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argue that the curves (for SIT and saturation) are
displaced by a significant amount, however, this dis-
placement is meaningful only if the dipole moment g is
known. A measurement of the amplitude of the peak of
the power spectrum can be used as a direct verification
of the area theorem.! The spectrum would also help to

show whether the carrier could be properly described as
a monochromatic wave, or whether there were fast
frequency changes present.

We wish to acknowledge helpful and stimulating
conversations with Professor E. Hahn and Professor
A. Szoke.
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This paper resports our study of Hartmann and Hahn’s technique of rotating-frame nuclear double
resonance (RFDR). We consider the Lif-Li’ system in LiF and obtain the cross-relaxation dynamics
from the Li’ free-induction-decay data via a general expression which we derive. We find that the
presence of F1 spins, which constitute a third species interacting strongly with the Li systems in LiF,
may easily be taken into account, and that the resulting RFDR behavior does not differ qualitatively
from that in a simple two-species system. The cross-relaxation time dependence is well described by an
exponential or sum of exponentials for times longer than the order of T, with nonexponential behavior
for shorter times. The cross-relaxation rate Wcr exhibits a Lorentzian dependence on the magnitude of the
Li¢ rf field, His, for the case where the Li’ system has been adiabatically demagnetized in the rotating
frame; these results show that the Gaussian behavior previously assumed is incorrect. For the case where
the Li7 rf field is of the order of the local field, Wer (Hi6) is asymmetric about Hahn’s double resonance
(DR) condition, with the larger W¢r corresponding to Hie less than for the DR condition. The cross-
relaxation times at the DR condition are on the order of 0.4 msec. We observe no spin-diffusion bottleneck
in a sample of LiF with an isotopic abundance of 0.008%, Li®. Finally, we draw some general conclusions

about the application of RFDR to other problems.

I. INTRODUCTION

UCLEAR double resonance in the rotating frame
(RFDR) was first suggested as an ultrahigh-
sensitivity NMR technique in 1960 by Hartmann and
Hahn.! The classic analyses of the method have been
given by Hartmann and Hahn? (hereafter referred to as
HH) using the general density matrix techniques, and
by Lurie and Slichter® (hereafter referred to as LS)
using a thermodynamic treatment. Several groups have
used variations of this technique to obtain NMR and
NQR spectra of rare isotopes or impurities in solids.?~*
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The work reported here is primarily an experimental
study of the RFDR method itself rather than an
application of the method to obtain high-sensitivity
spectra of a particular solid.

The reader is referred to the excellent descriptions of
the general technique given in HH and LS. In Sec. II,
we will review these basic ideas principally as a means
of introducing our notation.

We consider two nuclear-spin systems with strong
resonant rf fields applied to each. The proper way to
describe such a system is in a double rotating-frame
representation.2? In this representation, each of the
two spin species can be made to sense a different
“effective field,” and thus the effective Zeeman split-
tings of the two species can be made equal, thereby
allowing rapid cross relaxation. This condition of equal
effective field splittings is called the double resonance
(DR) or Hahn condition.

The standard method of high-sensitivity spectroscopy
is then as follows. The rare-species resonance system is
modulated in such a way as to pump energy into the
rare-spin effective Zeeman levels. This pumped energy
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13 K. F. Nelson and W. D. Ohlsen Phys. Rev. 180 366 (1969).
U E. L. Hahn, Nuclear Magnetic Resonance and Relaxation in
Solids (North- Holland Publishing Co., Amsterdam, 1965), p. 42.
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then leaks into the abundant system via cross relaxation
at the DR condition and reduces the order of the
abundant system. This reduction of order can easily be
detected as a reduction of abundant spin magnetization.
In what follows, we will refer to the former system as
the pumped system and the latter as the detected
system. Thus, the spectrum of the pumped system is
normally obtained by observing the loss in order of the
detected system for various values of the rf frequency
applied to the pumped system.

This paper is primarily concerned with a study of the
dynamics of the cross relaxation between the pumped
and detected systems. The main results of our work are
measurements of the time dependence of the Li%-Li
cross relaxation in LiF for various crystal orientations
and for varying degrees of departure from the DR
condition.

We should emphasize, however, that when we speak
of Li*~Li" cross relaxation for the three-species LiF
system, we actually mean the total cross relaxation
between the Li® Zeeman energy reservoir and all the
other parts of the system with which it can cross-relax,
i.e., the Li” Zeeman reservoir and the total dipole-dipole
reservoir. Thus the cross-relaxation rates which we
measure cannot be unambiguously attributed to any
particular one of the many cross-relaxation routes of
this system. Nevertheless, the rates and functional
dependences which are obtained by this approach give
the essential behavior of the system and are helpful in
understanding how RFDR may best be applied to other
problems.

In Sec. IT, we first define a general system and develop
the expression necessary to obtain the cross-relaxation
behavior from the measured free-induction-decay data;
then we apply this approach to the particular case of
Li*~Li” RFDR in LiF. Section III outlines the experi-
mental apparatus and procedure. The experimental
data are presented and discussed in Sec. IV. Finally,
we give a summary and our conclusions in Sec. V.

II. THEORY
A. General Case

In this section, we will derive an expression relating
the loss of spin order of the detected system to the
dynamics of the cross relaxation. The type of rf modula-
tion applied to the pumped system in our work is that
of periodic 180° phase shifts as used by HH. The on-off
modulation used by LS is then a special case of our
result.

We consider the system in the double rotating-frame
representation. The unitary operator which gives this
transformation for H, in the z direction is

U= exp(il Fopl+il Popl), (1)

where 7,7 and I.,” are the z components of the total
spin operators for the pumped and detected spins,
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respectively, and wp and wp are the angular frequencies
of the rf applied at or near the resonant frequencies,
wop and wep, of the pumped and detected spins, respec-
tively. When wp=wop and wp=wop, the secular part of
the rotating-frame Hamiltonian following the #th 180°
phase shift of the pumped system rf may be written as

%n:SCZP(n)+3CZD+$CJO+JCZR+GCSpin lattice y (2)

where the various terms are defined as follows:
The pumped-spin Zeeman term after the nth 180°
phase shift is

3zp(n)=(—=1)"yphl,TH1p, ©)

where yp is the gyromagnetic ratio of the pumped
spins, I,¥ is the ¥ component of the total spin operator
of the pumped spins, and H;p is the magnitude of the
Larmor component of the rf applied at the resonant
frequency of the pumped spins.

The detected-spin Zeeman term 3Czp is independent
of phase shifts in the pumped-spin rf and thus, for all ,
is given by

3Czp= —vyphl"Hip, (4)
where all terms are the obvious analogs of those defined

above for the pumped system.
The secular dipole term is given by

=3 (3%, (5a)
<J
where
(3Ca0) i ="yivih? > (1—3 cos?x1)
ki
Xri 7, 17§ (Sb)
and
(30" =3v2h% Y (1—3 cos?bry)
k,l
Xru 3Bl i — 1 1) . (5¢)

In the above sums, the indices 7 and 7 run over all the
different types of spins, e.g., in LiF we consider the P
spins (Li®%), the D spins (Li%), and also the F1? spins;
the & and [ indices refer to different lattice positions for
each type of spin.

The fourth term in Eq. (2), 3Czg, refers to all other
Zeeman terms in the transformed Hamiltonian, e.g.,
F19 Zeeman levels in LiF. Except in very special cases,
which we will not consider, these terms correspond to
energy-level differences that are much greater than
those of the first three terms in JC,; thus these other
Zeeman terms will not significantly exchange energy
with the first three and, consequently, may be ignored
for the purpose of our cross-relaxation calculation. On
the other hand, the 3Cs° terms corresponding to these
other spins can be effectively coupled to the P and D
spin systems and, consequently, cannot be neglected in
the cross-relaxation process.
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Because most of our experiments are performed in a
time small compared with the rotating frame 74, we
also make the assumption that spin-lattice relaxation
is negligible; we will show in Sec. IV, however, that this
theory is easily extended to cases where spin-lattice
relaxation is not negligible, provided the characteristic
time of the cross relaxation is much shorter than the
rotating frame 7'y. Thus, in the following analysis, we
consider an isolated system whose Hamiltonian is

3C.' =3z p(n)+3Czp+3C4°. (6)

At time ¢ following the n#th phase shift this system is
described by the density matrix p(n,f). If there were no
more phase shifts after the #th, the system would attain
rotating-frame equilibrium at {= c and, thus,

p(n,)=exp(—3C,'B.)[Tr exp(—{}cn’ﬁn):l"l , (N

where 3C,’ is given by Eq. (6) and (k83,)~! is the corre-
sponding rotating-frame equilibrium temperature. The
time dependence of the approach to rotating-frame
equilibrium is what we mean by the time dependence
of the cross relaxation. Thus, if AE,(#n,f) is the difference
between the energy of the pumped system at time ¢ after
the #th phase shift and the equilibrium energy of the
pumped system as described by 8, in Eq. (7), we can
define a cross-relaxation function f(f) by

fO)=AEp(n,t)/AEp(n,0), ®)
where
AEp(n,t)= Ep(n,t)—Epn,) 9)
and
Ep(n,t)=Tr[pn,t)5Czp(n)]. (10)

Since we are considering energy transfer only within
the isolated system described by 3¢/, we also have

J)=AEp(n,t)/AEp(n,0), (11)
where
AED(n,t)=ED(1’L,t)—ED(7L,°O) (12)
and
Ep(n,t)="Tr[p(n,t)3Cp]. (13)

It is important to realize that we define 3Cp to include
all the dipolar energies as well as the JCzp term in
Eq. (6), that is,

JCp=3Czp+3C°, (14)

so that Egs. (11) and (8) together guarantee that the
total energy corresponding to 3¢, is conserved between
phase shifts.

Recall that, in order to define f(f), we conceptually
interrupted the phase-shift sequence and allowed the
system to equilibrate after the »th phase shift. In the
actual experiment, of course, the system only evolves
for a time 7, the constant time between phase shifts.
Thus, we are using the equilibrium condition at {= o«
only to normalize f(7); we do not assume equilibrium
for all values of 7.

We have also implicitly assumed in the definition of
/() that fis independent of 7. This gives a simple result
for the final relation but need not always be the case,
for example, if the cross-relaxation process is limited by
spin diffusion. However, as we will show later, it is
possible to determine experimentally the extent of the
n dependence of fand thus to determine whether or not
the measured f(r) gives the detailed cross-relaxation
dynamics as assumed in this theory [ f(r) independent
of #]] or some sort of average cross-relaxation behavior
[a case where f(r) depends on 7).

We can now relate the cross-relaxation dynamics to
the loss of detected-system order, which is the experi-
mentally measured quantity. We want to obtain first an
expression for Ep(n,7)/Ep(n—1,7), which requires
that we relate the energies Ep and Ep just after a 180°
phase shift to their values just before the phase shift.
Since the phase shifts are applied only to the pumped-
spin rf, they affect only the Zeeman energy of these
spins. Thus, we have

Ep(n,0)=Ep(n—1,7) (15)

and

Ep(n,0)= —'KEP(ﬂ—l, T) 5 (16)

where —1<k<1 and 7 is the time between 180° phase
shifts. The constant « is used in Eq. (16) to account for
the actual nonideal pumped-system phase shifts. For
ideal instantaneous 180° phase shifts, k=--1; whereas,
in the limit of completely adiabatic 180° phase shifts,
k= —1, i.e., no net energy is pumped into the system.
Thus, « is a number which relates only to a particular
experimental situation and has no universal significance;
as will be shown later, « can be determined
experimentally.

The relative heat capacity of the pumped spins e is
defined by

e=CpH1p[CpH1p*+Cp(Hip*+H )], (17)
where the Curie constant for the pumped spins Cp is
Cp=vp*W I p(Ip+1)Np/3k, (18)

in which % is Boltzmann’s constant, /p is the total spin
quantum number, and Np is the number of pumped
spins per unit volume; by substituting the subscript D
in place of P in Eq. (18) one obtains the expression
for Cp. The local field Hz, used in Eq. (18) is defined by

-—CDHL2ﬁnk= Tr[p(n, @ )3Cd°] . (19)

For systems of interest for RFDR applications eX1, in
which case it is possible algebraically to solve!® the
relations given by Eqs. (7)-(16) in the high-temperature
limit. To first order in € and for #>>1, we obtain
Ep(n,7)/Ep(n—1, 1)

exp{ —e(1+0)[1— f() 1+« f(n) ]}

15 D. V. Lang, thesis, University of Wisconsin (unpublished).

(20)
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We would like an expression for the loss in order of
the detected system following a RFDR sequence of NV
pumped-spin rf 180° phase shifts each separated by a
constant time 7. The experimentally measured quantity
is the amplitude of the free-induction decay of the
detected spins after Hip is pulsed off. This is propor-
tional to Mp(NV,r), the detected spin magnetization
along Hip in the rotating frame after such a RFDR
sequence, and we take the ratio M p(N,7)/M p(0,7) to
be a measure of the loss of detected spin order.

To relate the above magnetization ratio to the energy
ratio in Eq. (20), we note first that, when N>>1,

ED(N)T)/ED(OyT)z [Ep(ﬂ,f)/ED(’ﬂ—l, T)]N) (21)

and if the detected system is allowed a few tenths of
a msec to come to local equilibrium after the Nth phase
shift, then we have

Mp(N,7)/Mp(0,7)=Ep(N,7)/Ep(0,7).
Thus, by Egs. (20)-(22), we obtain our final result
MD(N:T)/MD(O:T)
exp{ —Ne(1+)[1—f(r) 1+« f(1) I} .

This expression reduces to that given in LS if k=0
and f(7)=0, because k=0 corresponds to the on-off
pumped-spin modulation used by LS, and f=0 corre-
sponds to attaining complete equilibrium during each
spin-mixing pulse as assumed by LS.

pin
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Fic. 1. Schematic representation of rotating-frame sub-
Hamiltonian which governs the Li®-Li7 cross relaxation.

In order to determine how well Eq. (23) approximates
the exact behavior of our model, we have calculated
Mp(N,r) versus IV for different values of ¢, «, and f by
numerical iteration of Eqgs. (7)-(16) with a digital
computer. A detailed discussion of the comparison
between the exact numerical results and the approxi-
mate solution of Eq. (23) is given elsewhere,’® but the
results important to the work reported here can be
summarized easily. The discrepancies between the exact
model calculations and the approximate expression of
Eq. (23) are a maximum for f()=0, corresponding to
complete cross relaxation within one heating pulse, and
for k=+1. For these worst possible conditions, the
fractional differences are never greater than ¢ and, as
f(z) approaches 1, they rapidly approach zero. The
situation, however, is even better than these error
magnitudes indicate because the incremental slope of
the exact solution is at first smaller and then greater
than the approximate solution slope. That is, the exact
computed solution and the approximate solution given
in Eq. (23) always become equal to one another for some
value of IV and, for e less than about 0.1, this occurs
for V within one pulse of the (1/¢) points of the curves.
Thus, for example, even with e=0.1 and f(7)=0, the
discrepancy between the exact logarithmic slope
averaged to the (1/e) point and the approximate slope
obtained from Eq. (23) is much less than 1%,. Conse-
quently, the errors introduced by using the approximate
form given in Eq. (23) are, for the range of e obtained
in the experiments reported here, typically much smaller
than the noise errors involved in the experimental
measurements.

B. Case of LiF

In the experiments reported here, we study the RFDR
process in LiF where the pumped spins are Li® and the
detected spins are Li”. For this case, the terms in Eq. (6)
for 3¢,/ are given by

3Czp(n) =3Cz6(n) = (—1)"yehl.’H s, (24)
3zp=3z= —vihl,"H, (25)
and
3Ca0= (3Ca%) 77+ (3Ca®) 7w+ (3Ca%) r
+ (3C4%) 76+ (3C2°) ret (3Ca%es, (26)

where the terms in 3C° are given by Egs. (5a) and (Sb)
with Li7, Li% and F'® denoted by 7, 6, and F, respec-
tively. This system is shown schematically in Fig. 1;
the dipole terms of Eq. (26) are represented by squares
and the Zeeman terms of Eqs. (24) and (25) are repre-
sented by the circles. The detected system consists of
those terms enclosed by the dashed lines. Terms that
can exchange energy are connected by arrows, indicating
possible paths of energy flow. Note that the ¥ Zeeman
term is decoupled from the system as explained in Sec. I.
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The weak spin-lattice interaction is indicated by the
dashed arrows labeled 7'y, and 7'y,’.

To calculate H from Eq. (19) for LiF, we consider
only the first three terms of 3¢4° given in Eq. (26), since
the others are negligibly small for the low concentra-
tions of Li® used in our samples. Explicit evaluation, as
given in LS, of Eq. (19) yields

H1*=3(AH )yp~-(A%H )1
iy AN el p(I 5+ 1) /2N L[4 1) KA H Y pey,  (27)

where (A2H);; is the contribution (in G) of the j spins
to the second moment of the i-spin resonance line. Using
this definition of Hy, we find that H;2=8.20, 15.4, and
37.0 G? for H, along the [111], [110], and [100]
directions, respectively, in LiF, these fields referring,
as indicated in Eq. (19), to the detected spin Li” nuclei,
which have I=$%, a gyromagnetic ratio of 1.655 kHz/G,
and a natural isotopic abundance of 92.579,. The Li®
nuclei have a gyromagnetic ratio of 0.627 kHz/G, I=1,
and a natural isotopic abundance of 7.439, while F*
is 1009, abundant with a gyromagnetic ratio of 4.006
kHz/G and spin 3.

III. EXPERIMENTAL APPARATUS
AND PROCEDURE

A block diagram of the apparatus is shown in Fig. 2.
All data were taken at room temperature with a sample
probe of standard crossed-coil geometry very similar to
that described in LS. All crystal samples were about
1-cm cubes; the powder sample was hand tamped into
a tube of about 1 cm diameter. The optical grade LiF
single crystals with normal Li® abundance (7.439) were
obtained from the Harshaw Chemical Co. Some of these
crystals were irradiated with Cs y-rays to give an
F-center concentration of about 6X10* cm™3. This
irradiation lowered the spin-lattice relaxation times to
T1~3 min in the lab frame and T,,=~4 sec in the
rotating frame, with the typical orientation dependence
of paramagnetic relaxation.’® The LiF powder was
commercial reagent grade with 71~ 1.4 sec and T1,~0.8
sec. A single crystal of LiF with 80-ppm Li® was obtained
from the Oak Ridge National Laboratory. This sample
had 7'1=~2 h and 7T'1,~4 min, independent of orientation
within about 109.

The field-regulated Magnion 12" magnet was set at
8823 G, giving the resonance frequencies of Li? and Li¢
at 14.607 and 5.5305 MHz, respectively. The Li” elec-
tronics system uses the superhetrodyne principle with
most amplification and phase-sensitive detection per-
formed at au intermediate frequency of 3.20 MHz. The
duration of the His phase shifts was between 5 and
10 usec, depending on the tuning of the Li® rf trans-
mitter. The magnitudes of Hy; and His were measured
by observing the respective rf voltages on an oscillo-

18 E. R. Andrew, K. M. Swanson, and B. R. Williams, Proc.

Phys. Soc. (London) 77, 36 (1961).
17 J. R. Franz and C. P. Slichter, Phys. Rev. 148, 287 (1966).
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Fic. 2. Block diagram of the RFDR apparatus.

scope; these voltages were calibrated by rotary satura-
tion experiments? on the F!® resonance in a BaF,
crystal. This allows us to set His and Hi; to within
about 39%,.

The ordered state of the detected system prior to the
RFDR sequence was prepared by polarizing the Li7
spins for a time on the order of 71 and then tipping the
Li” magnetization into the rotating frame along Hi; by
the field-pulse method of LS. This condition is com-
monly referred to as being spin-locked in the rotating
frame. For some data, Hi; was further reduced nearly
to zero after the spin-locking sequence; this is called
adiabatic demagnetization in the rotating frame
(ADRF). After ADRF, the ordered state is purely
dipolar, and the cross relaxation is between 3Czs(n)
and JC,°. In the ADRF case, the order of the detected
system is measured following the RFDR sequence by
adiabatically increasing Hy; again to convert part of
the dipolar order back into Zeeman order, and then
observing the Li” magnetization.

In these experiments we must set the Li? polarization
time between successive RFDR sequences, the delays
between the start of the spin-locking field pulse, the
Hy; rf pulse, the Hig rf pulse, the boxcar integrator
gates, the oscilloscope trigger, and the ADRF sequence
(when used). In addition, we must vary independently
the shape and length of the spin-locking field pulse, the
length of the Hy; rf pulse, the speed and length of the
ADREF sequence, and the Hy parameters = and N.
These operations are performed in a simple and direct
manner by the pulse sequence control, a hybrid system
of Tektronix 160 Series pulse generators driving a
programmable unit of our own design made with various
digital-logic integrated circuits.
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The boxcar integrator was used mainly for con-
venience in recording the single-crystal data. The rela-
tively long 7'’s limited data acquisition to about two
readings per point, with the exception of the important
M+(0,7) points where we took about ten readings. The
S/N ratio was no less than 10 in the worst case, so no
effort was made to average more data.

IV. EXPERIMENTAL RESULTS
A. Method of Analysis

The main purpose of this work is to determine experi-
mentally the dynamics of the Li®-Li” RFDR cross
relaxation in LiF. The raw data which we obtain (FID
amplitudes) are proportional to the Li’" spin-locked
magnetization; we use Eq. (23) to extract f(r) from
these data, for which we have always set ws=wos and
wr=wy7, as assumed in the derivation of Eq. (23). We
also neglected spin-lattice relaxation in deriving
Eq. (23); this is certainly valid for cases in which
N+&LT1,. If Nr~Ti, on the other hand, then the
system described by Eq. (6) loses significant energy to
the lattice during the RFDR sequence. However, if the
cross relaxation proceeds much faster than the spin-
lattice relaxation, the system of Eq. (6) loses energy
uniformly at a rate determined by the sample average
of 71,7, and our theory is still valid if we interpret
Eq. (23) as giving the fractional magnetization loss due
only to RFDR. Thus, we measure M(0,7) with the
same spin-locking time, i.e., length of the Hy; pulse, as
is used for the set of M;(V,r) data which are to be
divided by #7(0,7) in Eq. (23).

In general we use the NV and 7 dependence of a set
of Li” FID data to obtain a particular f(r). Thus we

(oL o
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Fic. 3. LogM+(N,7) versus 7; N=25, H17=2.6 G, H15=6.9 G
(the DR condition), [111] along o, 7.43%, LiS.
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Li” MAGNETIZATION (ARBITRARY UNITS)
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Fic. 4. LogM:(N,r) versus 2N; r=3.2 msec, Hi1=2.6 G,
H16=6.9 G (the DR condition), 7.43%, Li¢. The solid, dotted, and
dashed lines are calculated from Eq. (23) assuming x=1 and
f()=0. These lines and the data directly above them correspond
to H, along [100], [1107, and [[1117], respectively. The error bars
on t(he7 ) lines represent the uncertainty in calculating e from
Eq. (17).

have f(7) as a function of Hye, H1r, orientation, and Li®
concentration. We have chosen to make Hy¢ the prime
variable of these four, and thus will give our final results
in terms of f(7) versus His for various values of the
other three parameters.

We now outline how f(r) is obtained from a typical
set of raw data. Figures 3 and 4 show such data for a
crystal of LiF with a natural abundance of Li% In
Fig. 3 we have plotted M7(No,7), i.e., the RDFR Li’
signal for a fixed V as a function of 7. We first examine
the M;(No,7) data to determine how large = must be to
ensure complete cross relaxation between phase shifts;
this corresponds to being in the flat portion of the curve.
According to the definition of f(7) in Eq. (8), complete
cross relaxation corresponds to f=0, so when 7 is set
to ensure this condition, Eq. (23) becomes simply

MA(N, 7—>0)/M(0,7)=exp[ —Ne(1+x) ].  (28)

The data presented in Fig. 4 were taken for long fixed 7,
but for variable &N, and these M;(V,») data obey
Eq. (28). Thus we can easily obtain e(1+4«) from the
slope of logMf7(V,) versus N as in Fig. 4. For our
experiments, where the Li® isotopic concentrations are
known, e can be calculated from Eq. (17), so the
Mq(N,») data give an experimental determination of .
By changing the phase-shift characteristics of the Li®
transmitter, we can easily cause « to vary from 0.3 to
0.9. This large departure of x from 1.0 is due to the
strong local fields in LiF, which cause a substantial
fraction of the Li® magnetization to be lost during the
phase shift; by changing the crystal orientation so that
H, goes from 3 G to 6 G, we change « from 0.8 to 0.5.
A determination of « thus constitutes an apparatus
calibration for a particular tuning of the Li® rf trans-
mitter and a particular crystal orientation. I'or our
operating conditions, the character of the phase shifts,
and thus «, is independent of V and 7. One can also,
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of course, determine the Li® concentration by measuring
€(1+«) in a sample of unknown isotopic abundance,
provided « has been previously determined from a
sample of known concentration under the same
conditions.

Once « is known, we can apply Eq. (23) to the
My(No,7) data in Fig. 3 to determine f(r). Figure 5
shows typical f(r) results corresponding to data taken
under the same conditions as for Figs. 3 and 4.

At this point, we should examine further the assump-
tion made earlier that f(7) is independent of #. The data
presented in Fig. 6 show M;(V,r) versus NV for values
of 7 ranging from 0.1 msec to times long enough for
essentially complete cross relaxation. For all these
values of T, one sees that, within experimental accuracy,
the data exhibit an exponential dependence on V. We
take these results to be an indication of the validity of
our assumption for the specific systems reported here.

Note, however, that the [1117] data in Fig. 4 show
very faint, but reproducible, oscillations as a function
of N. We have not yet been able to determine whether
this is a real, but weak, » dependence of f or some
systematic error. At any rate, the effect is weak enough
to be neglected for the present purposes of obtaining

J().

B. Behavior of Cross Relaxation

The time dependence of the cross relaxation, as given
by f(r) in Fig. 5, is well described by an exponential
with a “roll-off”” at small 7. As experimental parameters
are changed, the characteristic times involved in f(7)

time variation of coherent energy exchange between
pumped and detected systems for 7<7. The cross
relaxation is thus characterized by an initial second-
order time variation with the incoherent exponential
behavior beginning to emerge after 7=~7".

Since all measured f(7) show the same general ex-
ponential behavior, we describe each by its character-
istic cross-relaxation time 7cgr or cross-relaxation rate,
Wer=(1/7cr), and we obtain Weg from the slope of
the best fit to logf(7) versus 7 as shown in Fig. 5. Note
that the Weg values in Fig 5 vary only from 2.6 to 3.2
msec™!, whereas H1? varies from 8.2 to 37 G2 as the
orientation changes from [1117], through [110],
to [100].

Figure 7 shows Wcr versus Hig; the lower curve is
for the ADRF case (H1;=0) with [111] parallel to H,,
the orientation of smallest experimental error. Our
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measurements for the [110] and [100] orientations
show, within experimental accuracy, the same shape as
that in Fig. 7 for the [111] case. Just as for the results
shown in Fig. 5, the magnitude of Wcg increases over
the [111] values an average of about 159, and 309,
for the [110] and [100] directions, respectively. The
relative insensitivity to crystalline orientation appears
typical of the LiF system and allows us, at least for
semiquantitative purposes, to compare single-crystal
and powdered sample results. The upper curve in Fig. 7
shows primarily powdered sample results for the case
where Hy;=2.8 G; we observe here that Wcg is very
asymmetric about the DR condition, with W¢g actually
growing larger as His approaches zero. If the only
mechanism of cross relaxation were mutual Li®-Li”
spin flips along His and Hi, respectively, then one
would expect Wcg to decrease on the low side as well
as the high side of the DR field indicated by the arrow
in Fig. 7. In the case where H1;=~0 (ADRF), we observe
that Wer has the long wings characteristic of a
Lorentzian or exponential dependence on Hjs. This
behavior is more evident when one plots the ADRF
data as rcgr versus Hyg? as is shown in Fig. 8; the good
straight line fit for data well into the tails of Wcg(H16)
leaves little doubt about the quasi-Lorentzian shape in
contrast to the assumption always made previously?-3:12
that Wcr(H16) should be approximately Gaussian.

We have attempted to find semiquantitative inter-
pretations of the behavior of Wcr(H1s), but have been
quite unsuccessful. It is clear, however, that the magni-
tude of Wcg near its maximum can be predicted within
a factor of 2 by the treatments of HH or LS, whereas
the H ¢ dependence does not conform at all to theoretical
predictions such as given, for example, in the ADRF
case by Slusher and Hahn.'? Qualitatively, however,
certain features of the RFDR behavior suggest that the
cross relaxation in LiF is a two-channel process. Re-
ferring to the schematic representation in Fig. 1, we
note that the Li® nuclei communicate with the full
detected-system energy reservoir via the Li%-F dipolar
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interactions as well as the Li%-Li” interactions. We
therefore expect Wer(H1s) to be the sum of two lines:
the first, due to the Li®-F path, connects to the fluorine
dipolar energy reservoir and would be centered at
H =0, whereas the second part of Weg is due to the
Li%-Li’ path and is centered at the DR position. In
Fig. 7 for the ADRF case, both contributions are
centered at H14=0 to produce a relatively narrow shape
for Weg, but when Hy;=2.8 G the two components are
displaced from one another; we think this effect is the
cause of the pronounced asymmetry with respect to the
DR field value which was noted above for the case when
H;=2.8 G. Unfortunately, our present detected-spin
transmitter cannot maintain a sufficiently large Hy7 to
confirm this speculation by allowing a distinct resolution
of the two components of W ¢g.

Many factors probably contribute to the quasi-
Lorentzian shape of Wer versus Hig for the ADRF
experiments; for example, one can show that higher-
order multiple spin-flip processes play a more important
role as Hy¢ increases, and the relatively large contribu-
tions of the F9 spins to the Li local fields tends to
relate the cross-relaxation line shape to those single-
resonance situations where a quasi-Lorentzian line
shape can be caused by the presence of a second nuclear
species.® The presence of the long tails of Weog(He)
explains another interesting aspect of RFDR behavior,
which is shown for the ADRF case in Fig. 9. These data
show a very broad minimum of M7 as a function of H e,
a result first reported for Li metal in LS. To exhibit the
source of this behavior, we consider Eq. (23) with the
approximation f(r)=exp(—7/7cr) to obtain, for
7/7crK 1,

M(N,7)/M(0,7)~exp(—Te/7cr), (29)

where T=N7. Equation (29) serves to illustrate the
essential role of ¢/rcr as the RFDR M, destruction
rate; according to the H14® dependence of € in Eq. (17)

18 A, Abragam, The Principles of Nuclear Magnetism (Oxford
University Press, London, 1961), Chap. IV, Sec. III.
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and 7cg in Fig. 8, ¢/7cr should be nearly constant over
a wide range of Hyg to give the broad minimum in M5
shown in Fig. 9. For the purpose of rough comparison,
a Gaussian Wcr(H1s) with a characteristic breadth
corresponding to the Li” local-field frequencies does fit
the data of Fig. 9 reasonably well out to H1s2=50 G?,
but for larger H1g, M returns rapidly to its initial value,
showing less than a 209, destruction at His2=150 G?
and less than 39, for Hi6>=300 G2. Further analysis of
the data of Fig. 9 shows that, for Hqe? greater than
150 G2, the wings of Wcr(H1s) fall off somewhat more
sharply than those of a Lorentzian, but not as sharply
as those of an exponential function.

The important parameter for optimizing the RFDR
signal is €/7cg also in experiments where H1;520. This
is illustrated in Fig. 10, where the increase of € is the
dominant H¢ dependence up to about 15 G, and the Li”
destruction rate is greatest, in this case, for His set at
about twice the DR condition. Since these experiments
show that Wer(H1s) is not described by a simple line-
shape function, at least for H1;70, one cannot derive a
general expression for the optimum setting of Hig; on
the other hand, the broad wings which appear to be
characteristic of the cross-relaxation line shape tend to
make the optimum setting occur over a very wide
range of H .

C. Case of Very Rare Li®

To determine whether the cross-relaxation character-
istics depended on Li® concentration, we measured f(7)

for the Oak Ridge National Laboratory LiF sample
which had a specified isotopic abundance of 0.0089, Li®.
In this case, we can use RFDR to determine inde-
pendently the Li® concentration in the very dilute Li®
sample since we know & from the natural-crystal data.
Our measurements of e(1+«) yield a Li® concentration
of (0.0102£0.001)%,; this is in reasonably good agree-
ment with the value specified by ORNL and verifies
that any discrepancies between experimental results
and theoretical predictions cannot be attributed to
gross errors in the assumed Li® concentration.

Figure 11 shows f(r) for both the 0.0089, Li¢ sample
and the sample with natural isotopic abundance of
7.439,; all other conditions were the same. One can see
from these results that, within the experimental un-
certainties, the cross-relaxation dynamics are the same
for these two concentrations of pumped spins, and one
cannot observe a spin-diffusion bottleneck of the RFDR
process even in the very rare Li® sample. Using the
theoretical treatment of cross-relaxation dynamics
proposed by Slusher and Hahn'? and the measured
properties of our LiF samples corresponding to the
experimental conditions of Fig. 11, we have calculated
the behavior predicted for the 0.0089, Li® case. The
calculated f(r) is indicated in Fig. 11 by the dotted
curve which exhibits a spin-diffusion-limited initial
logarithmic slope somewhat less than half that for the
7.49, natural abundance sample. This diffusion-limited
slope continues out until r~~4 msec before starting
slowly to recover toward the nonlimited value; this
predicted behavior is well outside the experimental
errors of the results presented in Fig. 11.
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We have, consequently, reexamined theoretically the
role of spin diffusion in the cross-relaxation process
using a different approach than that of Slusher and
Hahn. We will present our detailed analysis in a sub-
sequent publication, but our preliminary results show
clearly than one should not expect to observe spin-
diffusion limitation effects in the system we have
studied. It appears that the observable results predicted
by the Slusher and Hahn approach arise primarily
because the approximations employed give a greatly
exaggerated spin heating close to the pumped-spin site
as the pumped-spin concentration becomes small.

V. SUMMARY AND CONCLUSIONS

We have observed the dynamics of the cross relaxa-
tion between Li® and Li” in LiF for RFDR. There are
four main areas in which we may draw some conclusions.

The first and most obvious conclusion is that the cross
relaxation as defined by f(+) in Eq. (8) proceeds
exponentially for times longer than the order of 7. For
short times, on the order of T, we observe a non-
exponential roll-off. Such a roll-off ought to be expected
and was first predicted by Redfield.*

Secondly, we have found that the cross-relaxation
rate Wcg, for the case in which the Li” spins have been
adiabatically demagnetized in the rotating frame has a
quasi-Lorentzian dependence on Hi. This behavior
extends well into the tails of a Lorentzian whose half-
width is on the order of the local fields in LiF. This
quasi-Lorentzian behavior of Wcr explains the broad
minimum in Li” magnetization versus H ¢ for the ADRF
case.

Our third set of conclusions concerns the effect on
Li*-Li" RFDR of the F*® spins in LiF. We have found
that such a third species has two main effects. The first
is that the dipole-dipole interactions involving the F1°
spins, as defined in Eq. (26) and shown schematically
in Fig. 1, contribute significantly to the heat capacity
of the detected system; this must be taken into account
in calculating H; and e. We also find that the F?
Zeeman part of the total Hamiltonian plays no role in
the Li%-Li” RFDR energy transfer, as ought to be
expected. The second effect of the F'® spins is to open
an additional cross-relaxation path via the Li%-F
dipole-dipole interaction. This two-channel process
suggests a qualitative reason for the peculiar changes
occurring in Wer(H1s) when Hy; is varied as is illus-
trated in Fig. 7.

Finally, we have looked at a LiF crystal with an
isotopic abundance of 0.008%, Li® and find that the
cross-relaxation dynamics are indistinguishable from
the behavior of a natural LiF crystal with 7.439, Li®.
Thus there is no detectable spin-diffusion bottleneck at
this concentration. We also have found that the RFDR
determination of Li® concentration for this sample is in
good agreement with the concentration determined by
other means.

These general conclusions have the following im-
plications for setting optimum experimental conditions
in RFDR spectroscopy. First, since f(r) is basically
exponential, one wants 7 as small as possible, but due
to the small 7 roll-off, one wants 7 larger than about 7.
This confirms the criteria proposed by Redfield.*
Secondly, because of the Lorentzian behavior of
Wer(H1e), the setting of Hyg is not very critical when
the detected system is in the ADRF state, as was first
experimentally observed by Lurie and Slichter.® The
only consideration is that the pumped system H; be
somewhat larger than the local field. When one is not
in the ADRF state, the situation is more complicated
and is governed by the dependence of 7cg on Hip; in
general, one should expect that the exact DR condition
is not necessarily the optimum setting of H1p, as shown,
for example, in Fig. 10. For LiF there seems to be a very
wide range of His values which give My destruction
close to optimum. Concerning the presence of a third
spin species, we observe that RFDR works as expected
if one includes the effect of that third species in Hy, as
shown in Sec. II. In general, a third species decreases
the RFDR sensitivity because it tends to decrease e,
but this detrimental effect may largely be compensated
by the creation of additional cross-relaxation paths
which increase Wcg. Finally, that we observe no
evidence for a spin-diffusion bottleneck in the RFDR
cross relaxation, even for our most dilute 0.008%, Li®
sample, implies that the full RFDR sensitivity en-
hancement for rare-species detection extends to much
more dilute rare-species concentrations than previously
anticipated.
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