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Assignment of features in the observed two-phonon
Raman scattering can be satisfactorily carried out using
the calculated values of phonon frequencies at critical
points. The model has been applied to a calculation of
lattice dynamics of imperfect wurtzite lattices; results
for frequencies of resonant and localized modes in a

crystal of CdS with mass substituted impurities are
given in an accompanying paper.

Work applying the model to BeO, for which some
experimental dispersion curves have been reported, is
under way as a direct test of the model. Results and a
comparison with experiment have been given elsewhere. '

APPENDIX
TABLE V. Lorentz matrix for vanishing wave vectors in wurtzite structure. && corresponds to a wave vector perpendicular to the

c axis. &~ corresponds to a vanishing wave vector parallel to the c axis.
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Let dipole moment

P(l,K) =P„e'»

be at the site of ion (l,K), then the field at ion (O,II') can
be expressed by

E"=B- (n)p'

The Inatrix B(»1) composed of the blocks B„„.(»1)
defined by (A2) is the Lorentz matrix. This matrix is
discontinuous for»1 —+ 0, and it has two limits Bi(0) and
Bs(0) if »1 goes, respectively, to zero parallel or per-
pendicular to the crystal c axis. The elements of Bi(0)
and Bs(0) have been computed and are given in

(A2) Table V.
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A Green s-function technique is used to study the vibrations of a substitutional impurity in CdS. Three
cases have been investigated, corresponding to localized modes, gap modes, and in-band resonant modes.
The theoretical results are in close agreement with experimental results for the gap mode of vibration of
a Se impurity substituted for the S ion and the resonant mode of a Mn impurity substituted for the Cd ion
in CdS.

I. INTRODUCTION AND METHOD

E have calculated the frequency spectrum of the
~ ~

vibrations of an imperfect CdS (wurtzite)

t Paper based in part on the thesis presented to the Faculty des
Sciences, University of Paris, Paris, France, for the degree
Docteur-es-Sciences Physiques, 1968 by Michel A. Nusimovici.

crystal containing isolated substitutional mass defects
at the Cd or S site. We have used the results of our
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on preliminary results of a calculation of local and
resonant modes in an imperfect CdS crystaP; it was
based on our earlier work on lattice dynamics in CdS.'

We shall assume that the reader is familiar with
the general theory of the method, and also with our
previous papers; thus we present only a brief summary
of our work. In CdS (wurtzite), the unit cell contains
four atoms in the basis, which are labeled ~=1, 2, 3,
and 4; respectively, Cd I, Cd II, S I, S II. We assume
that a single mass defect of mass M' is present replacing
the mass M„originally at site &, and we define a
parameter

100 200 300

The force constants are assumed unchanged in the per-
turbed lattice.

If we define the matrix Green's function g„„ ii. „(iu)
in terms of the eigenvectors e„(g/j) of the perfect
lattice, and the corresponding eigenfrequencies &o(zi/j),
we have

3 ftlOzl sSul fgteoa 4 f JQz]

(G)

~ ~
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«1" (1.2)
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where Ri is a lattice vector in the crystal, and n, n' are
Cartesian indices (n=a, y, s). In the spectral region of
the normal modes, it is necessary to define an auxiliary
distribution v(ro) by incorporating a small imaginary
part in the real frequency co. Then we have

Frequency &en & ) lim g((u+zC) =g'(~u)+ (izr/2oi) v(o~) . (1.3)
Fro. 1. Density of modes and imaginary part of the Green's

functions of the nonperturbed crystal. The one-phonon density
oi modes is illustrated (a). The histograms (b) and (c) correspond
to the vibrations of the heavy and the light ion, respectively.
The vibrations of the heavy ion are predominent for low-frequency
modes, and the vibrations of the light ion are predominent for the
high-frequency modes.

calculation of the normal-mode frequency spectrum of
perfect CdS based upon an improved model, as reported
in an accompanying paper. '

The method used to compute the perturbed fre-
quencies of the imperfect lattice is originally due to
I.ifshitz'; it has been developed by Elliott' and Dawber
and Elliott4 for a study of perturbed cubic crystals with
a Debye spectrum of vibration assumed for the perfect
lattice. It has also been used for ' ' other cubic crystals
with alkali-halide structures. Previously, we reported

M. A. Nusimovici, M. Balkanski, and J. L. Birman, preceding
paper, Phys. Rev. B 1, 595 (1969).' E. M. Lifshitz, Nuovo Cimento Suppl. 3, 716 (1956).

3 R. J. Elliott, Phil. Mag. 1, 298 (1956).
P. G. Dawber and R. J. Elliott, Proc. Roy. Soc. (London)

A261, 222 (1963).
5 R. F. %allis and A. A. Maradudin, Progr. Theoret. Phys.

(Kyoto) 24, 1055 (1960).
6 S. S. Jaswal, Phys. Rev. 137, 302 (1965); S. S. Jaswal and

D. J. Montgomery, Phys. Rev. 135A, 1257 (1967).

The function g'(&u) is equal to the Green's function
g(o&) for every frequency different from an eigenfre-
quency of vibration of the perfect lattice and is equal
to zero otherwise. The distribution v(iu) is given by

1
v„„.„. .(io) =—p (M„M'„.)

—"'e„*(q/j)

, (zi/j )e
—simp (Ri—Rl') fbio ie(z7/j)$ (1 4)

With the assumptions of no change in force constant,
the frequencies of the perturbed crystal can be ob-
tained from the complex imperfect-crystal Green's
functions g™,which is conveniently defined as

g,' (iu) + srizr v, (iu)
lim g

'm" (io+ic) = . (1.5a)
1—e(vzg (~)+rsezzrv;(ar)

The functions g'(o~) and v(cu) of Eq. (1.5a) are defined in

P. Pfeuty, J.L. Birman, M. A. Nusimovici, and M. Balkanski,
in I'roceedings of the International Conference on Localized Excita-
tions in Solids, Iridine, California, 1967 Edited by R. Wallis
(Plenum Press, Inc. , New York, 1968), pp. 210—217.

SM. A. Nusimovici and J. L. Birman, Phys. Rev. 156, 925
(1967).
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FIG. 2. Real parts of the Green's func-
tions of the perfect crystal of CdS. The
curves (a) correspond to the heavy ion
and the curves (b) correspond to the
light ion.
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(1.3) and (1.4) from the perfect crystal eigenvectors
and eigenfrequencies.

A localized mode or a gap mode of the imperfect
crystal will arise if the real part of (1.5a) has a pole at
Mgq ol lf

0„00 g, '(40L) = 1. (1.5b)

A localized mode or a gap mode arises in a spectral
region where v(40) identically vanishes. The imperfect-
crystal Green's function is real and has a pole at col.

only if

ez00 g4 (40L) = 1 .

II. CALCULATIONS, COMPARISON,
AND EXPERIMENTS

Using eigenvectors and eigenvalues from the calcu-
lation of normal modes of CdS, ' we have computed the
ma, trix Green's functions (1.3), (1.4):

g2 g11,00, zz(40) g22, 00, zz(40) = g11,00, ww(40)

= g22, 00.ww(40) ~ (2 1)

gl gll, 00, zz(40) g22, 00, z(00) y (2.2)

g4(40) —g88, 00, zz(40) g44, 00, zz(40) g33, 00, ww(00)

= g44, 00, ww(40) | (2 3)

(2 4)

es of vibration of CdS has
been calculated elsewhere' and is given in Fig. 1(a).

(1.7) On Figs. 1(b) and 1(c), we give, respectively, the histo-
grams corresponding to the distributions vl(&0), v2(40),

V8(&0), and V4(40). Those distributions correspond, re-
(1.8) spectively, to the motions parallel and perpendicular

«40 gz (4018) = 1

V4(0018) +0.

A reSOnant Or band mOde Of the imperfeCt CryStal g8(40) =g83, 00, zz(40) g44, 00,zz(40).
will arise if the imaginary part of (1.4) is very large for
a frequency co&, i.e., if The density of normal mod
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group C3„, and a doublet corresponding to the repre-
sentation j. 3. The frequency of the doublet is smaller
than the frequency of the singlet, and for very light
impurities the difference between those frequencies can
be large, especially if the substituted ion is the cation.

For very light impurities e„~1, the frequencies of
localized modes go to infinity, and this is in fact quite
obvious. If the impurity is very light it behaves as a
harmonic oscillator with a vanishing mass. This result
can also be deduced from the asymptotic form of the
Green's functions,

1 e., *(n/j) e., ('n/j)
(2.5)gax, 00,aa'

S ~'e HEI„

gz~ 00na.' , 1/~a& (2 6)

Since the~eigenvectors of the dynamical matrix
are orthonormal, the limit of the right-hand side of the
relation (2.5) is

0.1

0
0 0.4 0.6 0.8

FIG. 3. Variation of a localized-mode frequency as
a function of e„= (M, 3P)/3XI, . —

to the c axis of Cd and S ions. They measure the con-
tributions of each of those degrees of freedom to the
density of modes in Fig. 1(a). The distributions vt(&o)

and v2(co) corresponding to the vibration of the heavy
ion are prominent for the modes of low frequency,
whereas, on the contrary, the distributions v&(+) and
v4(co) corresponding to the vibrations of the light ion
are prominent for high frequencies. The differences
between the distributions vt(co) and v2(&o) on the one
hand and the distributions va(ra) and v4(to) on the other
hand are due to the crystal anisotropy. They cannot
be explained by some elementary considerations of the
normal modes of the perfect lattice.

Localized Modes

I.et us first consider a light mass defect. In this
case the quantity e„defined by Eq. (1.1) is positive. The
frequencies of localized modes are then calculated for
any e. The localized mode frequencies are different if
the substituted ion is an anion or a cation. Owing to the
axial anisotropy of the crystal, the frequencies are dif-
ferent also for modes polarized parallel or perpendicular
to the c axis. The maximum frequency of the normal
modes is co~.

Figure 3 shows the variations of the quantity
(co/co~ —1) as a function of e„. Note that the localized
mode does not appear for arbitrary light substitutional
impurity; e„has to be larger than 0.23 if the substituted
ion is S, and larger than 0.65 is the substituted ion is
Cd, for such a mode to exist.

When e„ is large enough there are two localized modes,
a singlet corresponding to the representation F~ of the

Gap Modes: Theory and Experiments

When the mass of the substitutional impurity is large
enough, the impurity may produce a gap mode if its
frequency is in the gap of the density of modes [Fig.
1(a)j. The frequency of that mode can be calculated
from Eqs. (1.5). We calculated explicitly the frequency
of the gap mode of Se in CdS. In this case the parameter
e„ is —1.5. By using the calculated Green's functions in
the relation (2.5), we obtain two frequencies 187 and

TABLE I. Frequencies of localized modes.

Impurity

Li
Se
Mg
Ca
0

Substi-
tuted
ion

Cd
Cd
Cd
Cd
S

7 0.94
9 0.92

24 0 79
40 0.68
16 0.50

Frequency
(cm ') paral-
lel to c axis

541
487
334
303
345

Frequency
(cm ') perpen-

dicular to
c axis

588
520
345
310
355

corresponding to e„~I.
In Table I we summarize our calculated results for

frequencies of local modes for several mass substi-
tutions (or impurities). The corresponding values of v

are indicated in Fig. 3. (Recall that the highest fre-

quency of the perfect-CdS-lattice modes is coLo=302
cm '.)

For positive values of e smaller than the values pre-
viously indicated, the impurity is lighter than the substi-
tuted ion but will behave like a heavy impurity and

may show a resonant mode of vibration.
None of the experimental results available corre-

spond to a light substitutional impurity without change
of the force constants. Therefore, the present theory
cannot be compared with the experiment for localized
modes.
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192 cm ', corresponding to the resonant modes of Se,
respectively, polarized paraHel and perpendicular to the
crystal c axis.

The infrared spectrum of CdS containing Se has been
studied by several authors' " very recently. ReQec-
tivity experiments on CdS containing 1.5% of Se have
been done by Beserman. " The absorption coeKcient
obtained by a Kramers-Kronig inversion of the reQec-
tivity shows maxima for the frequencies of 188 and
184 cm ' corresponding, respectively, to polarizations
of the incident light parallel and perpendicular to the
crystal c axis. This result is in agreement with that of
Lucovsky et al. '3 and Parrish et ul u

our theoretically calculated values differ from the
measured values by less than 5 cm '; also, the anisot-
ropy splitting calculated (5 cm ') and measured
(4 cm ') are in close agreement.

Resonant Modes: Theory and Experiments

Let us consider two cases of impurities substituted
to a Cd ion in CdS, Zn and Mn. Zinc corresponds to
&=0.425, and Mn corresponds to &=0.513, both being
smaller than the critical value of 0.65 above which a
local mode of vibration exists.

Equation (1.6) has no roots if e=0.425. Therefore
there is no resonant mode of vibration of Zn in CdS.
This result is a contradiction with the one obtained from
jaswal'se calculations predicting a mode at 170 cm '.
Experiments" show, at very low temperature, a very
weak band with an intensity much too small to be the

9 M. Balkanski, R. Beserman, and J. M. Besson, Solid State
Commun. 4, 201 (1966}.I H. N. Verleur and A. S. Barker, Jr., Phys. Rev. 155, 750
(1967)."J.F. Parrish, C. H. Perry, O. Brafman, I. F. Chang, and S. S.
Mitra, in Proceedirtgs of the INterrtotiolat Conference II-VI
Semiconducting Compounds, I'rovidence, 1967, edited by D. G.
Thomas (W. A. Benjamin, Inc. , New York, 1967), pp. 1164-1184."R. Beserman, these de Doctorat d' Etat, Paculte des Sciences,
University of Paris, Paris, Prance, 1968 (unpublished)."D. G. Iucovsky, E.Lind, and E. A. Davis, Ref. 11,pp. 1150-
1163.

'4I. G. Nolt, R. A. Westwig, R. W. Alexander Jr., and A. J.
Sievers, Phys. Rev. 157, 730 (1967).

one of a resonant or a gap mode of Zn in CdS. Equation
(1.6) has several roots for e=0.513, but the only ones
in a spectral region where o(co) is small arise for fre-
quencies of 284 and 289 cm ' corresponding, respec-
tively, to vibrations parallel and perpendicular to the
crystal axis. These results are in good agreement with
recent experiments by Beserxnan, "who found absorp-
tion bands at 278 and 283 cm '.

III. CONCLUSION

The lattice-dynamic model previously used for the
lattice dynamics of CdS together with the Green's-
function theory of the vibrations of imperfect CdS
crystals have been used to compute the frequencies of
local and resonant modes due to various mass defect
substitutions in CdS.

Xo reports of measured values of local modes for
light impurities in CdS are available against which
theoretical predictions can be compared.

A gap mode with properties very similar to a local
mode has been observed for a Se impurity. In the case
of Se in CdS, calculated values of 192 and 188 cm ' are
in close accord with measured values of 188 and 184
cm '.

Theoretical results show resonant modes for Mn in
CdS, and the calculated values of 284 and 289 cm '
are in close accord with measured values of 278 and
283 cm '."

The theory shows that neither resonant nor local
mode can be expected for a Zn impurity in CdS. This
fundamental difference in behavior between Se and Zn
impurities in CdS may be related to the observed di6er-
ence between the vibrational spectra of mixed
Cdt, Zn, S and CdSt, Se,. The Zn in Cdt Qn, S does
not show any local or resonant mode for x ~ 0, and the
reAection spectrum of Cd,Zn&, S shows only one res-
trahlen band. " Se in CdS~ Se shows gap modes for
x —+ 0, and the reQection spectrum of the mixed crystal
shows two restrhalen bands corresponding, respectively,
to CdS and CdSe.""
"R. Beserman (private communication).


