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The self-consistent phonon theory of anharmonic lattice dynamics is derived via a stationary functional
formulation. The crystal dynamics is approximated by a set of damped oscillators, and these are used to
construct a trial action, analytically continued into the complex time-temperature plane. Using the action,
afree-energy functionalis required to be stationary with respect to the trial oscillators. The resulting phonon
modes are undamped at the first order of approximation, whereas to second order the phonon spectral func-
tion is determined self-consistently. Expressions are obtained in first order for various thermodynamic
derivatives, such as pressure, elastic constants, specific heats, and thermal expansion.

I. INTRODUCTION

HE traditional Born-von Kdarmin theory of
lattice dynamics,® proposed more than a half-
century ago, has been one of the most firmly rooted con-
cepts in the physics of solids. It assumes that the vibra-
tions of atomic nuclei about their mean positions in the
crystal are of small amplitude relative to the inter-
nuclear separations, and that the ratio of these quanti-
ties is a legitimate small expansion parameter in a per-
turbation treatment. This fundamental assumption
seems so reasonable that it was all the more surprising
to have it invalidated by recent computations®? in
the case of the rare-gas crystals. These computations
show that the Born-von Kdrmén expansion is at least
of impracticably slow convergence near the melting
temperature of these crystals,? and that for helium the
convergence is completely nonexistent at any temper-
ature.?

It has also been found that a renormalized perturba-
tion expansion,*® which has come to be known as the
self-consistent phonon theory, provides!®!? a much
more adequate treatment of lattice dynamics in the
rare gases over the complete temperature range of the
solid phase. A renormalized theory of this type was
first written down by Hooton,!? following a much earlier
mention by Born!* and Hooton’s subsequent develop-
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ment! of a rudimentary form. Not until much more
recently, however, has the theory been given*™ in a
variety of more general and elegant forms based on the
modern techniques of many-body theory. We choose
not to review each of these developmentsin detail here, ¢
but wish only to state that in our opinion no one of these
authors has derived the most general and complete set
of results that is achievable nor has used as simple and
self-contained a formalism as possible.

In this paper we attempt to collect the results of the
previous authors on the self-consistent phonon theory;
to correct some minor errors; to extend the results to
more general situations in several directions; to cor-
relate these results by deriving them all from a single
formalism; and to select a formalism for their state-
ment which we feel is clearer and more compact than
others, while no less powerful. The functional variation
technique which we employ, while not entirely novel,
at least has not been used previously in the study of
lattice dynamics for which we feel it is ideally suited.

II. FORMAL DEVELOPMENT

The self-consistent phonon approach to lattice dy-
namics is based on the collective picture of the funda-
mental dynamical variables. The view is adopted that
the elementary excitations of the crystal, at least for
low excitation energy, are collective vibrational waves,
or phonons. The phonons are introduced directly as the
appropriate basis set of coordinates, and do not have to
be constructed as the modes of response of the crystal
to a small disturbance from equilibrium.'” Thus a model
phonon dynamics is constructed, with adjustable param-
eters which are optimized such that the low-lying excita-
tion spectrum of the model system approximates as
closely as possible the corresponding spectrum of the
true system.
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1 ANHARMONIC LATTICE DYNAMICS

If the model phonons are assumed to be undamped,
their dynamics may be specified by a model Hamilto-
nian, with the model potential energy being a quadratic
form in the atomic displacements. To account for damp-
ing, however, the model phonons should be chosen to
have a finite lifetime, and so their dynamics must be
determined rather by a model action. To allow conven-
iently for a statistical ensemble of systems in thermal
equilibrium at inverse temperature 8, the time variable
should be analytically continued into the time-tempera-
ture plane in the usual way.!® It is also especially useful
to consider the crystal to be under the influence of ex-
ternally applied time-dependent forces. Thus the model
action operator for the crystal is chosen as

o IR UALYOIES SORRO

—18 —1i8
+13 / dh / dts
i#i J o 0

X3[wis(ty) - ®ij(ti—12) - wi;(2)]. (1)

In this expression #/; is the mass of the sth atom and
u; denotes its displacement, the deviation of its in-
stantaneous position r; from its mean position R;, so
that u;({)=r;(t)—R,. The ith atom is acted on by an
external force F;(f). The notation uj;=u;—u; is used
for a displacement difference, and 7" is the ordering
symbol for the displacement operators which do not
commute at different times. The f integration is along
the imaginary time-temperature axis. The phonons de-
scribed by the action § will be damped because of the
retarded (i.e., frequency-dependent) spring constants
®;;(t1—1z) which otherwise remain as freely adjustable
parameters.
The true free energy,

F=—B 1 InTrlexp(—B3C)], (2)
can be reexpressed by adding and subtracting the model
action,

F=—B"InTr{exp[ —i8 — (83 —18) 1}
= —B 1 InTr[exp(—i8)]

—3~11n<T[exp(~i /0 - dt V(¢)>]>, (3)

V()= exp(st/B) (3c—iB18)exp(—st/B), (4)

and where the angular brackets imply thermal average
over the model distribution,

(0)="Tr[0 exp(—18)]/Tr[exp(—18)]. (5)

18 A, A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1963); L. P. Kadanoff and
G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, Inc.,
New York, 1962).

where
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If the model system is to approximate closely the true
low-lying energy spectrum, then 3¢—i8~!S$ must be
small in some average sense. Hence it should be a good
approximation to expand § in cumulants (also fre-
quently called semi-invariants) of ¥, and to truncate
the series after the first term or two. The cumulant
expansion in an operator « is defined via a parameter «
as

In{ees) = é(n Dtan (), ©)

so that
Mi(x)=(x), Ma(x)={(®)—(x)?,
and
M, (x) =1‘Lm0 d"(In{e*=)) /dar. )

Thus the cumulant expansion of & is

F=—B"1InTr[exp(—i8)]—481 %1(7”)_1

XMn<—i /O - di V(f)>. (8)

The evaluation of even the leading cumulant would
appear to be quite complicated, especially because of
the noncommuting nature of the displacement operators
u;(¢) at differing time temperatures ¢ and the necessity
for the t-ordering operator. Nevertheless, Feynman has
shown that since § is a quadratic form in the u,(¢), the
results obtained by treating the ¢ orderings in a careful
way will always be the same as if the operators were
regarded as ¢ numbers and their commutation proper-
ties ignored. A similar conclusion has been arrived at by
Edwards® using a different argument. Thus a purely
classical algebraic procedure is fully justified.

The first step is to introduce space- and time-temper-
ature Fourier transforms. We assume that the set of
mean atomic positions R; form a regular crystalline
array, with # atoms per unit cell labeled by an index o.
The centers of the V unit cells in the crystal are con-
nected by lattice vectors = and the position of the oth
atom relative to the center of its cell is denoted by R,.
Then u,(#) can be represented as

W) =N"13, etk -Rigo(ky) . )

The time-temperature transform provides the further
representation

ua‘(kt) =i{841 ZV e-iztua(kz> ,

where z=mi»/8 and » is an even integer, provided that
¢ lies in the region of the complex plane —g<Imi<0.

(10)

19 S. F. Edwards, in Analysis in Function Space, edited by W. T.
Martin and I. Segal (Massachusetts Institute of Technology Press,
Cambridge, Mass., 1964).
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A similar representation holds for ®;;({—?'),
(I){j(t—tl) =N"1 Zk iﬁ—l ZV eik .Rii”‘iz(t—t’)(pva’(kz) s (11)
where R;/=R;—R;. Then 8 diagonalizes into

§=ip 1 N1 X X {Fouc(ka)!-[ Do (kz) I ou’ (kz)

—3F(ks)t- Do’ (ks) - F'(k2)} . (12)
We define the notation

suc(kz)=u(ks)—Y Do’ (ks)-Fo'(kz) (13)

N. R. WERTHAMER 1

and

Do’ (ks)
=M ,2216,,0+60,0 T 7(0,2) — @7 (kz))?,  (14)

where the inverse is taken within the 3u-dimensional
vector space formed by the direct product of three-
dimensional Cartesian space with #-dimensional o space.
The operators du’(kz) become the independent dynam-
ical variables in the model system.

This diagonalization of 8 allows a prototype correla-
tion function to be evaluated explicitly. For an arbi-
trary vector Q°,

0 0

1
(expli ¥ 0~ [w<kz>—u«<kt’>3}>=Tr{exp[i > Qv.—(

1

v o,

Since this is true for arbitrary Qc, both sides of the
equation may be expanded in powers of Q7 and the
coefficients equated term by term. The result to first
order is that

(w (k) =i~ 3 e+ 3 D' (kz) - F'(ks), (16)
so that from definition (13),
ou’(kz)=u(ks) —(u°(kz)), @an

and 6u°(kz) can be identified with the displacement
from the mean position, in the presence of the applied
force Fo(ksz). Furthermore, to second order in Q°,

(suc(kt)su’ (k') =p"12 e =D (kz), (18)

so that D<*'(ks) is identified as the phonon propagator
(i.e., displacement autocorrelation function). Finally,
Eq. (15) can be rewritten in the form

(exp{i T Q- [owe (k) —du*(k) )
—exp[—ft Z(1—e =)

XX Q7-D'(kz)-Q”'], (19)

where it can be recognized as a slightly generalized form
of the familiar Gaussian averaging theorem.? At this
point the applied force Fo(ks) has fulfilled its usefulness
(at least until consideration is given to transport prop-

20 See, e.g., A. A. Maradudin, E. W. Montroll, and G. H. Weiss,

Theory of Lattice Dynamics in the Harmonic A pproximation
(Academic Press Inc., New York, 1963), Chap. VII, Sec. 2.

sF7 (k) - SF (kt,)>:|exp(—i5)] / Tr exp(—18)
=exp[if1> 2 Q7 D7 (ks) - B (ks) (e — ) ] exp[ —F1 5 3 Q7- Do’ (k) Q' (1 —e—i=(—Y].

(15)

v 0,0’

erties as the response to an externally applied distur-
bance) and is set equal to zero.

A. First-Order Approximation to §

With these important theorems established, the lead-
ing cumulants can be evaluated explicitly. The first one
is

i
—8M 1(—i / dt I7(l)>

—iB —if
=1 Z <7)¢,~(R¢,~+uﬁ)—iﬁ‘1/ dll/ dts
0 0

i#£]
x%T[uﬁao-qn,-(tl—w-ui,-(tz)]), (20)

where it is assumed that atoms ¢ and j interact via a
potential v;;(r;—r;). But using Taylor’s theorem and
Eq. (19), we have

(@i (Rij+us))= (exp(us;- V))oi(Ry5)

=exp(3 Dyj: VV)oi;(Ryy), (21)

where the gradients operate on the explicit R;; depen-
dence of v, and where

D= (wiu;)

=N X 8712 (8or,0—€ ™ Riifyy o)

k o102 v

X (80g,0— € Rii5,, o) D7102(kz).  (22)



1 ANHARMONIC LATTICE DYNAMICS

Hence, substituting back into Eq. (20) yields
—iB
—grat =i a70)=1 L epDu VR
0 i
—IN-13 3> 1Y Do’ (kz): @' (ks).

k o,0/ v

(23)

By truncating the cumulant expansion, keeping only
M, and discarding all higher cumulants, a minimum
principle?! is established on the free energy,

F<F1=—F"!InTr[exp(—i8)]
+3 2 exp(3 Dy VV)25(Ry))

17475
-3 in 2 A1 Do (ka): @7 (ke) . (24)

Thus far no specification has been made of the model
force constants @®;;. The best choice at this first order
of approximation is those which minimize ¥;. Then the
stationary condition

351/6®°% (k2)=0 (25)

leads by straightforward differentiation and applica-
tion of Eq. (18) to

(I)a'cr’(kz): Z Z [65.17"—60'”,‘1’ exp(—ik"f,q/)]

Xexp[3 D (%4e): VV]VVUGer (%err) . (26)

We use the notation z,,,=++R,—R,,, and if we make
the correspondence R;;<> .., then similarly D,; <>
D”"I(’C.,,I) and ‘U,;j(Rij) g 'l)a-g'(‘t,w').

One prominent feature of this result is that the right-
hand side of (26) is independent of z. This means that
to this approximation, which we may term the first-
order self-consistent phonon approximation, the best
choice of force constants is not retarded and the associ-
ated phonons are not damped. It is also significant that
the expression differs from that of the quasiharmonic
approximation only in the presence of the factor
exp(3D:VV), which tends to unity in the limit of
vanishingly small rms displacements. Expanding
exp(3D:VV) in powers of D shows that only even
derivatives of v, in the usual sense of the anharmonic
perturbation theory, enter at this first-order approxi-
mation. The differential factor can be turned into a
more manageable integral expression by Fourier
transformation:

exp(3D: VV)VVu(z) = (2#)—3/d3q exp(—3D:qq)
X/d“’u exp(iq-u) VVo(z+u)

=fd3u p2(w)VVo(z+u),

21 Since In(e®) > (x) for positive definite weighting factor. This
is the basis for the Peierls variational principle.

@n
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where
p2(u)=exp(—3u- D—l-u)//d3u

Xexp(—3u- D~ 1-u). (28)

The final form can be interpreted by recognizing that
p2(w) is just the diagonal part of the two-particle density
matrix for a system of noninteracting phonons with
autocorrelation D. Thus the only difference between
expression (26) and the force constants in the quasi-
harmonic approximation is that here the force constants
for instantaneous two-particle separation =-+u are
averaged over the thermal equilibrium distribution of
relative displacements u.

To complete the analysis of this first-order approxi-
mation, an explicit expression for D can be exhibited.
The first step is to diagonalize the force-constant tensor
to obtain phonon eigenfrequencies wy\ and orthogonal
polarization eigenvectors ex\” with branch index A:

Z(MUM,,/)_I/Z(I)"',(k) . ekx"' =wk)\26k)\‘7 . (29)
Then the first term in the free-energy expression (24)
becomes

—B ' InTrlexp(—i§) ="' X X 3

v k o,0

(LM M ) 122165, 0r+ @7 (kz) ]!

5@ (k)

=" 1| dwin2(2win) ! cothifwin
oy
=613 In(2 sinh3Bwiy), (30)
A

and so the stationary condition on F1, Eq. (25), yields
DW'(‘Uw’) =N"1 Z (Zwk)\)_l COth%ﬁwk)\
)

XEk)\””’("dd’)*Ekkaq’(‘:”a') ) (31)
where a compact notation is
Ek)\”v,ouao") = Mv—llzek)\d_Mv’_”Zek)\”’
Xexp(—ik-%,0). (32)

Expression (31) shows why the word self-consistent has
been used to describe this theoretical approach. The
phonon frequencies are the eigenvalues of a dynamical
matrix which depends on D, and D itself depends on
the phonon frequencies. The combination of Egs. (26)
and (31), together with definitions (27)-(29) and (32),
represent an implicit nonlinear equation for the pho-
nons such that their frequencies depend on their own
thermal population.

B. Thermodynamic Derivatives at First Order
1. Pressure

Before going on to consider the next term in the
cumulant expansion of &, it is worth enlarging upon the
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results thus far to obtain formulas for some of the
thermodynamic derivatives such as the pressure,
elastic constants, specific heat, etc. The analysis thus
far has determined the phonon modes of vibration for a
fixed choice of crystal structure and lattice spacings.
But of course these latter are also specified by the re-
quirement that they minimize the free energy. The size
and shape of the unit cell can be measured by a tensor
a such that each lattice vector = is given by z=a-n,
where n is a set of three integers numbering the unit
cells. Thus the volume of the unit cell equals det a. For
cubic crystals, a=al, where a is then just the lattice
constant. We allow for the possibility (usually a theo-
retical luxury, but vital when treating solid helium) of
an externally applied hydrostatic pressure p, in the
presence of which the appropriate thermodynamic
potential is the Gibbs free energy,

G=pV+5
<Gi=pV+5
~pV+Z [~ In(2 sinh}Bwir) — twi coth3Bwn ]
FIVE 2 (oo (tor+w)),

T 0,0

(33)

where V' is the volume of the crystal. Then the condition
that G be stationary with respect to any change in the
unit cell becomes

a-(9G/0a)=0, (34)

which implies

Pl=—3(NV/MX = X (Vose(tow+u)). (35)
T ag,0’

This equation can be used either to calculate the lattice

constants for fixed pressure or to calculate the pressure

for a particular choice of lattice constants.

As it must, the right-hand side of Eq. (35) can be
shown to be just the thermal equilibrium average of the
microscopic stress tensor operator, but the demonstra-
tion requires the additional condition that G is also
stationary with respect to the internal positions R, of
the atoms within the unit cell, subject to the constraint
that >, R,=0. The condition

a(Gg—A-> R,)/aR,=0, (36)

using a Lagrange parameter A for the constraint, yields

NY ¥ Voo (tow+u))—A=0. (37

7 o'Fo

The only physically reasonable solution is that there is
no net force on any atom,

Z Z](Vvaa’('fmr’_l_u)): (38&)
which implies that
A=—N 33 (Vogo(z+u)). (38b)

WERTHAMER 1

Also, multiplying Eq. (37) by R, and summing on ¢
gives the important condition

%NZ Z Raa’<vvva’(‘vacr'+u)>=0'

T 0,0’

(39)

Adding this null expression to Eq. (35) shows that the
stress tensor can equally well be written

pPl==3(NV/V)Z Z %00 (Voso (zow +u)),

TO'U

(35)
which is just the form obtained microscopically.

2. Isothermal Elastic Constants

Although there is no ambiguity in calculating the
stress tensor either macroscopically or microscopically,
the evaluation of the elastic constants does present a
dilemma. The macroscopic elastic constants are defined,
in general,?? ag the fourth-rank tensor

C=V"(a-9/0a)(a-9/9a)g—pl, (40)
with the notation
(l)aﬁ*ﬁ: 0a,30,6— 04,508, (41)

Carrying out the second differentiation, beginning with
Eq. (35) for the stress tensor, leads to the (isothermal)
elastic constants

=3(V/VZ 2 KEV(EV)000 (7o +u))

+<(1V) var’(‘vmr”i‘u))‘ (a‘ a/aa)R,,,,
+3{(=zV)VVoo (tow+u)): (a- 9/32) D' (4,)].
(42)

The second line in this expression can be evaluated by
differentiating the internal equilibrium condition (38),

(a. 3/33)2 Z’ <Vvvv’(10u’+u)>
=2 2 [{(+V) Voor (500 +0))+(VV00r: (200 +u))

X(a-9/9a)Roe+3(VVV0s0 (250 +1))
:(a-9/9a) D" (,,) ]=0. (43)
This latter equation can be solved for (a-3/da)R, by
using Egs. (26) and (29) at k=0,
(a-9/9a)R,
== w22, (M M) en’en’
S a’

XZ Z” [<(‘CV)71¢;'¢H(T,/,“+H)>

w)):(a-9/9a) D" (zo0)) ],
(44)

22 G. Leibfried and W. Ludwig, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York,
1961) Vol 12, pp. 2571.

H. K. Barron and M. L. Klein, Proc. Phys. Soc. (London)
85, 523 (1965)

+%<VVV’!)‘7' o't ('c,,rq/,—l—
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where the prime on the A sum omits the three acoustic
branches for which we2=0. Substituting into Eq. (42)
and rearranging leads to

C=3(V/VM)EZ X A(=V)(xV)200 (T +u))

T 0,0

—(V/ V)X o tUaUy+C7,  (43)
»

where it is convenient to introduce the notation

U)\Ez Z %<(1V)V'Umr'("dv’+u)> N Eﬂ)\‘m’ )

T o,0

(46)

and where the C’ term contains the effects of the varia-
tion of D,

C'=3(V/NL Z 3(=1-Z v ?UrEa)

T 0,0 A

XYV (20o+10)): (a-3/02) Do (200r) . (47)

To construct an equation determining the variation
of D, we begin by differentiating Eqgs. (31) and (29).
Substituting the latter into the former leads to
(a-9/0a) D (%) =N"13" 3 Ajan

k AN

XEk)\mr,(‘cao’)Ek)\"m—,('cna’)*gk)\)\’ ) (48)

where it is convenient to introduce the auxiliary
quantities,

S = Z (M,M.,:)—”?ek)\”'ek)\z"*: (a~ a/aa)d)”'(k) (49)

0,0’

and

1 /cothéﬁwkx coth3Bwin
A= — >, AN

wk)\2_wk)\’2\ 2w 2wy

1 9 /cothiBwin
= (——— >, A=\,

20)1()\ awk)\ Zwk)\

(50)

Finally, differentiating Eq. (26) and substituting into
Eq. (49) gives

Son =2 2 3B (vee) B 7 (200)*

[{(VVVUeo (Toer 1)) (a/0- Da) 2,00
+3(VVVVeo (tow+u)): (a-9/92) Do (2,0,)]. (51)
The combination of Eqs. (44), (48), and (51) represent
a set of linear inhomogeneous equations for (a-d/da)
X D¢’ (z,,r). To present these equations in a simple

form,_ we use the notation « to denote the set of indices
(k,\\), and we define the quantities

VVK)\HEZ Z Eo)\"‘w,' (Vvvvav’('tav'+u)>

T 0,0
5B (v0e ) Exx (zaa)*,  (52)

577
Q=Y Y (V0,0 (tre+u))
3E0 (o0 ) Exx® (xo0)*  (53)
and
YK,K’EZ Z %Ek)\mr’(zﬂﬂ')Ekxva%‘:“”')*

: <VVVV7)U¢' (Taa’ +u)>:%Ek/)\,aa’ (,c‘”_,)Ek,X,a'a" ("va’)*

=33 w2 W Wonr . (54)
7
We also introduce the representation
(a-9/0a) D""'('c,,,,,)
=N"t Z Z dkEk)\ﬂF,(cdu’)EkXﬂw(‘Faa’)* y (55)

k MY

in terms of a quantity d, which can then be shown to
satisfy the linear inhomogeneous equation

dx = Ax(Qx+Z Yxn'dx') . (56>
This equation has the formal solution
d=>(1—-AY)w1A,Qp. 37

The correction C’ to the elastic constants can then be
expressed in terms of d,, from Eq. (47), as

C' =373 Qud,

=3V Y Q1 —AY) A0 Q. (58)

It is an unfortunate fact that Eq. (58) for C’ involves
the solution of a complicated equation (which becomes
an integral equation in the limit of large crystal volume
where the k vectors form a continuum) rather than
being just a straightforward algebraic expression. The
kernel ¥ of the linear equation represents the coupling
between phonon modes arising implicitly by their being
determined self-consistently, i.e., dependent on their
own thermal amplitudes. Since AY is schematically of
order (u?)*(V%)/w, involving an average of a higher
derivative of the interatomic potential, it is not expected
to be large. In fact, numerical computations by Horner,?
by Koehler,? and by Goldman ef al.'! indicate that AY
is of order 0.1 in helium and in neon at temperatures
near to melting. Thus it is a fairly crude approximation
to neglect AY altogether, although it might be sufficient
to retain only the diagonal part of AY and to approxi-
mate

CI%% V-1 Zx QKAKQK/(]' — A, Ym() . (59)

Much computational work remains to be done in study-
ing Y in numerical detail.

The formulas just derived for the elastic constants
are not entirely unique because they have not taken
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account of the alternative expressions (35) and (35')
for the stress tensor. Equations (45) and (58) are de-
rived from expression (35), whereas different but equiv-
alent formulas could be obtained starting from expres-
sion (35") together with derivatives of the internal
equilibrium condition (39). Considerable algebraic
manipulation is required to simplify these alternative
formulas, but the results are that equivalently

C=3(V/NE X (%60 V) (%00 V)Vso (%o )

7 0,0

—(NV/V)Y o 2U\Ur+C7, (45)
A

U7\=Z Z %<(‘Caq'v)v7)q,l(ﬂ:,”,+u)>.Eo)\mr"

QK =Z Z <("U'7'V) Vvvvﬂ'(fau"*'u))
:3E0 (7o) Exx®® (to0)*

—> won2Un Wnrr

PN

(46)

(53)

while Egs. (52), (54), and (58) for W, Y, and C,
respectively, are formally unchanged. The net effect of
the alternative derivation has been to replace the lattice
vector = everywhere that it occurs explicitly by the
vector 50 =1+ Roor.

The dilemma in definition of the elastic constants
which was referred to at the start of this subsection
arises upon noting that the elastic constants also have a
microscopic definition, in terms of the long-wavelength
limit of the phonon dynamical matrix,

Lln& pa)k)\2 = ké)\: C: ké)\ . (60)
Here p is the mass density and A indexes the three
acoustic modes, which are taken to have long-wave-
length orthornormal polarization vectors é. If the full
Hamiltonian is treated exactly, the macroscopic and
microscopic definitions (40) and (60) can be proved
rigorously?* to be equivalent at zero temperature. How-
ever, to any finite order of approximation in a system-
atic perturbation treatment of the dynamics, the two
definitions are never equivalent, and, furthermore, the
difference between them is a measure of the inaccuracy
of the approximation. Thus, in our case the long-wave-
length limit of the dynamical matrix (26) leads to elastic
constants given by Eq. (45) but with C’=0. As will
be demonstrated in Sec. IT C, the quantity C’ is roughly
the contribution to the phonon dynamical matrix of the
next higher cumulant M5 in the free-energy expansion.
It should also be noted that the expressions exhibited
here for the stress tensor and elastic constants (with
C’=0) are the same as those obtained?? in the usual
quasiharmonic approximation, except that the inter-
atomic potential is here replaced by its thermal average
over dynamic interparticle separations.

24 W, Gotze, Phys. Rev. 156, 951 (1967).
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Note added in proof. Results for the elastic constants
similar to those obtained here have also been derived
using a different technique by W. Gotze and K. H.
Michel, Z. Physik 217, 170 (1968).

3. Specific Heats and Thermal Strain

Turning from strain derivatives to temperature de-
rivatives, explicit expressions for the specific heat can
also be worked out. From Eq. (33) the entropy is

S=3" [$Bwi cothdBuia—In(2 sinhiBwin)], (61)
kX

as in any noninteracting phonon system. The specific
heat, the temperature derivative of the entropy, de-
pends on the external mechanical constraints imposed
on the crystal during the temperature change. The
situations usually envisioned are constant pressure or
constant volume. In the case of noncubic crystals,
however, it is also possible to consider?’ the case of con-
stant strain, in which the shape as well as the size
of the unit cell is held fixed. Since a ““constant volume”
specific-heat measurement is usually carried out with
the sample filling a closed rigid can, it is the constant
strain situation which is more relevant. Denoting this
specific heat by c,, it is found from differentiating Eqs.
(61) that the macroscopic definition,

Ca/V= —(6/1/)(‘9'5/318)8 ) (62)

works out to
ca/V=V"1Y (Bwir)? csch?(2Bwir)+ca’/V, (63)
kN
where

¢’/ V=38V 2 (dwin?/ 9B)csch?(Gwin)  (64)
kA

is the correction term due to the temperature depen-
dence of the phonon frequencies. Differentiating Egs.
(29), (26), (31), and (38) with respect to 8, and perform-
ing manipulations similar to those used for the calcula-
tion of the elastic constants, leads to the final formula

car/V=—38V"1> N1 3 V(1 =AY ) ey,
(65)

where we introduce the notation

=205 csch2(38wi») - (66)

Exactly the same integral equation is required to be
solved for Eq. (65) as in the elastic-constant expression
(58).

The specific heat at constant pressure ¢, has an addi-
tional contribution coming from lattice constant changes
with temperature. The difference ¢,—c, turns out to
conform to the standard thermodynamic requirement

2 T, H. K. Barron and R. W. Munn, J. Phys. C1, 1 (1968).
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that
(cp—6a)/V=BT'A": (C+pl):A, (67)
where A is the (second-rank) thermal strain tensor,

= —p%a/9B), at.

The thermal strain tensor is calculated by differentiating
the stress tensor, Eq. (35), resulting in the expression

=—18ACH+pl) V1 . Q=AY ) e, (69)

(68)

Again the solution of the integral equation enters. The
quantity C+pl is the (fourth-rank) bulk modulus
tensor, whose inverse is to be calculated as if it were a
9X9 second-rank tensor.

The calculation of the specific heat at constant volume
cy is very similar to that of ¢,, except that in differenti-
ating the stress tensor Eq. (35), the extra term (9p/98)v
arises, which is to be determined through the constant-
volume constraint, (da/d8):a1=0. This term produces
the familiar thermodynamic relation

(cr—cv)/V=0?/BX, (70)
where « is the coefficient of thermal expansion and X is
the isothermal compressibility. In terms of the tensors
just defined, we have

a=V-1aV/dT),=A:1, (1)
=—VaV/dp)r=1:(C+pD)~:1,  (72)

and the bulk modulus is
k=—V(3p/aV)r=%1:(C+pl): 1. (73)

4. Adiabatic Elastic Constants

The adiabatic elastic constants differ from the macro-
scopic definition (40) of the isothermal elastic constants
by allowing the temperature to vary with strain subject
to the constraint of constant entropy. This calculation
requires differentiating Eq. (61) to calculate (a- 8/9a) s.
The result is again that expected from thermodynamic
arguments,

Ced—Cie= (Bco/ V) [ (Cio4-pl): A2 (74)

C. Second-Order Approximation to §

Having completed our discussion of the first-order
self-consistent phonon approximation, we can proceed
to consider the second-order term in the cumulant ex-
pansion of &. This term gives the leading contribution
to the phonon damping rate and also produces a fre-
quency shift connected with the damping through the
Kramers-Kronig relations.
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Including the second-order cumulant, the free-energy
functional becomes

—iB
gggz':“fﬁ—%ﬁ’Mz(—i/

0

—if —if
=5:1+%,3_1/ dh/ dis
0 0

XUTLV @) Ve D —(7)%y . (79)

dt I7(z)>

Although it is rigorously true that §;>&, so that a
minimization of & is justified as an optimization pro-
cedure, thereisno longer any general inequality between
¥, and F. Nevertheless, we still select ®;;({1—t) by
requiring that F, have stationary variation, through
appeal to the condition that F,—F; in some sense be
small. Furthermore, if F»—F is a small correction, then
it is valid to replace in F,—F the factors @ occurring
in ¥ by the first-order result, Eq. (26). That is, the
approximate expression

PO T {ess0 7= ui®)- VI Do (Ri)  (76)

ij
is to be substituted into Eq. (75). Rearranging the

terms considerably and making liberal use of the Guass-
ian averaging theorem, Eq. (19), leads to the form

—1B —iB
dh/ dts
0 0

X383(Dijim(t1—12): Vi Vim)

Fo—F1=5 2 2 87"

5 L=m
Xexp(3Dij: ViiVii+3 Dim: Vin Vim)
X5(Ri))vim(Rim) . (77)

It proves convenient here to introduce the functions

()= em S (s,

§=0

(78)

and to use the notation

Djin(t—t)=(TTus(Owm(t) ),

which can be expressed in terms of the displacement
propagator as

(79)

Dijlm(t"'t,) =iﬁ~l Zl‘ etz (t—t/) -1 Zk etk Ry
X (8,i= 8¢,3) (8n,m—by,1) Doe7(ksz) , (80)

a generalization of Eq. (22). Then the condition of
stationary variation,

555/ (kz) =0, (81)
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leads to the result for @,

D7 (k2) =>" > [85,0r —0rr,0r exp(—ik- c,,:)](Vvau('cwn—]—u))—i/

X[a""’l_avv“l’ exp(ik"vvwl')][av’ o3

WERTHAMER 1

—1if

dre= 3 ¥ X

0 7,7 ,7"" ¢1,01 02,02’

1 exp(—ik-to0"")

807,y €Xp(— K- Toger’) ]

182(»8‘ Z NI 3§ exp(ik ‘merz [5v3 61— 003,01’ eXP(_ik To101’ )]

The expression for @ exhibited in Eq. (82) arises from
differentiating, as per Eq. (81), the Dy, term in Eq.
(77). Strictly speaking, there should be additional con-
tributions to @ arising from differentiating the D,; and

k’ 03,03
X[aw’,vz*‘sas’,az’ exp(zk’ : ’deaz’,)]D””’(k,;Z): VV,)<V7)47101’(‘cﬂﬂ’+u)><v"y02"'2/(1”2“2',+u)> * (82)
sum of & functions,
A (k)3 A(M M ) e @i ™ (/2010
X[6(w—win) —8(wtwin)], (84)

D;.. terms in Eq. (77), but these contributions are ex-
pected to be negligible (and, in any event, do not give
rise to any phonon damping) and are not included here.

The complex variables z and ¢ can now be analytically
continued to the real axis in the usual way.'®* We intro-
duce a spectral representation for the quantity D77 (kz),

D’ (ks) = / o 2 per (ko), (83)

2 32 —w?

in terms of a spectral weight function A7’(kw). In the
first-order approximation the spectral function was a

Py (k)= 20 (MM o) ey ern ™ : @7 (ko)

=2 2 3B (50e ) i " (%00) : (VVUg 0 (%00

7 0,0

Xexp( _'ik' ’Cglqzll)%Ek)\a 101’(10101,)*Ek)\'0202' (7U2l72'/) .

whereas to second order the § functions become broad-
ened because of the finite phonon lifetimes. Nonetheless,
it is convenient to use the first-order phonon eigen-
vectors ex\’ as a basis set and to further represent

A7 (ko) = 3 (M M o) 2e0% €0 * A (hw) . (85)
BV

Then the analytic continuation of ®27'(ks) to the real
frequency axis becomes, in the polarization index
representation,

—f—u))—{—/ dlei‘”ZImlz > > >

7,7 ,7" 01,01 02,02

%52(]\/’_1 > X exp(ik-wo0" ) 5Bt (%01017)

k AN

XE“/"Z"Z'(%M»')*(211-)“1/ des Axy (kw)(coswt coth3Bwin—1 sinwt): VV')

><(Vv,mr(c.,l,lz—i—u))(V’vmzr(en”/’-}—u))]. (86)

Furthermore, the relationship between De°" and @ is such that 4,y (kw) is determined via an equation of the
Dyson type,
A )\)\f(kw) = Im{ [w25)\,)\r —‘i')\)\' (kw)]‘l} , (87)

where matrix inversion is implied. The last pair of equations, (86) and (87), together give a self-consistency con-
dition on the phonons, but here in the second-order approximation the phonons are characterized by the spectral
weight function Ay (kw) rather than by just a set of frequencies and polarization vectors as per Eq. (84). When
the self-consistency conditions (86) and (87) are satisfied, the free energy of the crystal becomes

T 0,0

52=Z(21r)‘1/ dw % cothiBw tan= [ Ay(kw) /Ar(ke) ]HEN 3 3 (04,0 (%o +u))
KA o

+iv X X X

7,7/,7" 01,01 02,09

0
dlZ In1[%83<[\7h1 Z z e‘<p(7k' ’Vuluz”)%Ek)\U1‘71,(‘calo[’)Ek)\'dza2,(",6202’)*
0

k AN

X (27r)"1/ dw A (kw)(coswt cothiBw—1 sinwt): VV’)(v,,m/(v.,,,,y—{—u))(vawzr('c,,zn/'-l—u))] . (88)
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In the first line of this formula A(kw) and 4, (kw) are the imaginary and real parts, respectively, of the Ath
eigenvalue, for fixed k and w, of the 3#X3n matrix [w?6 —®x (kw) ], whose imaginary part is 4y (ko) by

Eq. (87).

This formulation simplifies somewhat if the damping of the phonon modes is sufficiently weak that the spectral

function can be represented adequately by a Lorentzian,

Ay (ke)= o3 v (Tin/win) {[ (0 —wien) 2+ T2 ] [(wtwin) 4+ T2,

in terms of a damping parameter I'yx. Then

(89)

2mr)—! / de Ay (ko) (cosw! cothiBw—17 sinwl)=2dx yvwin ™! exp(— ') (coswint cothiBwi—1 sinwiat),  (90)

and the mode frequency and damping factor are deter-
mined by

WA= Re[@u(k;wkx) 1/2] )

o= TIm[ P (k,wi)/2]. (91)
In this case the single damping factor needs to be calcu-
lated, rather than the complete spectral function of w.

Although these formulas may at first appear forbid-
dingly complicated, they have several significant features
which are quite appealing. In the first place, the pres-
ence in ® of the function &, can be interpreted as allow-
ing the phonon-damping rate to incorporate decay
processes into any number of other phonons consistent
with energy and momentum conservation. The tradi-
tional anharmonic perturbation theory prescribes a
phonon decay only into two other phonons, a result
which can be verified to correspond in the present
scheme to replacing &;(x) by its small argument limit
122 Evidence which is now available from detailed
machine computation of the traditional anharmonic
terms indicates? that multiple phonon processes ap-
parently make a sizable contribution at higher temper-
atures, at or above the Debye temperature. It should
further be noted that odd numbers of derivatives of the
potential now enter at this second order of approxima-
tion, whereas only even derivatives contributed in first
order.

Also significant is the fact that the spectral function
is determined self-consistently: The phonon decay
(indicated by the breadth of the spectral peak) takes
place into phonons which themselves decay. Such a

feature has been indicated? to be necessary to produce
attenuations of long-wavelength acoustic phonons which
correctly conform to the results of a hydrodynamic,
rather than collisionless analysis. It can be shown by
straightforward algebra that the zero-frequency long-
wavelength limit of the phonon dynamical matrix,
Eq. (86), leads to a generalization of the isothermal
elastic constants, Eq. (45), including the term C’ given
by Eq. (58). Thus, as a generalization of Eq. (60),
ké\: Cis:kéy=p lim lim Y (MM ,.)~1/2

k>0 w0 0,0’

Xem*en : CI)""'(kw) . (92)

In fact, Egs. (45) and (58) but with ¥, — 0 are ob-
tained precisely by also making the approximations in
Eq. (86) of replacing 8x(x) — 3% and, as per Eq. (84),

A)\)\l (kw) s 5)\,)\/(71'/2601{)\)[5((»‘@1{)\) —5(w+wkx):| )

with wi here being the phonon frequencies to first order.
These two approximations can also be used in Eq. (86)
for all values of k so as to obtain formulas for phonon
frequency shifts and damping factors which are more
easily programmable than the fully self-consistent equa-
tions. This is the approach which has been followed
by Goldman et al.'* and by Koehler!? in their numerical
computations. Although their results indicate a sub-
stantially improved agreement with experiment over
the first-order phonon spectrum, it will still be of
interest to attempt a computation with the fully self-
consistent second-order equations (86) and (87).

26 P. C. Kwok and P. C. Martin, Phys. Rev. 142, 495 (1966).



