’have produced considerable theoretical interest.
Different attempts to treat the vibrations of a dis-
ordered lattice are known: the very-low-concentration
limit for substitutional impurities’? has received wide
experimental confirmation.® High impurity concentra-
tions and alloys have been considered in a few recent
investigations.*?

The experimental results have been discussed mainly
in terms of macroscopic theoretical approaches such as
the random-element isodisplacement model in the
cases of GaP,Asi 5% CdS.Sei,,% and ZnS.Se;.,” the
short-range clustering model in the case of GaP,As; s,
CdS.Sei_», and Bay ,Sr.Fs.8 A virtual-crystal model
has been applied to some ionic crystals such as Nij_,-
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Nai K Cl" and CdS,Se;—.22

The Green’s-function technique used in the investiga-
tions of impurity vibrations has been recently intro-
duced into the problem of vibrations in random dilute
alloys®®; similar theories have been developed by
Langer,* Maradudin,’® Takeno,'® and Davies and
Langer.” Taylor'® has developed a self-consistent
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Lax® which extends the results obtained by Elliott
and Taylor to crystals with large defect concentration.
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shifts and the optical absorption are discussed in terms
of the Elliott-Taylor theory.
II. THEORETICAL CONSIDERATIONS
A. Impurity Frequencies

For a perfect crystal, the normal-mode frequencies
are given by the solutions of the secular equation:

| Mw?—3| =0, ey

where ® is the potential-energy matrix for the perfect
crystal formed by atoms with mass M. If C is the
local perturbation matrix, the secular equation for the
perturbed crystal is

| Mw2—3—C| =0. (2)

One can define a matrix G whose coefficients are the
Green’s functions of the crystal:

G(Mw—&—C)=I—GC. 3)

The impurity-mode frequencies are given by the
solutions of the secular equation

| I—G(@)C ()| =0. (4)

The matrix elements of the Green’s function G(w)
may be obtained from the phonon eigenvectors o(7q)
and eigenfrequencies w?(7q):

Oak (jq)aa’k'* (jq)eiq C(rl—r1")
NMEM e = (j@)]

Gatar o) =3 )

The o’s are the Cartesian coordinates, the %’s label
the ions.

The Green’s function can be expanded into real and
imaginary parts:

lim,0 Glw+1i9) =G (w)+imv(w)/ 2w, (6)
which are related by the Kramers-Kronig relation
oM y(w)dw’
= [ , )
0 (4)2—0)/2

where v(w) is the density of modes.

When a light substitutional impurity is introduced, a
localized mode may appear at w>wy. The localized-
mode frequencies are given by the solutions of

G (w)=1, (8)
where e is the positive-mass parameter
e=1—-M'/M.

When a heavy-mass impurity is introduced, a band
resonance may appear at w<wy. The resonance-mode
frequencies related to the imaginary part of the
imperfect-crystal Green’s function are given by the
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solutions of
G (w)=1,

where e is the negative-mass parameter.

B. Vibration of Alloys

The theory used to interpret our experimental results
is that developed by Elliott and Taylor'® concerning the
vibrational properties of an isotropic cubic crystal
containing impurities in small concentration. In the
present work we are concerned with hexagonal crystals.
The application of this theory is an approximation
which is justified by the fact that the anisotropy
introduced by the hexagonal structure does not con-
stitute an important deviation from the cubic structure,
as far as the vibrational properties are concerned:
The splitting of the optical mode due to the hexagonal
symmetry is only a 29, effect. The Green’s function of
a crystal containing one impurity on site ¢ is given by

G=G+GXG,
where

X=Ci;(I—GC)™ 9)

is a matrix having the dimensions of the C; impurity
matrix.

For a concentration of ¢ of randomly distributed
impurities, G is written

G=G+GX'G, (10)

where

X'=C[I—(1—¢)GCT™. (11)

The imaginary part of the Green’s function is then

w7 (w)
I G]' W) = 5 (12)
) = N A @) = GOy [T @) T

where A(w) is the frequency shift and I'(w) is the
damping coefficient in the spectral region of allowed
frequencies. w?A(w) and «?T'(w) are, respectively, the
real and the imaginary part of X'.

lim X/ (0+i®) =*(A (@) —il'(@))
cew[a(w) —iB(w)]
T @)
which are related to the density of states by
a(w)—ifw)=1—(1—c)e?
><<P %ﬁl)dw’ﬁw(w». (14)

2 —w”? 2w

, (13)

In the case of a diatomic crystal, the density of states
must be that appropriate to the displacement of the
substituted ion. Therefore, the density of states »(w)
in the Elliott-Taylor paper is in the present work the
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Fic. 1. Infrared reflectivity spectrum of CdSe with 0.5%, S, for
light polarized parallel and perpendicular to the ¢ axis.

corresponding imaginary part of the nonperturbed
lattice Green’s function. We use the calculated values
of »(w) given by Nusimovici, Balkanski, and Birman.2

It should be emphasized that although the theory
given in Ref. 13 is appropriate only to a cubic crystal,
the unperturbed density of states is nevertheless taken
to be that of hexagonal CdS. Therefore, some of the
effects arising from the hexagonal symmetry will
nevertheless be included in the present theoretical
treatment.

At small ¢, A(w) and I'(w) in Eq. (12) are small, so
that there is a peak near w=wro. In addition, a second
peak is found near the resonance position, where
1— (1—¢)ew?G(w) — 0 and A(w) becomes large.

The strength of the impurity mode is

crw? 1 (15)
15
2(wP—wro?)? B(w)
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@ (0")do’
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III. EXPERIMENTAL RESULTS
A. Experimental Procedure

The reflectivity measurements were performed on a
far-infrared vacuum spectrometer CODERG. The reflec-
tivity was taken point by point, comparing the reflec-
tivity of a mirror with that of the crystal. The resolution
is 1 cm™! in the entire range studied.

The real and imaginary parts of the dielectric
constant are deduced from the optical constants by
means of the Kramers-Kronig relations. The optical-
mode frequencies are given by

WTO= € max™ anmax )

wro=Im(—1/€)max=[21k/ (12+k%) Jmax-

B. Low Impurity Concentration
1. S Replacing Se in CdSe

S (M =32) replaces Se (M =79) in CdSe. The mass
parameter e= (Ms.—Ms)/Ms=0.595 is positive, and
localized modes are expected at frequencies higher than
the LO-mode frequencies of pure CdSe.

Figure 1 gives the reflectivity spectrum of CdSe
containing 0.59%, S, for E|c and Elc. The main
reflectivity band is the CdSe reststrahl; the reflectivity
peaks due to S are located at frequencies higher than
the LO-mode frequency of pure CdSe.

Figure 2 gives the imaginary part of the dielectric
constants. For each polarization two types of oscillators
can be observed: (1) the TO mode of pure CdSe, whose
frequencies are

WTO Elle™ 166.5 Cm—l, WTQ ELc™ 169 Cm‘l

and (2) the localized-mode frequencies of S in CdSe.
In both polarizations, two localized modes are seen,
which are labeled wro, and wro,:

wro, Ene=262 cm™!,  wro, E1c1°°— 263 cm™,
WTO, Ellc ¢ — 266 5 cm— 1 WTO, E.I.c C == 269 CI’l’l_1
—_—€ =
€, Elle mmnlm;%/ﬂ Im /€]
— €pr
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F1c. 3. Real part of the dielectric constant and imaginary part of

Fi6. 2. Imaginary part of the dielectric constant of CdSe with ~ minus the inverse of the dielectric constant of CdSe with 0.59, S,

0.5% S, for light polarized parallel and perpendicular to the ¢ axis.

for E1 ¢ and Ellc.
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Fic. 4. Infrared reflectivity spectrum of CdS with 1.59, Se, for
light polarized parallel and perpendicular to the ¢ axis.

The appearance of two peaks for each polarization is
surprising, but the experiment indicates such a structure
without any ambiguity. The low-energy peaks may be
attributed to clusters of S in CdSe, and the high-energy
peaks are the localized modes of substitutional S in
CdSe

The LO-mode frequencies are deduced either from
e,=0 or from Im(—1/¢)=max. As shown in Fig. 3,
two sets of LO modes can be seen:

(1) those of pure CdSe, whose frequencies are

wro ene=210 cm™, wro =212 cm™;

(2) those of S in CdSe, whose frequencies are

010, ENc°=262.5 cm™, w10, £1/°=263.5 cm™!,

WLO, E”clocz 268.5 cm™! y; WLO, E1¢l°c= 270.5 cm™1.

w10, and w0, respectively, correspond to wro,'*
and wT021°°.

To calculate the localized-mode frequencies of
substitutional S in CdSe, we take the CdS Green’s
functions of Ref. 20 and make the assumption that the
CdSe density of states is that obtained from CdS after
scaling the frequency by substituting for wro of CdS
the wro of CdSe. The calculated frequencies are then

WI, Ellc= 266 cm™! , WL Ele™ 271 Cmﬁl,

values which are in close agreement with the experi-
mental frequencies,

@ro, B1.%°=266.5 cm™!,  wro, m1°=209 cm.

2. Se Replacing S in CdS

Se (M=179) replaces S (M =32) in CdS. The mass
parameter e=—1.47 is then negative, so that a res-
onance mode or a gap mode is expected.

The reflectivity spectrum of CdS containing 1.59%, Se
is shown in Fig. 4, for E||c and E_1 ¢. The main reflec-
tivity band is the CdS reststrahl; the reflectivity peaks

21 M. Balkanski and R. Beserman, Ref. 4.
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F1c. 5. Imaginary part of the dielectric constant of CdS with 1.5%,
Se for light polarized parallel and perpendicular to the ¢ axis.

due to Se are located at frequencies lower than the wro
frequencies of CdS.

As shown in Fig. 5, the imaginary part of the dielec-
tric constant exhibits two oscillators for each polariza-
tion. These are the TO modes of pure CdS, with
frequencies

wro en.=233 cm™!, wro r.=239.5 cm™?,
and the gap modes of Se, with frequencies
wr0 E7=182.5 cm™!, wro g1 =187 cm™1.

Figure 6 gives the real part of the dielectric constant
and the imaginary part of (—1/€). Two sets of LO
modes can be seen as those of pure CdS:

wLo ene=301 cm™, wro p.=304.5 cm™,
and those of the gap modes due to Se:
wW1Lo E“cG= 186 cm*l, wWLOo E1¢G= 190 cm™!.

The gap-mode frequencies have been calculated from
the CdS Green’s function by Nusimovici et al.,® by
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Fic. 6. Real part of the dielectric constant and imaginary
part of minus the inverse of the dielectric constant of CdS with
0.5% Se, for E_1 ¢ and Ec.



612 R, BESERMAN AND M. BALKANSKI 1
R 1 Ell °
CdS % CdSe % 4 cal.=NE TTT
Cd5985 CdSe LS ... 2 Elc -
90) CdS95  CdSe § -7
) CdS90  cdselo . expE”C ooo ///4
80, N Ve \ Cds77  CdSe23 Elc 4+ 4+ + -
N /. \ .//’ Ny CdS55  CdSedS _____ e
& 7o /NN I \ CdSI5  CdSess ____ e
b VRN i/ Cdsas  Cdse99s__ _ - e
E o AN 1 1 [~ -
> / \ / E'Lc %) -
- 4 z Ve
5 59 I 7
w0 @ e
T 4ol 51 b
w A o« ~
& 3 o + ,/
i ot .
< 7
20} : ] Z,
1 .l 7z
A - 7,
10} i 3 // o
2 o 1Y
100 200 300 w 7
WAVE NUMBER [cm~-'1
0 10 20 %0

Fic. 7. Reflectivity spectra of mixed CdS,Se;—, for E_Lc.

solving the set of equations ew?G’ (w) = 1. The frequencies
deduced from these equations are

W@ Elle= 191 Cm_l, W@ Ele= 195 cm™1.

These values are in good agreement with the experi-
mental frequencies deduced from the infrared reflec-
tivity spectrum with the help of the Kramers-Kronig
relations:

wro en.f=182.5 cm™, wro g.f=187 cm™1.

C. Mixed Crystals of CdS,Se;_.

With increasing concentration of Se, the magnitude
of the reflectivity peak increases as shown in Fig. 7
for ELc.

The optical-mode frequencies are deduced by
Kramers-Kronig relations from the reflectivity spec-
trum. The Se gap mode in CdS splits apart into two
optical modes, having, respectively, the character of a
TO and a LO mode. The frequencies of these two
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F16. 8. Comparison between the calculated curves and the data
deduced fromfthe experimental reflectivity curves by Kramers-
Kronig relations for E_L¢ and Efc.

CdSe CONCENTRATION in Cds, Se,_y[%%0)

I'16. 9. Comparison between the calculated oscillator strength
and the data deduced from the experimental reflectivity curves
by Kramers-Kronig relations for E_1 ¢ and Ellc.

modes separate continuously from each other with
increasing concentration, and attain the limiting values
wro and wro of pure CdSe. The S local mode in CdSe
has the same behavior with increasing concentration of
S in CdS.Se1—s.

The normal-mode frequency of CdS is given by the
solution of w¥ 1—A(w)]=w}?, where A(w) is related to
the CdS Green’s functions by (13) and (14).

The Se impurity gives a gap mode outside the region
of the allowed normal-mode frequencies; the absorption
occurs at

w[1—Alwe) J=w/.

In the limit of low concentration, the gap-mode fre-
quency wg is given by

G (weg)=1.

Figure 8 gives the calculated curves, as well as the
values deduced by Kramers-Kronig relations from the
reflectivity spectrum of CdS,Ser,. The comparison
between the calculated curves and the experimental
data is fairly good for the wro frequencies, but not as
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F1c. 10. Comparison between the calculated absorption curves
and the curves deduced from the experimental reflectivity by
Kramers-Kronig relations for two mixed crystals of CdS,Se;_,
with £=0.985 and 0.9.
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good for the we frequencies. This result is not surprising,
because the spring constants were fitted to the CdS
experimental values of wro and wro in the center of the
Brillouin zone. The CdS density of states is probably
more accurate near the experimentally known fre-
quencies than in the gap of the density of states.

In Fig. 9 the calculated oscillator strengths of CdSe
are compared with the values deduced by Kramers-
Kronig relations from the reflectivity spectrum of
CdS,Sei—,. The agreement between the calculated
curves and the experimental values is satisfactory.

The absorption coefficient is proportional to the
imaginary part of the inpurity Green’s function:

a(w)={20(1—¢)/m[1— (1—0¢)e]} ImG(0Ow).

In Fig. 10 the calculated and experimental absorption
curves of two mixed crystals are compared. The agree-
ment is poor, the discrepancies between calculation and
experiment being the following :

(1) The calculated curve has one absorption band,
which is maximum at the wro frequency of CdS plus a
6 function at wg, but the experimental curve shows two
absorption bands which are maximum at the wro and
wg frequencies.

(2) The width of the calculated absorption coefficient
curves is too small compared with the experimental
width.

(3) The decrease of the maximum of the calculated
magnitude of the absorption coefficient with the
concentration of CdSe is too fast compared with the
experimental decrease.

Two reasons can be given for the narrowness of the
calculated Se absorption relative to the experimentally
observed structure.

The expansion of the Green’s function only to first
order in the impurity concentration may not be
sufficient : It results in an imaginary part of the impurity
Green’s function that is zero in the CdS phonon gap. An
expansion to higher powers of the concentration would
introduce a nonzero contribution to the Green’s function
in the gap, due to interactions among impurities.

On the other hand, if the CdS density of modes were
not exactly equal to zero in its gap, the perturbed
lattice Green’s functions would not be zero in this gap,
and the absorption coefficient of CdS.Se;_, would
show two absorption bands. The difficulty may there-
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fore also be due to inexactness in the calculated density
of modes.

IV. DISCUSSION

The impurity-mode frequencies of S in CdSe have
been calculated from the CdS density of states under
the assumption that the density of states does not
change between CdS and CdSe, provided we perform
the appropriate frequency scaling by substituting for
the wro of CdS the value of the LO-mode frequency of
CdSe. The calculated localized-mode frequencies are

WL Ee=266 cm™, wg g.=271 cm™1.

These values are very close to the experimental fre-
quencies,

w1, Bie=2606.5 cm™!, wy, g.=269 cm™1.

This agreement supports the assumption made concern-
ing the analogy between the densities of states in CdS
and CdSe.

The gap-mode frequencies of Se in CdS have been
directly calculated from the CdS Green’s functions?:

WG Elle= 191 Cm*l, WQE Ele= 195 cm™1.

These results are in good agreement with our experi-
mental data,

W@ Elle™ 1825 Cm_l, W@ Ele™— 187 Cm‘l.

In the case of heavy doping, an increase in the Se
concentration creates two new constituents of the wg¢
band having, respectively, the character of a LO
(wro% and a TO (wro%) mode, which depend on the
impurity concentration and tend towards the normal-
mode frequencies of CdSe in the high-concentration
limit.

Experimentally, we have a continuous relation
between localized- and normal-mode frequencies de-
pending on concentration. Such behavior has been
explained theoretically up to concentrations of 209,
impurities in the host lattice.
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