
EXCITATIONS AT METAL —SEMICONDUCTOR INTERFACES

to respond to the forces exerted on them. By phase-
space considerations (very thin oxide), a= 1, and during
this interval the Schottky relation (1) holds
approximately.

What happens now for 1))1t LFig. 1(c)j depends on
the relative lattice rigidities of the oxide and the semi-
conductor. Again Ap is separated into two parts, Shg
being added to Pz and (l—S)AP being described by an
oxide dielectric double layer. If the oxide is more stable
Las is the case when co, (MX) (cv.(~,(MO) described
by Eq. (5)), near the interface the semiconductor iona
vill be displaced quasielastically in such a vray as to
eject the accumulated charge described by surface
plasmons into the oxide. This gives the Bardeen limit
S(s)=0. On the other hand, if the semiconductor is
so ionic itself as to be more stable than the M'0 oxide,
then the latter ejects its share of the interfacial charge
into the semiconductor, and the Schottky limit S(s)= 1
holds. The deformation mechanism proposed here is

"J.C. Phillips, Phys. Rev. Letters 22, 285 (1969).

related to the cancellation theorem" for substitutional
isoelectronic impurities, vrhere a similar charge accumu-
lation and ejection occurs because of electronegativity
diff erences.

Because of the quasielastic deformation associated
with charge ejection in the Bardeen limit, the mathe-
matics of surface states at ideal interfaces' may not be
quite relevant to barrier heights in this limit. There
one vrould expect elastic mismatch to account for the
small barrier heights (of order a few tenths of an eV)
that are actually observed. Because lattice distortions
are of longer range, one might expect that for a family
of elastically similar semiconductors the resulting
barrier could be related to properties of the valence and
conduction band edges only (rather than the average
gap Z, ).Thus it is not surprising that for many covalent
semiconductors" (Bardeen limit) $~=&~,=0.3AE, ,
where AE„den toes the minimum (direct or indirect)
gap betvreen valence- and conduction-band edges.

n C. A. Mead and W. G. Spitzer, Phys. Rev. 134, A173 (1964).

P H YSI CAL REVIEW 8 VOLUME 1, NUMBER 2 15 JAN VAR Y 1970

Lattice Dynamics of Wurtzite: CdS. Iit
MIGHEL A. NvstMovrcr*t ANn MrNKo BALzaNsxr

I.aporatoire de Physique des Solides de la Faculte des Sciences de Paris, France,
Fquipe de Recherche associee au Centre National de la Recherche Scientific, que

AND

JOsKIH L. BIRMAN*

Physics Department, Rem Fork University, Rem Fork, Ngzo For&

(Received 19 May 1969)

A new model for the lattice dynamics of semi-ionic compounds is presented and applied to the computation
of phonon dispersion in CdS. The calculated two-phonon density of states as a function of frequency is in
agreement with measured infrared absorption in the two-phonon region. Improved values of the micro-
scopic dielectric, elastic, and piezoelectric coefEcients result from a self-consistent least-squares Qt of model
parameters. The model includes valence-band forces, rigid-ion Coulomb forces, and electronic and ionic
polarization; it may be generally applicable to other semi-ionic II-VI compounds.

I. INTRODUCTION

'HE present paper reports on an improved model
developed for the lattice dynamics of II-VI

partially ionic compounds. The improved model is based
upon the mixed valence-Coulomb force field model
previously used' to calculate phonon dispersion in CdS;
hovrever, the ionic polarization and the ion deformation
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(electronic polarizabilities) are now included in the
model, which thereby incorporates most of the likely
important basic physical phenomena involved.

As previously noted, ' only indirect checks of the
calculated CdS phonon frequencies are possible, since
no experimental inelastic neutron scattering spectra
have been reported in CdS from which the dispersion
curves can be obtained. %e find improved agreement
of calculated two-phonon density of modes and two-
phonon infrared absorption spectra in the spectral
region 400 to 600 cm '; major features agree to within
5 cm '. The elastic and piezoelectric constants of CdS
have also been calculated, and the difference with ex-

'M. A. Nusimovici and J. L. Birman, Phys. Rev. 156, 925
(1967).
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perimental values is smaller than 8%; this also repre-
sents an improvement over our previous results' based
on the model which omitted the polarizabilities.

We have applied our calculated results in perfect CdS
to the determination of phonon frequencies of CdS
containing mass defects. The results are reported in an
accompanying paper, ' which improves upon the pre-
liminary results already given. 4

A calculation of phonon frequencies is in progress
using the present improved model for BeO. While at
present only partial neutron scattering results are avail-
able in BeO, ' there is hope that all branches of the
phonon spectrum can be determined. The results of the
calculation, and a direct comparison with an experiment
to test the model will be reported elsewhere. ""

where u(0, ~) is the displacement of the ion initially at
(0„~), and q„a static charge.

Now, let o,„be the scalar polarizibility of the ~th ion.
Then if E is the local electric field acting on that ion,
the moment

y"=n„R(O,K) (2.2)

will be associated with ion (O,l~).

In a central first-neighbor approximation, we can
define a deformation dipole moment (and a parameter
y„having formal dimension of a charge) corresponding
to ionic charge deformation linearly dependent on the
relative ionic displacement. This will produce a local
dipole moment

r(01,KK ) r(0l, ~a')
p rg P [u(0,ii) —u(0, 1i')j . (2.3)

II. THEORY
K', l' rp

It will be assumed that the reader is conversant with
the work reported in a previous paper' (I) to which
liberal reference will be made in the interest of brevity.
The 6rst step in the work involves the construction of
the dynamical matrix. This necessitates specifying the
forces and force constants characterizing the problem.

Valence Forces

The short-range valence force parts of the potential
energy are taken over from the previous work. , with
additions. As discussed there, this implies inclusion of
all interactions of a given ion with neighbors up to and
including third neighbor. From I (3.9), we see that. there
are eight spring constants to be determined, including
radial, angular, and cross coupling constants. In addi-
tion, we considered in the present work the constants
k„„and k„„' corresponding to three-body quadrupolar
forces due to a short-range deformation of the electronic
orbitals; ten spring constants have then to be deter-
mined, which can be reduced to eight if one considers
that the Cd ion is heavy and small and hence assumes
that the three-body S-Cd-S constants vanish. The
three-body Cd-S-Cd constants are nonzero.

The sum in (2.3) extends over the four ions (f, K)
which are first neighbors of the ion (t,~), and r(0l, KK ) is
the vector from ion (O,g) to ion (1',~').

The total dipole moment of ion (O,a) arising during
the vibration is then

+cd 0 ps (2 5)

The justification of (2.5), besides convenience, is that
the small size and heavy mass of Cd should result in a
small deformation dipole. It is convenient to write
(2.1)—(2.4) in matrix notation. Thus, let U be a column
matrix with 12 rows composed from the displacements
u(O, II) and let Q, n and N(i1) be 12&(12 square matrices
defined by

Q„„=q„s,„ l3,

@KK +«~K« ~3 y

(2.6)

(2.'7)

P„=q„u(0,~)+n„E„

r(Ol, m') r(0l, ~g')
+y. Q [u(0,~) —u(O, K')]. (2.4)

fp

In what follows we choose

Coulomb Forces r(01,KK) r(Ol, KK )
N(n). . =v. Z (2 8)

The previous treatment of Coulomb forces assumed
the ions were point (undeformable) ions with fixed
charges. This corresponds to taking the dipole moment
arising at site (0,~) as

Ii~ = qau(0~~) ~ (2 1)
M. A. Nusimovici and J. L. Birman, in Proceeding of the

International Conference on II-VI Semiconducting Compounds,
New Fork, 1967, edited by D. G. Thomas (W. A. Benjamin, Inc. ,¹wYork, 1967), p. 1204.

M. A. Xusimovici, M. Balkanski, and J.L. Birman, following
paper, Phys. Rev. B 1, 603 (1969).

P. Pfeuty, J. L. Birman, M. A. Nusimovici, and M. Balkanski,
in Proceedings of the International Conference on Localized Excita-
tions in Solids, Irene, Calf. , 1967, edited by R. %allis (Plenum
Press, Inc. , New York, 1968), p, 210.' M. A. Nnsimovici, Compt. Rend. 268, 755 (1969l.

In Eqs. (2.6) and (2.7), 13 is the unit 3&&3 matrix.
The sum in (2.8) is extended over all cells with ions
(l,K ) which are first neighbors of the ion (O,a). Call E
a 12-rowed column vector each component of which
gives a Cartesian component n of the local electric field
E& at the site of the I~ ion. Then instead of (2.4) we write

E.=Z B(n)..'I. , (2.10)

P= [Q+ N(i1)j U+tr E. (2.9)

A lattice of vibrating point dipoles produces a local
electric field given by
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where B(q)„„.is the "I.orentz matrix" given by I (3.19).
Hence we may write

or
P=LI —n B(q)7 'LQ+N(q)7 U (211)

P=[I B—(q)7 'LQ+N(q)7 U, (212)

Dynamical Matrix

As in our previous work, we calculate the complete
12-dimensional square matrix as the sum of a valence-
force dynamical matrix which is obtained as the second
derivative of the potential (I) (3.9) with respect to ion-
position coordinates plus the Coulomb-force dynamical
matrix. The former contribution was already discussed
in the previous work (I).

To obtain the Coulomb-force dyna, mical matrix, we
require an expression for the potential energy of the
system of vibrating dipoles in the presence of the time-
varying electric field associated with the lattice vibra-
tion. This can be written as

which gives a linear relationship between the displace-
ments and the dipole moments. Finally, from (2.10)
and (2.12)

E=B(g) Ll —n B(g)7 'LQ+N(q)7 U. (2.13)

9' =9' 37 (2.18)

This is equivalent to introducing the Szigetti's
eRective charge q* into the rigid-ion model. ' For the
additive I'~ optical modes in parallel polarization, using
the Clausius-Mosotti equations, one obtains a trans-
verse charge

q, = -', (e„+2)q*, (2.19)

while for the longitudinal I'y optical mode, a longi-
tudinal charge

qi ——q,/e„= q*(e„+2)/3e„ (2.20)

that the valence and Coulomb contributions to the
dynamical matrix may be separately obtained in the
r1 —+0 limit. The Coulomb contribution Lespecially the
I.orentz matrix B(q)7 is not analytic at q=0, but
depends on the direction of approach of zero wave
vector. Also, as discussed previously by Kaplan and
Sullivan, ~ one may easily obtain "additive" and
"subtractive" modes of vibration; in the former, the two
identical ions in the cell (e.g. , Cd) move in phase, in the
latter, out of phase. It can be shown that in case of the
additive modes, the effect of including the deformation
dipole contribution (2.3) is to renormalize the effective
charge from q to

p 14) is appropriate with

3/q* =- 2/q, +1/qg. (2.21)
Differentiating (2.4) twice with respect to displace-

ments n(0, g), we obtain the Coulomb part of the
dynamical matrix which can be written in an obvious
notation as

C(„),.„,=M-r&2 [Q+ N(&)7 B(~)
.[1—n B(g)7

—'LQ+ N(q)7 M 't'. (2.15)

In Eq. (2.15), N(&) is the transpose of N(p). M is a
matrix defined by

In the rigid-ion model, both longitudinal and trans-
verse charges are equal:

(2.22)

Now we give the results of they ~ 0 factorization for
the eigenfrequencies. Results will be given in terms of a
rotation for the matrix elements of the four 3&(3
submatrices comprising the dynamical matrix. Further
details are given in Ref. 1.

(M),„.=- N„s„„.. (2.16)

We verify that C(g) is Her mitian by showing
B (t —n B) is Hermitian. This matrix can be trans-
formed as

B (&
—n B) '=(B ' —n) ' (21&)

Now, B being Hermitian, so is B '. Therefore (B ' —n)
and (B ' —n) ' are Hermitian; hence, so is C(g).

Long-Wave-Limit Eigenfrequencies

In the long wave limit
~ g ~

~ 0, the secular equation
for the eigenfrequencies of the dynamical matrix
factorizes, and we may obtain explicit expressions for
the squares of the eigenfrequencies in terms of the
parameters of the model. Ke shall merely describe the
factorization which is straightforward and give the
results. Additional details are given in Ref. 6. Notice

M. A. Nusimovici, these, Faculte des Sciences de 1'Universite
de Paris, 1968 (unpublished).

q -+ Oj/Z

~'(I'5) = ~»+5'»+Kr+&ri
+ q*q (~ +M /M, M. ), (2.23)

'(I )=~ +5-+a.+F..
(2orq*q, /~ )(M—s+3f«/Ms~«)

of/x

~'&(rP.O) =&»+5'u+&»+~ir
+Lo& q /1 or (nca+ns)7

X (as+~ca/~scca), (2.25)

~'(&r,To) — &»+5'3z+ &3z+F33

+L&z'q*'/I —~3'(neo+ ns) 7
X (~s+JIcd/&sic~); (2.26)

' H. Kaplan and J. Sullivan, Phys. Rev. 130, 120 (1963).s B.Szigeti, Proc. Roy. Soc. (London) A204, 51 (1950).
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e/
—+ 0 (rerbitrury polarisatioes)

'P.)+ "(1'.)
Rll+ Ell Sl1 F11+Xl/&Cd+ ZI/~s y (2.27)

with
v —ns v'2 —~'2

(2.46)
1 —(o's+&ca)vi+&so'ca(v, —r, )

co'(I' s) to"(re)
= (R11—Sll+ Xl//lf Cd) (+11 F11+Zi/~s)

—p'll Ull+ ~1/~s~cd) y (2 28)

~'(&'e)+~"(1'4)
=R„+E„—See —Fee+ (Xs/Mcd+Ze/3Es), (2.29)

co'(I'4) co"(I'4)
= (R„—S„yX,/~cd)(Z„—F,e+Ze/~s)

—(Tee —Use+ &e//i-fs~ca)' (2 30)

The quantities R;;, S;;, T;;, U;;, F.;;, and F;; (i= 1, 2,
or 3) appearing in Eqs. (2.23)—(2.30) correspond to the
short-range-forces contributions, and they are de-
6ned by

Rll ——[se) +/1+ke+ (16/3) (ke+ke )
+2v2k„+ (16v2/3) (k„e+k„e')

—se(k„,+k„„')jX1/lcd, (2.31)

R„=[-;X+4/s+ (16/3) (ke+ ke )
+4&2k„+(16&~/3) (k,e+k,e')

—2k„„—se (k„„+krr. )qX 1/3Ecd, (2.32)

Sll ——Mcd '( —
/s
—ke —242k, e), (2.33)

S„=mcd-'( —4/1+2k„), (2.34)

2'„= (iMsMcd)
—'/'[ —2(ke+ke') —V2( kre+kre) j, (2.35)

2 „=(cV.m„)-'&'[—) —S—2~2(k,e+k,e')

+(k,„+k„„')j, (2.36)

U„=(~,~„) 1&s[ ,')-(1—0/3)—(ke+ke')
y-', (k„„+k,„)—(13~2/3)(k,e+k.e')3, (2 37)

= pf iM ) 1/e[ —s)t —(16/3)(ke+ke )
+,(k „+k„„,) (10v2/3)(k„,+k„,')g, (2.38)

Z„=[-;)+v+ke'+(16/3)(ke+ke )
+2v2k„e'+ (16v2/3) (k.e+k e')

——',(k„,+k„))X1/~s, (2 39)

g„=[-;)+4v+ (16/3) (ke+ke )
+4W2k„,'+(16&2/3)(k, e+k, e )

—2k„——,'(k„+k„)jX1/~s, (2 40)

F =3E '(—1 —ke' —2v2kre ), (2.41)

Fee=iVs '( —4v+2k, „'). (2.42)

The quantities X;, I';, Z; which correspond to the
Coulomb forces are defined by

y I
(2.47)

1—(~s+~ca)v'+~scca(vP —r )

~i= ~i, i+6 ~i, i+9 p

Ti=8',i-I3".+3

(249)

(2.50)

(2.51)

where the various combination of the y —+0 Lorentz
matrix in (2.49)—(2.51) are given in the Appendix.

The modes F,, F,, Z (LO), and Zl(TO) induce an
electric dipole moment in the crystal, and the previous
calculation yields a discontinuity in the center of the
Brillouin zone. They are defined in the limit of a
vanishing wave vector which cannot be set equal to
zero. ' The trace of the lorentz matrix vanishes, and
therefore Eqs. (2.23)—(2.26) are dependent; the fourth
one can be obtained from the three previous ones.

Long Wave Limit —Acoustic Branches

Using the long wave limit of the dynamical matrix in
our model, expressions can be derived for the various
macroscopic constants. Following the same procedure
originated by Born and Huang, ' we split off the non-
analytic part of the dynamical matrix due to the long-
wave-direction —dependent part of the Coulomb field,
whose asymptotic value can be found. The remaining
terms in both the valence and the Coulomb part of the
dynamical matrix are analytic, and they can be ex-
panded in a power series in the wave vector. Identifica-
tion of the macroscopic elastic, piezoelectric, and
dielectric coefficients then easily follows: The local
(effective) field can be obtained as

E,gg
——B.P. (2.52)

Let B.be the analytic part of 8, then (8—8 ) js
not analytic. The macroscopic field is then

E .,=(8—8.) P. (2.53)

vi —Qcd vi —7 i
(248)

1 (trs+Dcd)vi+Crstrcd(vi rf)

The relations (2.43)—(2.45) correspond to the con-
tribution of the deformation dipoles, and. Eqs. (2.46)—
(2.48) correspond to the contribution of the ionic
polarizabilities. q* is the effective charge defined by
Eq. (2.18), and o, and o correspond to additive com-
binations of the elements of Lorentz matrices B~ and
Bs defined by

X,=g,.'qs+gr (2q F +wZ ),
I;=—

qq I; —~g ~&,

Z +2Z /

(2.43)

(2.44)

(2.45)

9 L. Merten, Z. Naturforch 13A, 662 (1958); 13A, 1067 {1958};
15A, 512 (1960); 15A, 626 (1960); 17A, 65 (1961); 17A, 1/4
(1962); 17A, 216 (1962).

'e M. Horn and K. Hnang, Dynaraica/ Theory of Crysta/ La//tees
(Oxford University Press, Oxford, 1964).
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Now, let v be a vector dehned by

v=M'" u

then the equations of motion can be written

Co 'V=Cu'v+D Emaa ~

(2.56)

(2.57)

The matrices C, and D are given by the following
equations:

CN ——C„+M "'(Q+N) B. (1—a B.) '

X(Q+ N) M-"' (2.58)

D= M—"'(Q+ N) (I —n B) '. (2.59)

C„ is the valence part of the dynamical matrix. The
matrices C, and D are continuous functions in the limit
of vanishing wave vectors, and therefore they can be
expanded in MacLaurin series of the small wave vector
g of the reciprocal space

C.(t1) =- C.(0)+ 'qC (0)—-', @vs C (0)+, (2.60)

D(q) = D(0)+is1Di(0) —-', qq Ds(0)+ . (2.61)

The matrix C,(0) is singular and cannot be inverted.
Nevertheless, we can define a matrix G by the following
relations:

G„,, =0 if f{. or ~'= I, 2, 3

p c.(o),„"G,„-=~„.".
(2.62)

(2.63)

With those notations, the tensors associated with the
acoustic modes can be defined by the following relations:

1
I nP, ybj = P (M „M, )"'{(Cs) „„).p, ,t, (2.64)

The continuous part of the electric field E can be
obtained as

E=B. P=B..IQ+N(g)) U+B..n E,fft (2.54)

or using (2.12) in (2.54),

E.tt ——B. (I—n B.) '(Q+N) U
—(I —n B ) 'E „. (2.55)

TAsr.E I. Normal-mode frequencies for vanishing wave vectors.

Symmetry

Balkanski
et al.a
(cm ')

Tell
et al.b and
Colbrow'

(cm ')

Chosen values for
Le Toullecd the present work

(cm ') (cm ')

rx
r&

r6
r6
r4
r4
Z1(TO)
Z1(LO)

305
242
256
85

211
170
233.5

305
235
252
44

228
305

298
240

232
302

298
240
256

211
170
230
302

a Reference 14
b B.Tell, T. C. Damen, and S. P. S. Porto, Phys. Rev. 144, 771 (1966).
e K. Colbrow, Phys. Rev. 141, 742 (1966).
d R. Le Toullec, these, Faculte des Sciences de 1'University de Paris,

France, 1968 (unpublished).

Elastic and Piezoelectric Tensors

The elastic and piezoelectric tensors are defined by
the following relations:

S=C s —II.E,
P=II s —a E.

(2.68)

(2.69)

S is the strain tensor, s is the stress tensor, a is the
static dielectric tensor, K is the applied electric Geld, P
is the polarization vector, C is the fourth-rank elastic
tensor, and II is the third-rank piezoelectric tensor.

Let a plane wave propagate in the homogeneous
crystal. The displacement is given by

U —U psiatt r—icut
0 (2.20)

and (np, pter), but our result is different for the tensor
I:~p,vj.

By a second. -order development of the equations of
motion for a vanishing wave vector we obtain

—to'u =4tr' g fnP, ply)+ (ny, Pli) gigiup
Pa Py) —2tr P $P,nyfq Ep. (2.67)

Py

In the relation (2.67), u is the Cartesian component
n of the displacement vector u.

( v,p~)=- (M„M„)"'{(G),-„")„,
47$ P KK, K K,JRV

x{(c,) ..").„,,{(c,)„..- ),„„

The equation of motion can be written

82

p =divS
Bt2

ol

(2.21)

MK {(ci)KK' ) Clp, 'Y p 'U=4~e (qq) U+2s~a q E (2..72)
27/'Pa KK , K K trav

By identification of Eqs. (2.67) and (2.72) and byX{(G)~-v )„({Do)""").p using the symmetry properties of the tensors, we obtain

++M,&,{(D ) ) (2 66) the elastic and piezoelectric coeflcients

c.,„=$~P,~sj+ I P&,n~) (P~,n&) —(n&,Py), —(2.23)
The tensors associated with acoustic modes have been

calculated by Born and Huang" for a rigid-ion model.
They obtained similar relations for the tensors PuP, yof "J.Sullivso, J. Phys. Chem. Solids 2S, 1039 (1964).

(2.74)
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g (cm-')

300- 2:1f— -300

A

200- .M,

M1

T2

Fia. 1. Dispersion curves of the
normal modes in CdS.

100-
T2

M1

M2

+ave vector g

d= 4arav L(11,11)+(11)22)j )

e=4arav (12,12),

f= 4ar'v. (33,33),
g= 4ar'v (11,33),
7a =47r'v. (13,13).

Let us also define the tensor P by

(2.75)

(2.7| )

(2.77)

(2.78)

(2.79)

Symmetry properties of wurtzite require that three
piezoelectric coefficients and five elastic constants only
are independent and nonzero. It is possible to separate,
in the expression of the elastic constants, the contribu-
tion of the internal strain. I et us use a notation similar
to the one used by Sullivan. "The quantities d, e, f, g,
and h are related to the internal strain and are de-
fined by

III. CALCULATIONS AND RESULTS

Fit of Parameters

There are 11 parameters in the present model, three
more than in the previous model. ' As experimental data,
we shall use the g=0 values of the optical-branch
phonon frequencies. The eight frequencies so used are
given in the right-hand column of Table I. We also use
the experimental value of the high-frequency dielectric
constant. "

We proceed by giving arbitrary (trial) values to the
parameters y, k„a, k„, then, using Eqs. (2.24)—(2.30) and
e„, we determine the eight parameters remaining. Then
using the Eqs. (2.73) and (2.74), it is possible to calcu-
late the eight piezoelectric and elastic constants of CdS

TABLE II. Force constants in CdS.
P p ~a P(3/„M„)'ta{D——a„. ) p, ,a. (2.80)

KK

Cii=Pai, ii/8ar v —(d+e)/4arv (2.81)

Cia = (2Pia, ia —Pia, aa)/8ar'v. —(d —e)/4arv. , (2.82)

Cia= (2Pia, ia —Pii, aa)/8ar'v~ —g/47rv~,

Caa Paa, aa/87rav, f/4arv—„—(2.83)

(2.84)

C44 -- Pii aa/87r v~ —h/4arv~. (2.85)

~A. Manabe, A. Mitsuishi, and H. Yoshinaga, J. Appl, Phys.
Japan 6, 593 4',1967).

Then the 6ve independent elastic constants can be
written

Parameter

p

kg
ko'
k„g

CJ

7
(1~/&'-)~8

Present worka
(10' dyne jcm)

0.9672
0.2271—0.0756—0.0255—0.1780
0.1944—0.0048
0.0
1.028
0.03t,
0.589

Model I
(104 dyne/cml

1.061
0.203—0.086—0.085—0 170b
0.154—0.0216

missing
1.0ie

mlsslng
0

a &ra has not been set equal to zero in the present work, but the least-
squares method gave zero as the best value.

b In I this constant was incorrectly given and should be of minus sign.
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Fxo. 2. Density of modes of vibration
in CdS. The critical points due to sym-
metry are pointed out; others appear
corresponding to points of low symmetry
of the reciprocal space.
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0 100
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200 300

TABLE III. Elastic and piezoelectric constants of CdS.

Elastic constants Measured~ Calculated Internal strain

C11

C12

C13

C33

c44

Sound velocities

Wave vector
c axis

Wave vector
J c axis

(In units of rnks}
9.07 8.53
5.21 4.80
4.64 4.52
9.40 9.38
1 49 1.52

Calculated with
experimental values
of elastic constants"

(In units of rn/sec)
LA 4410
TA 1760
LA
TA
TA'

4330
2000
1760

—4.30
1.12
1.43—4.42—1.27

Present
work.

4370
1800
4210
2030
1800

Piezoelectric
constants Measured

(In units of cgs)
—0,245—0.210

0.440

Calculated

—0.251—0.208
0.424

+ Reference 12.

and compare them with experimental data. Those
calculated values are functions of the choice of the three
parameters k„„k,g, 7. We have chosen those three
parameters in order to minimize the sums of the squares
of the diRerences between calculated and experimental
values for the eight piezoelectric and elastic constants.
Since the relation between experimental data and
parameters of the model is not a linear one, the achieve-
ment of a 6t between experiment and predictions is not
trivial, even through 16 data were used to obtain 11
parameters. Calculations based on the shell model were
unable to obtain one unique set of parameters. ' In
Table II, the selected parameter values are listed along
with values used in our earlier work for comparison.
Observe that the largest changes are in the constant 8
and in the three-body (angular) stiffnesses —in addition,
of course, to the inclusion in the present work of the
dipole deformation constants.

Elastic and Piezoelectric Constants

The elastic and piezoelectric constants of CdS were
calculated using the values of parameters given in Table
II and Eqs. (2.73) and (2.74), and the least-squares-fit
procedure. Table III gives the values of the elastic and
piezoelectric constants of CdS and also the contribution
of internal strain to the elastic constants.

It is to be noted that the least-squares values of these
macroscopic constants agree with experiment" to within
8% for the elastic and 3% for the piezoelectric coeffi-
cients. Computed and observed sound velocities are also
given in Table III. These are an improvement over the
rigid-ion (model I) results previously reported.

Normal Modes of Vibration

The eigenvalues and eigenvectors of the dynamical
matrix have been calculated for 2175 different wave
vectors of the reduced Brillouin zone of the reciprocal
space of CdS; i.e., for 43 511 different wave vectors of
the 6rst Brillouin zone. The dispersion curves of the
normal modes of vibration of CdS obtained in this way
are given on Fig. 1. in the directions I"A, FM, I'E, and
ME in reciprocal space.

Using the eigenfrequencies calculated for 43 511
different wave vectors of the Brillouin zone gives us the
density of normal modes of vibration of CdS shown on
Fig. 2. Several singularities appear in the density of
modes corresponding to critical points of the reciprocal
space. Some of these critical points can be obtained by
symmetry considerations, and they have been indicated
on Fig. 2. Several others singularities appear in the
density of modes corresponding to "accidental" critical
points of the reciprocal space of the crystal, which
cannot be obtained by symmetry considerations. In-
specting Fig. 2, we note that a forbidden band appears
in the density of modes for frequencies between 175 and
195 cm '. The density of modes can be used to deter-
mine some thermodynamical properties of CdS, such as

' D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129,
1009 (1963).
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I the specific heat or the Debye temperature. However,

since the thermal properties are insensitive to the details
of the model, we do not show the results except to
remark that the calculated value of the Debye tempera-
ture at room temperature is in good agreement with
experiment, and the temperature dependence 8(T) is
substantially as previously given. '

Two-Phonon Density of Modes

We calculated the density of additive two-phonon
modes for comparison with the observed two-phonon
absorption coeKcient in CdS. The absorption coefficient
at frequency t = o&+o2 is given by

d(o) =1o(~)g2(~)

I

500 coo
Fp4ctU4ncy. I cm I

TAar, E IV. Raman-active coupled modes of vibration. Group
theory shows that all the previous two-phonon combinations are
Raman-active (Ref. 13l.

Experimental'
frequencies (cm ')

Calculated
frequencies

(cm ')
(Present
work)

97

207

328

347

347

2KB2' 2

3XI2

2Ag
Hy
3IIl
E2
E3
M2
Eg
E]
Hi
2F4

Afar

Sf'
M3
3fj
Mj
E2
Ay
H3
E2
E2
Hj
Mg
Eg
3fy
2I I
IIj
~1

Z, (~ 0, Lo)
605 2Fg

2Eg
2Zj(q —+ 0, LO)

H3
M3
E3
E3
M3
E2
E3
H3

Mg
M3
354
3IIj
M4
E3
A3
H3
E2
E3
Hg
M4
E3
M2

H3
~B
FB

88
94

204
210
319
320
329
330
333
339
340
340
340
341
344
345
348
349
351
353
358
359
360
363
366
368
547
548
549
554
558
596
600
604

& B.Te11, T. C. Damen, and S. P. S. Porto, Phys. Rev. 144, 771 (1966).

Fio. 3. Comparison between absorption coefficient and two-
phonon density of modes in CdS. The calculated two-phonon
density of modes shows a thinner resolution than the absorption
coefBcient. Indeed, our calculation was done for an harmonic ap-
proximation, where the bands are infinitely narrow.

where Io(o) is a factor which involves the square of the
transition matrix element and is presumably slowly
varying. The variation of n(v) with o is taken to reflect
the variation of g2(o) with v. Since the photon mo-
mentum is taken as zero, momentum conservation
requires that

q(o, )P si(~,) = O.

Of course, phonons from all difterent branches will be
included since the two-phonon selection rules are rela-
tively weak in the Wurtzite structure. "

Comparison of calculated g2(v) with experimental"
absorption coefficients are shown in Fig. 3. The location
of the maximum of experimental curves and of the
curve for gs(o) correspond, and the over-all shapes do
also. The curves shown on Fig. 3 represent considerably
improved agreement over that reported using the pre-
vious model (see Fig. 4 of Ref. 2). Since the variations
of the double-phonon density of modes are very sensitive
to the choice of a model, the correspondence between
the curves of Fig. 3 is an encouraging indirect check of
the validity of the model.

As shown previously, the weakness of the two-phonon
selection rules in case of Raman scattering permits
many two-phonon processes to be identified as pro-
ducing observed peaks. The situation using the present
model is the same, and a representative sampling is
given in Table IV along with the revised assignments.

IV. CONCLUSION

A lattice-dynamic model including valence forces,
Coulomb forces, and charge deformation has been
applied to calculate the phonon dispersion in CdS and
the related elastic and piezoelectric constants. The
model has eleven parameters which are determined
from the eight g=0 optic-phonon frequencies and from
a least-square 6t to the eight macroscopic constants.
Computed two-phonon density of states agrees with the
observed infrared absorption in the two-phonon region.

"M. A. Nusimovici, J. Phys. (Paris) 26, 689 (1965).
'4 M. Balkanski, J.M. Besson, and R. Le Toullec, in Proceedings

of the Irttergatsowal Conference ors the Physics of Serrsecortdactors,
Puris, 1964, edited by M. Hulin (Dunod Cie, Paris, 1965),p. 1098.
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Assignment of features in the observed two-phonon
Raman scattering can be satisfactorily carried out using
the calculated values of phonon frequencies at critical
points. The model has been applied to a calculation of
lattice dynamics of imperfect wurtzite lattices; results
for frequencies of resonant and localized modes in a

crystal of CdS with mass substituted impurities are
given in an accompanying paper.

Work applying the model to BeO, for which some
experimental dispersion curves have been reported, is
under way as a direct test of the model. Results and a
comparison with experiment have been given elsewhere. '

APPENDIX
TABLE V. Lorentz matrix for vanishing wave vectors in wurtzite structure. && corresponds to a wave vector perpendicular to the

c axis. &~ corresponds to a vanishing wave vector parallel to the c axis.

1
4
7

10
2
5
8

11
3
6
9

12
1
7
2
8

1
4
7

10
2
5
8

11
3
6
9

12
4

10
5

11

3.8012
3.8012
3.8012
3.8012
3.8012
3.8012
3.8012
3.8012

—7.6024—7.6024—7.6024—7.6024
0.2866
0.2866
0.2866
0.2866

—2.4823—2.4823—2.4823—2.4823
3.8012
3.8012
3.8012
3.8012

—1.3189—1.3189—1.3189—1.3189
—5.9976—5.9976

0.2866
0.2866

6
12

7
10

8
11

9
12

7
10

8
11

9
12

—0.5632—0.5632
—1.5063—1.5063
—1.5063—1.5063

3.1126
3.1126

5.5941
5.5941

5.5941
5.5941

—11.1882—11.1882

5.7110
5.7110

—7.7881—7.7881
—1.5063—1.5063

9.2944
9.2944

—0.6918—0.6918

5.5941
5.5941

—4.8023—4.8023

Let dipole moment

P(l,K) =P„e'»

be at the site of ion (l,K), then the field at ion (O,II') can
be expressed by

E"=B- (n)p'

The Inatrix B(»1) composed of the blocks B„„.(»1)
defined by (A2) is the Lorentz matrix. This matrix is
discontinuous for»1 —+ 0, and it has two limits Bi(0) and
Bs(0) if »1 goes, respectively, to zero parallel or per-
pendicular to the crystal c axis. The elements of Bi(0)
and Bs(0) have been computed and are given in

(A2) Table V.
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Vibrations of a Mass Defect in Cadmium Sulfidet
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A Green s-function technique is used to study the vibrations of a substitutional impurity in CdS. Three
cases have been investigated, corresponding to localized modes, gap modes, and in-band resonant modes.
The theoretical results are in close agreement with experimental results for the gap mode of vibration of
a Se impurity substituted for the S ion and the resonant mode of a Mn impurity substituted for the Cd ion
in CdS.

I. INTRODUCTION AND METHOD

E have calculated the frequency spectrum of the
~ ~

vibrations of an imperfect CdS (wurtzite)

t Paper based in part on the thesis presented to the Faculty des
Sciences, University of Paris, Paris, France, for the degree
Docteur-es-Sciences Physiques, 1968 by Michel A. Nusimovici.

crystal containing isolated substitutional mass defects
at the Cd or S site. We have used the results of our

~ Supported in part by the Aerospace Research Laboratories,
Wright-Patton Air Force Base, Dayton, Ohio, and the U. S.
Army Research Once, Durham, N. C.

f, Permanent address: Laboratoire de Physique des Solides,
Faculte des Sciences, 35-Rennes, France.


