
SELF—INDUCED TRANSPARENCY

argue that the curves (for SIT and saturation) are
displaced by a significant amount, however, this dis-
placement is meaningful only if the dipole moment p is
known. A measurement of the amplitude of the peak of
the power spectrum can be used as a direct verification
of the area theorem. ' The spectrum would also help to

show whether the carrier could be properly described as
a monochromatic wave, or whether there were fast
frequency changes present.
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A. Szoke.
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This paper resports our study of Hartmann and Hahn's technique of rotating-frame nuclear double
resonance (RFDR). We consider the Lie—Lir system in LiF and obtain the cross-relaxation dynamics
from the Li' free-induction-decay data via a general expression which we derive. We find that the
presence of F" spins, which constitute a third species interacting strongly with the Li systems in LiF,
may easily be taken into account, and that the resulting RFDR behavior does not differ qualitatively
from that in a simple two-species system. The cross-relaxation time dependence is well described by an
exponential or sum of exponentials for times longer than the order of Tq, with nonexponential behavior
for shorter times. The cross-relaxation rate 8'cR exhibits a Lorentzian dependence on the magnitude of the
Li rf field, H&6, for the case where the Li' system has been adiabatically demagnetized in the rotating
frame; these results show that the Gaussian behavior previously assumed is incorrect. For the case where
the Li' rf tmld is of the order of the local field, Won(Hie) is asymmetric about Hahn's double resonance
(DR) condition, with the larger Won corresponding to Hie less than for the DR condition. The cross-
relaxation times at the DR condition are on the order of 0.4 msec. We observe no spin-diftusion bottleneck
in a sample of LiF with an isotopic abundance of 0.008% Li . Finally, we draw some general conclusions
about the application of RFDR to other problems.

I. INTRODUCTION

"UCLEAR double resonance in the rotating frame
(RFDR) was first suggested as an ultrahigh-

sensitivity NMR technique in $960 by Hartmann and
Hahn. ' The classic analyses of the method have been
given by Hartmann and Hahn' (hereafter referred to as
HH) using the general density matrix techniques, and
by Lurie and Slichter' (hereafter referred to as LS)
using a thermodynamic treatment. Several groups have
used variations of this technique to obtain NMR and
NQR spectra of rare isotopes or impurities in solids. ' '4
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The work reported here is primarily an experimental
study of the RFDR method itself rather than an
application of the method to obtain high-sensitivity
spectra of a particular solid.

The reader is referred to the excellent descriptions of
the general technique given in HH and LS. In Sec. II,
we will review these basic ideas principally as a means
of introducing our notation.

We consider two nuclear-spin systems with strong
resonant rf Gelds applied to each. The proper way to
describe such a system is in a double rotating-frame
representation. " In this representation, each of the
two spin species can be made to sense a different
"effective Geld, " and thus the effective Zeeman split-
tings of the two species can be made equal, thereby
allowing rapid cross relaxation. This condition of equal
e6ective field splittings is called the double resonance
(DR) or Hahn condition.

The standard method of high-sensitivity spectroscopy
is then as follows. The rare-species resonance system is
modulated in such a way as to pump energy into the
rare-spin effective Zeeman levels. This pumped energy
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then leaks into the abundant system via cross relaxation
at the DR condition and reduces the order of the
abundant system. This reduction of order can easily be
detected as a reduction of abundant spin magnetization.
In what follows, we will refer to the former system as
the pumped system and the latter as the detected
system. Thus, the spectrum of the pumped system is
normally obtained by observing the loss in order of the
detected system for various values of the rf frequency
applied to the pumped system.

This paper is primarily concerned with a study of the
dynamics of the cross relaxation between the pumped
and detected systems. The main results of our work are
measurements of the time dependence of the Li'—Li'
cross relaxation in LiF for various crystal orientations
and for varying degrees of departure from the DR
condition.

We should emphasize, however, that when we speak
of I.i'—Li~ cross relaxation for the three-species LiF
system, we actually mean the total cross relaxation
between the Li' Zeeman energy reservoir and all the
other parts of the system with which it can cross-relax,
i.e., the Li Zeeman reservoir and the total dipole-dipole
reservoir. Thus the cross-relaxation rates which we

measure cannot be unambiguously attributed to any
particular one of the many cross-relaxation routes of
this system. Nevertheless, the rates and functional
dependences which are obtained by this approach give
the essential behavior of the system and are helpful in

understanding how RFDR may best be applied to other
problems.

In Sec. II, we erst define a general system and develop
the expression necessary to obtain the cross-relaxation
behavior from the measured free-induction-decay data;
then we apply this approach to the particular case of

Li —Li~ RFDR in LiF. Section III outlines the experi-
mental apparatus and procedure. The experimental
data are presented and discussed in Sec. IV. Finally,
we give a summary and our conclusions in Sec. V.

where the various terms are defined as follows:
The pumped-spin Zeeman term after the nth I80'

phase shift is

Xzp(n) = ( 1) "ppAI—,PII,p, (3)

where p& is the gyromagnetic ratio of the pumped
spins, I,~ is the x component of the total spin operator
of the pumped spins, and II~I is the magnitude of the
Larmor component of the rf applied at the resonant
frequency of the pumped spins.

The detected-spin Zeeman term Kza is independent
of phase shifts in the pumped-spin rf and thus, for all n,
is given by

~~ZD pD hIx II1D )

where all terms are the obvious analogs of those defined
above for the pumped system.

The secular dipole term is given by

Xg' ——P (Xg'); (Sa)

where

(Xd');, =p,y, n' P (1—3 cos'Hq~)

X~ ai 'I,~'I;e, i@j (3&)

(Xd');, =-',y, 2O' Q (1—3 cos'OI, ))

X~I r'(31.A, 'I.i' —4' &i'). (5c)

respectively, and co& and co& are the angular frequencies
of the rf applied at or near the resonant frequencies,
Mpg and Qpo~, of the pumped and detected spins, respec-
tively. When co&=-coo& and coD=cooD, the secular part of
the rotating-frame Hamiltonian following the nth 180'
phase shift of the pumped system rf may be written as

Xzp(n)+Xzo+Xs +Xza+X '
i tt,', (2)

II. THEORY

A. General Case

In this section, we will derive an expression relating
the loss of spin order of the detected system to the
dynamics of the cross relaxation. The type of rf modula-

tion applied to the pumped system in our work. is that
of periodic 180' phase shifts as used by HH. The on-off

modulation used by LS is then a special case of our

result.
We consider the system in the double rotating-frame

representation. The unitary operator which gives this
transformation for H() in the s direction is

U=—exp(iI. pcs p/+i' cvgpl),

where I, and I, are the s components of the total
spin operators for the pumped and detected spins,

In the above sums, the indices i and j run over all the
different types of spins, e.g., in LiF we consider the P
spins (Li'), the D spins (Li~), and also the F" spins;
the 0 and / indices refer to different lattice positions for
each type of spin.

The fourth term in Eq. (2), Xzg, refers to all other
Zeeman terms in the transformed Hamiltonian, e.g.,F"Zeeman levels in LiF. Except in very special cases,
which we will not consider, these terms correspond to
energy-level differences that are much greater than
those of the Grst three terms in K„; thus these other
Zeeman terms will not signi6cantly exchange energy
with the first three and, consequently, may be ignored
for the purpose of our cross-relaxation calculation. On
the other hand, the 3.'q terms corresponding to these
other spins can be efIectively coupled to the P and D
spin systems and, consequently, cannot be neglected in
the cross-relaxation process.
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where

aIld

f(t) = tt Ep(n, t)/AEP(n, 0),

DEP(n, t) =Ep(n, t) Ep(n, ~)—
(8)

(9)

Ep(n, t) =Tr[ti(n, t)xzp(n)7. (10)

Since we are considering energy transfer only within
the isolated system described by K„', we also have

f(t) = AEi)(n, t)/AE11(n, 0), (11)

Because most of our experiments are performed in a
time small compared with the rotating frame I'~, we
also make the assumption that spin-lattice relaxation
is negligible; we will show in Sec. IV, however, that this
theory is easily extended to cases where spin-lattice
relaxation is not negligible, provided the characteristic
time of the cross relaxation is much shorter than the
rotating frame T&. Thus, in the following analysis, we
consider an isolated system whose Hamiltonian is

X„'=Xzp(n)+Xzii+Xa'.

At time t following the nth phase shift this system is
described by the density matrix p(n, t). U there were no
more phase shifts after the nth, the system would attain
rotating-frame equilibrium at t= ~ and, thus,

p(n, ~)=exp( —X„'P )[Tr exp( —X„'P„)7 ', (7)

where X„'is given by Eq. (6) and (kP„) ' is the corre-
sponding rotating-frame equilibrium temperature. The
time dependence of the approach to rotating-frame
equilibrium is what we mean by the time dependence
of the cross relaxation. Thus, if DE„(n,t) is the difference
between the energy of the pumped system at time t after
the nth phase shift and the equilibrium energy of the
pumped system as described by P„ in Eq. (7), we can
define a cross-relaxation function f(t) by

We have also implicitly assumed in the definition of

f(t) that f is independent, of n T. his gives a simple result
for the final relation but need not always be the case,
for example, if the cross-relaxation process is limited by
spin diffusion. However, as we will show later, it is
possible to determine experimentally the extent of the
n dependence of f and thus to determine whether or not
the measured f(r) gives the detailed cross-relaxation
dynamics as assumed in this theory [f(r) independent
of n7 or some sort of average cross-relaxation behavior
[a, case where f(r) depends on n7.

We can now relate the cross-relaxation dynamics to
the loss of detected-system order, which is the experi-
mentally measured quantity. We want to obtain first an
expression for Erp(n, r)/E~(n 1, r), w—hich requires
that we relate the energies EI and E~ just after a 180'
phase shift to their values just before the phase shift.
Since the phase shifts are applied only to the pumped-
spin rf, they affect only the Zeeman energy of these
spins. Thus, we have

ED(n, 0) = Eii(n —1, r)
and

E (n, O)= —.E,(n —1, r),
where —1(~(I and r is the time between 180' phase
shifts. The constant « is used in Eq. (16) to account for
the actual nonideal pumped-system phase shifts. I"'or

ideal instantaneous 180' phase shifts, «=+1; whereas,
in the limit of completely adiabatic j.80' phase shifts,
~= —I, i.e., no net energy is pumped into the system.
Thus, I~: is a number which relates only to a particular
experimental situation and has no universal significance;
as will be shown later, ~ can be determined
experimentally.

The relative heat capacity of the pumped spins e is
defined by

where

and
AEn(n, t) =ED)(n, t) —Ei)(n, ~)

Er1(n, t) =Tr[p(n, t)x117.

(12)

(13)

Cp+1p [CpIIip +CD(+1& +&r')7 ' (17)

where the Curie constant for the pumped spins Cg is

Cp yp'k, 'Ip(Ip+1—)—N p/3k,

It is important to realize that we delne K~ to include
all the dipolar energies as well as the 3Cza term in
Eq. (6), that is,

(14)Xa=Xzr1+Xa',

so that Eqs. (11) and (8) together guarantee that the
total energy corresponding to K„' is conserved between
phase shifts.

Recall that, in order to define f(t), we conceptually
interrupted the phase-shift sequence and allowed the
system to equilibrate after the nth phase shift. In the
actual experiment, of course, the system only evolves
for a time r, the constant time between phase shifts.
Thus, we are using the equilibrium condition at t= ~
only to normalize f(r); we do not assume equilibrium
for all values of v..

in which k is Boltzmann's constant, II is the total spin
quantum number, and X~ is the number of pumped
spins per unit volume; by substituting the subscript D
in place of I' in Eq. (18) one obtains the expression
for C11. The local field Hz, used in Eq. (18) is defined by

—CDBz'P„k= Tr[p(n, ~)Xg'7. (19)

I'or systems of interest for RFDR applications e(&1, in
which case it is possible algebraically to solve" the
relations given by Eqs. (7)—(16) in the high-temperature
limit. To 6rst order in e and for n&)1, we obtain

ED(n, r)/Er (n 1,r)—
—exp f —e(1+«)[I—f(r)7[1+«f(r)7 '}. (20)

'~ D. V. Lang, thesis, University of Wisconsin (unpublished' ).



D. V. LANG AND P. R. MORAN

%e would like an expression for the loss in order of
the detected system following a RFDR sequence of lV

pumped-spin rf 180' phase shifts each separated by a
constant time 7. The experimentally measured quantity
is the amplitude of the free-induction decay of the
detected spins after Hz~ is pulsed oG. This is propor-
tional to 3IIdi(E, r), the detected spin magnetization
along H~D in the rotating frame after such a RFDR
sequence, and we take the ratio MD(X, r)/Mii(O, r) to
be a measure of the loss of detected spin order.

Yo relate the above magnetization ratio to the energy
ratio in Eq. (20), we note first that, when Ã))1,

Eli(X,r)/E~(O, r) = LED(n, r)/En(n —1, r)]+, (21)

and if the detected system is allowed a few tenths of
a msec to come to local equilibrium after the Sth phase
shift, then we have

Mi)(E)r)/3lD(0, r) = Eii(N)r)/ED(0)r) . (22)

Thus, by Eqs. (20)—(22), we obtain our final result

Mg) PV, r)/Mi)(0, r)
=exp( —~'e(1+~)L1—f(r) jC1+«f(r)j ') (23)

This expression reduces to that given in LS if ~=0
and f(r) = 0, because « = 0 corresponds to the on-off

pumped-spin modulation used by LS, and f= 0 corre-
sponds to attaining complete equilibrium during each
spin-mixing pulse as assumed by LS.

Dipolor

L' L'

In order to determine how well Eq. (23) approximates
the exact behavior of our model, we have calculated
3I&(1V,r) versus E for different values of e, «, and f by
numerical iteration of Eqs. (7)—(16) with a digital
computer. A detailed discussion of the comparison
between the exact numerical results and the approxi-
mate solution of Eq. (23) is given elsewhere, "but the
results important to the work reported here can be
summarized easily. The discrepancies between the exact
model calculations and the approximate expression of
Eq. (23) are a maximum for f(r)=0, corresponding to
complete cross relaxation. within one heating pulse, and
for «=+1. For these worst possible conditions, the
fractional differences are never greater than e and, as
f(r) approaches 1, they rapidly approach zero. The
situation, however, is even better than these error
magnitudes indicate because the incremental slope of
the exact solution is at first smaller and then greater
than the approximate solution slope. That is, the exact
computed solution and the approximate solution given
in Eq. (23) always become equal to one another for some
value of E and, for e less than about 0.1, this occurs
f' or X within one pulse of the (1/e) points of the curves.
Thus, for example, even with e=0.1 and f(r) =0, the
discrepancy between the exact logarithmic slope
averaged to the (1/e) point and the approximate slope
obtained from Eq. (23) is much less than 1%%ue. Conse-
quently, the errors introduced by using the approximate
form given in Eq. (23) are, for the range of e obtained
in the experiments reported here, typically much smaller
than the noise errors involved in the experimental
measurements.

B. Case of LiF

r Dipo

i Li

In the experiments reported here, we study the RFDR
process in LiF where the pumped spins are Li' and the
detected spins are Li'. For this case, the terms in Eq. (6)
for X„' are given by

or

Li -F
Oipo

Li -F
Kzp(n) = Xzn(n) = (—1)"yekI %'i6,

KgD=Kzg= —yphI, Hgg,

and

(24)

(25)

Dipolar

F-F

LATTICE

FrG. 1. Schematic representation of rotating-frame sub-
Hamiltonian which governs the Li6-Li' cross relaxation.

Xd' ——(Xd')77+ (Xd') 7P+ (Xd') P P

+ (~d )76+ (~d )P6+ (~d )66 (26)

where the terms in Kd' are given by Eqs. (5a) and (Sb)
with Li~, Li', and F" denoted by 7, 6, and Ii, respec-
tively. This system is shown schematically in Fig. 1;
the dipole terms of Eq. (26) are represented by squares
and the Zeeman terms of Eqs. (24) and (25) are repre-
sented by the circles. The detected system consists of
those terms enclosed by the dashed lines. Terms that
can exchange energy are connected by arrows, indicating
possible paths of energy Qow. Note that the F Zeeman
term is decoupled from the system as explained in Sec. I.
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The weak spin-lattice interaction is indicated by the
dashed arrows labeled T»p and Tpp'.

To calculate Hr, from Eq. (19) for LiF, we consider
only the erst three terms of Xz' given in Eq. (26), since
the others are negligibly small for the low concentra-
tions of Li used in our samples. Explicit evaluation, as
given in LS, of Eq. (19) yields

Hr.2= (62H—)77+ (A~H)7 p

+ ,'fy p'N ~I-F(Ip+1)/y72N7I, (I7+1))(6'H)p p, (27)

Field

Pulser

Pulse
Sequence
Control

Probe

Li' Gated
Transmitter Oscillator
arid
Phase Shifter

where (6 H);; is the contribution (in G) of the j spins
to the second moment of the i-spin resonance line. Using
this definition of Hl, , we find that Hl. '= 8.20, 15.4, and
37.0 G' for Ho along the $111), L110), and L100)
directions, respectively, in LiF, these fields referring,
as indicated in Eq. (19), to the detected spin Li nuclei,
which have I=—'„a gyromagnetic ratio of 1.655 kHz/G,
and a natural isotopic abundance of 92.57%. The Li'
nuclei have a gyromagnetic ratio of 0.627 kHz/G, I= 1,
and a natural isotopic abundance of 7.43%, while F"
is 100% abundant with a gyromagnetic ratio of 4.006
kHz/G and spin —,'.

III. EXPERIMENTAL APPARATUS
AND PROCEDURE

A block diagram of the apparatus is shown in Fig. 2.
All data were taken at room temperature with a sample
probe of standard crossed-coil geometry very similar to
that described in LS. All crystal samples were about
i-cm cubes; the powder sample was hand tamped into
a tube of about 1 cm diameter. The optical grade LiF
single crystals with normal Li' abundance (7.43%) were
obtained from the Harshaw Chemical Co. Some of these
crystals were irradiated with Cs p-rays to give an
F-center concentration of about 6&10" crn '. This
irradiation lowered the spin-lattice relaxation times to
T»=3 min in the lab frame and T»p =4 sec in the
rotating frame, with the typical orientation dependence
of paramagnetic relaxation. " The LiF powder was
commercial reagent grade with T»=1.4 sec and T»p=0.8
sec. A single crystal of LiF with 80-ppm Li was obtained
from the Oak Ridge National Laboratory. This sample
had T»=2 h and T»p=4 min, independent of orientation
within about 10%.

The field-regulated Magnion 12" magnet was set at
8823 G, giving the resonance frequencies of Li~ and Li'
at 14.607 and 5.5305 MHz, respectively. The Li7 elec-
tronics system uses the superhetrodyne principle with
most amplification and phd -sensitive detection per-
formed at ai. intermediate frequency of 3.20 MHz. The
duration of the P»6 phase shifts was between 5 and
10 psec, depending on the tuning of the Li rf trans-
mitter. The magnitudes of H»7 and H»6 were measured
by observing the respective rf voltages on an oscillo-

"E.R. Andrew, K. M. Swanson, and B. R. Williams, Proc.
Phys. Soc. (London) 77, 36 (196I)."J.R. Franz and C. P. Slichter, Phys. Rev. 148, 287 (1966).
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Reciever

1i
Li'
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Phase
Sensitive
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Li

Oscillator

Gated
Integrator

F»G. 2. Block diagram of the RFDR apparatus.

scope; these voltages were calibrated by rotary satura-
tion experiments' on the F" resonance in a BaFq
crystal. This allows us to set H»6 and H»7 to within
abou~ 3%.

The ordered state of the detected system prior to the
RFDR sequence was prepared by polarizing the Li~
spins for a time on the order of T» and then tipping the
Li~ magnetization into the rotating frame along B» by
the field-pulse method of LS. This condition is corn-
monly referred to as being spin-locked in the rotating
frame. For some data, H»7 was further reduced nearly
to zero after the spin-locking sequence; this is called
adiabatic demagnetization in the rotating frame
(ADRF). After ADRF, the ordered state is purely
dipolar, and the cross relaxation is between Kzg(n)
and 3'.~'. In the ADRF case, the order of the detected
system is measured following the RFDR sequence by
adiabatically increasing H» again to convert part of
the dipolar order back into Zeeman order, and then
observing the Li' magnetization.

In these experiments we must set the Li polarization
time between successive RFDR sequences, the delays
between the start of the spin-locking field pulse, the
B»7 rf pulse, the B»6 rf pulse, the boxcar integrator
gates, the oscilloscope trigger, and the ADRF sequence
(when used). In addition, we must vary independently
the shape and length of the spin-locking field pulse, the
length of the H» rf pulse, the speed and length of the
ADRF sequence, and the B&6 parameters r and E.
These operations are performed in a simple and direct
manner by the pulse sequence control, a hybrid system
of Tektronix 160 Series pulse generators driving a
programmable unit of our own design made with various
digital-logic integrated circuits.
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The boxcar integrator was used mainly for con-
venience in recording the single-crystal data. The rela-
tively long T& s limited data acquisition to about two
readings per point, with the exception of the important
Mr(0, r) points where we took about ten readings. The
SjN ratio was no less than 10 in the worst case, so no
effort was made to average more data.

IV. EXPERIMENTAL RESULTS

A. Method of Analysis

The main purpose of this work is to determine experi-
mentally the dynamics of the Li'—Liv RFDR cross
relaxation in LiF. The raw data which we obtain (FID
amplitudes) are proportional to the Li' spin-locked
magnetization; we use Eq. (23) to extract f(r) from
these data, for which we have always set co6 = cop6 and
(p7 —Mpr as assumed in the derivation of Eq. (23). We
also neglected spin-lattice relaxation in deriving
Eq. (23); this is certainly valid for cases in which

Er&&T/p If Er T~„on the other hand, then the
system described by Eq. (6) loses significant energy to
the lattice during the RFDR sequence. However, if the
cross relaxation proceeds much faster than the spin-
lattice relaxation, the system of Eq. (6) loses energy
uniformly at a rate determined by the sample average
of T», and our theory is still valid if we interpret
Eq. (23) as giving the fractional magnetization loss due
only to RFDR. Thus, we measure Mz(0, r) with the
same spin-locking time, i.e., length of the H ~7 pulse, as
is used for the set of M7(N, r) data which are to be
divided by M&(0, r) in Eq. (23).

In general we use the E and g dependence of a set,

of Lir FID data to obtain a particular f(r). Thus we
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Fro. 4. Log%'r(X, r) versus 2E; r =3.2 msec, H&r =2.6 G,
Hrp=6. 9 G (the DR condition), 7.43%%up Li . The solid, dotted, and
dashed lines are calculated from Kq. (23) assuming a = 1 and
f(r) =0. These lines and the data directly above them correspond
to Hp along I-100j, [110j,and 1-111),respectively. The error bars
on the lines represent the uncertainty in calculating e from
Eq. (17).

have f(r) as a function of Htp, Hrr, orientation, and Lis
concentration. We have chosen to make II~6 the prime
variable of these four, and thus will give our final results
in terms of f(r) versus JIM for various values of the
other three parameters.

We now outline how f(r) is obtained from a typical
set of raw data. Figures 3 and 4 show such data for a
crystal of LiF with a natural abundance of Li'. In
Fig. 3 we have plotted M7(Np, r), i.e., the RDFR Li
signal for a fixed Ã as a function of r. We first examine
the M7(sVp, r) data to determine how large r must be to
ensure complete cross relaxation between phase shifts;
this corresponds to being in the Qat portion of the curve.
According to the definition of f(r) in Eq. (8), complete
cross relaxation corresponds to f= 0, so when r is set
to ensure this condition, Eq. (23) becomes simply

M&(1V, r -+~ )/M&(0, r) = expt. —Ne(1+K)1. (28)

I- 8—
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7—I-
CQ
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O
I-
N
1-
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Li -Li MIXING TIME ( msec)

3.0

FIG. 3. Log&&QV, r) versus r;%=25, FI&7=2.6 G, FIts=6.9 G
(the DR condition), L111jalong FIp, 7.43%%up Li'

The data presented in Fig. 4 were taken for long fixed 7-,

but for variable N, and these Mr(1V, ~ ) data obey
Eq. (28). Thus we can easily obtain e(1+K) from the
slope of logM7(N, ~) versus N as in Fig. 4. For our
experiments where the Li' isotopic concentrations are
known, e can be calculated from Eq. (17), so the
M7(1V, ~ ) data give an experimental determination of K.

By changing the phase-shift characteristics of the Li
transmitter, we can easily cause ~ to vary from 03 to
0.9. This large departure of a from I.0 is due to the
strong local fields in LiF, which cause a substantial
fraction of the Li' magnetization to be lost during the
phase shift; by changing the crystal orientation so that
III goes from 3 G to 6 6, we change ~ from 0.8 to 0.5.
A determination of ~ thus constitutes an apparatus
calibration for a particular tuning of the Li' rf trans-
mitter and a particular crystal orientation. For our
operating conditions, the character of the phase shifts,
and thus ~, is independent of cV and g. One can also,



ROTATING —I RAM E DOUBLE RESONANCE lN LiI'

IOO
—0.4

I.O
0.8
0.6

O

O 0.4

Li

0.2
O
Q

O. l

tIj 0.08
0.06

I

~ I~

0

ll
-0.2

-O.I

-0.08
-0,06

I.O
0.8
0.6

02

of course, determine the Li' concentration by measuring
e(1+Ip) in a sample of unknown isotopic abundance,
provided ~ has been previously determined from a
sample of known concentration under the same
conditions.

Once Ip is known, we can apply Eq. (23) to the
M7(1Vp, p) data in Fig. 3 to determine f(r). Figure 5
shows typical f(r) results corresponding to data taken
under the same conditions as for Figs. 3 and 4.

At this point, we should examine further the assump-
tion made earlier that f(r) is independent of n,.The data
presented in Fig. 6 show 3f7(E,p) versus S for values
of r ranging from 0.1 msec to times long enough for
essentially complete cross relaxation. For all these
values of r, one sees that, within experimental accuracy,
the data exhibit an exponential dependence on E. We
take these results to be an indication of the validity of
our assumption for the specihc systems reported here.

Note, however, that the [111$data in Fig. 4 show

very faint, but reproducible, oscillations as a function
of Ã. We have not yet been able to determine whether
this is a real, but weak, n dependence of f or some
systematic error. At any rate, the e8ect is weak enough
to be neglected for the present purposes of obtaining
(r).

B. Behavior of Cross Relaxation

The time dependence of the cross relaxation, as given
by f(r) in Fig. 5, is well described by an exponential
with a "roll-off" at small r. As experimental parameters
a,re changed, the characteristic times involved in f(r)

0 O. l 0.2 03 0.4 Q5 0.6 0.7 0.8 0.9 I.O
,s,T

Li —Li MIXING TIME, ~ (msec)

Fro. 5. Logf(r) versus r for Hp along L100], (110],and (111];
H&r= 2.6 G, Htp= 6.9 6 (the DR condition), 7.43% Li'. The solid
lines indicate the exponential dependence of the data.
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change, but under wide variations of experimental
conditions the basically exponential character remains.
The small r roll-off was anticipated theoretically by
Redfield, 4 and can be attributed to the cosinusoidal
time variation of coherent energy exchange between
pumped and detected systems for r&T&. The cross
relaxation is thus characterized by an initial second-
order time variation with the incoherent exponential
behavior beginning to emerge after 7 T~.

Since all measured. f(r) show the same general ex-
ponential behavior, we describe each by its character-
istic cross-relaxation time rg~ or cross-relaxation rate,
W'ca ——(1/Ton), and we obtain boa from the slope of
the best fit to log f(r) versus r as shown in Fig. 5. Note
that the tV«values in Fig. 5 vary only from 2.6 to 3.2
msec ', whereas Hl. ' varies from 8.2 to 37 G' as the
orientation changes from [111j, through [110],
to [100j.

Figure 7 shows Wort versus Hrs, the lower curve is
for the ADRF case (Hrv=0) with [111$parallel to Hp,
the orientation of smallest experimental error. Our
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measurements for the L110j and (100j orientations
show, within experimental accuracy, the same shape as
that in Fig. 7 for the P11$ case. Just as for the results
shown in Fig. 5, the magnitude of 8'~R increases over
the L111j values an average of about 15% and 30%
for the t 110) and L100j directions, respectively. The
relative insensitivity to crystalline orientation appears
typical of the LiF system and allows us, at least for
semiquantitative purposes, to compare single-crystal
and powdered sample results. The upper curve in Fig. 7
shows primarily powdered sample results for the case
where H»=2. 8 6; we observe here that 8'ca is very
asymmetric about the DR condition, with 8'«actually
growing larger as H&6 approaches zero. H the only
mechanism of cross relaxation were mutual Li6—Li~

spin Qips along H&6 and H&7, respectively, then one
would expect H/'(:~ to decrease on the low side as well
as the high side of the DR field indicated by the arrow
in Fig. 7. In the case where HII 0 (ADRF), we observe
that 8'~R has the long wings characteristic of a
Lorentzian or exponential dependence on H~6. This
behavior is more evident when one plots the ADRF
data as TC,R versus H&6' as is shown in Fig. 8; the good
straight line fit for data well into the tails of Won(HIs)
leaves little doubt about the quasi-Lorentzian shape in
contrast to the assumption always made previously' ' "
that Won(HIs) should be approximately Gaussian.

We have attempted to find semiquantitative inter-
pretations of the behavior of Won(HIs), but have been
quite unsuccessful. It is clear, however, that the magni-
tude of 5'~g near its maximum can be predicted within
a factor of 2 by the treatments of HH or LS, whereas
the H~6 dependence does not conform at all to theoretical
predictions such as given, for example, in the ADRF
case by Slusher and Hahn. " Qualitatively, however,
certain features of the RFDR behavior suggest that the
cross relaxation in LiF is a two-channel process. Re-
ferring to the schematic representation in Fig. 1, we
note that the Li' nuclei communicate with the full
detected-system energy reservoir via the Li'—F dipolar
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3I7(N, r)/1II7 (0,r)~exp( —Te/ron), (29)

interactions as well as the Li'—Li interactions. We
therefore expect Won(HIs) to be the sum of two lines:
the first, due to the Li'—F path, connects to the fIuorine
dipolar energy reservoir and would be centered at
B~6=0, whereas the second part of H/~H, is due to the
Li —Li7 path and is centered at the DR position. In
Fig. 7 for the ADRF case, both contributions are
centered at H&6= 0 to produce a relatively narrow shape
for 8'~~, but when H~7= 2.8 6 the two components are
displaced from one another; we think this e6ect is the
cause of the pronounced asymmetry with respect to the
DR field value which was noted above for the case when
H ]7 2.8 6. Vnf ortunately, our present detected-spin
transmitter cannot maintain a sufFiciently large H&7 to
confirm this speculation by allowing a distinct resolution
of the two components of 8'm.

Many factors probably contribute to the quasi-
I orentzian shape of 8'|:R versus H~6 for the ADRF
experiments; for example, one can show that higher-
order multiple spin-fIip processes play a more important
role as H&6 increases, and the relatively large contribu-
tions of the F" spins to the Li local fields tends to
relate the cross-relaxation line shape to those single-
resonance situations where a quasi-Lorentzian line
shape can be caused by the presence of a second nuclear
species. "The presence of the long tails of Won(HIs)
explains another interesting aspect of RFDR behavior,
which is shown for the ADRF case in Fig. 9. These data
show a very broad minimum of 3EI7 as a function of H&6,
a result first reported for Li metal in LS. To exhibit the
source of this behavior, we consider Eq. (23) with the
approximation f(r) = exp( —r/r )cato obtain, for
r/rca«1,

I

40 80
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s '
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where T=1Vr. Equation (29) serves to illustrate the
essential role of e/ron as the RFDR 1III destruction
rate; according to the IIIs' dependence of e in Eq. (17)

FIG. 8. roR versus H~6', H&7 =0 (ADRF), $1111 along Ho, 7.43 jo
Li'. The circle is for 0.008% Li' under the same conditions.

"A. Abragam, The Princip/es of nuclear Magnetics (Oxford
University Press, London, 1961), Chap. IV, Sec. III,
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and ron in Fig. 8, e/rca should be nearly constant over
a wide range of H~6 to give the broad minimum in Mq
shown in Fig. 9. For the purpose of rough comparison,
a Gaussian Won(Hts) with a characteristic breadth
corresponding to the Li' local-Geld frequencies does fit
the data of Fig. 9 reasonably well out to H&6'=50 G',
but for larger H&6, 3f7 returns rapidly to its initial value,
showing less than a 20% destruction at Htss= 150 G'
and less than 3% for Hts' ——300 G'. Further analysis of
the data of Fig. 9 shows that, for H~6' greater than
150 G', the wings of Wca(Hts) fall off somewhat more
sharply than those of a Lorentzian, but not as sharply
as those of an exponential function.

The important parameter for optimizing the RFDR
signal is e/rort also in experiments where Ht7&0. This
is illustrated in Fig. 10, where the increase of e is the
dominant H~6 dependence up to about 15 G, and the Li~

destruction rate is greatest, in this case, for H~6 set at
about twice the DR condition. Since these experiments
show that Wca(Hts) is not described by a simple line-

shape function, at least for H~7/0, one cannot derive a
general expression for the optimum setting of H~6, on
the other hand, the broad wings which appear to be
characteristic of the cross-relaxation line shape tend to
make the optimum setting occur over a very wide
range of Hg6.

C. Case of Very Rare Li'

To determine whether the cross-relaxation character-
istics depended on Li' concentration, we measured f(r)

for the Oak Ridge National Laboratory LiF sample
which had a specified isotopic abundance of 0.008% Li .
In this case, we can use RFDR to determine inde-
pendently the Li' concentration in the very dilute Li'
sample since we know f(: from the natural-crystal data.
Our measurements of e(1+jr) yield a Li' concentration
of (0.010+0.001)%', this is in reasonably good agree-
ment with the value specified by ORNL and verifies
that any discrepancies between experimental results
and theoretical predictions cannot be attributed to
gross errors in the assumed Li' concentration.

Figure 11 shows f(r) for both the 0.008% Li' sample
and the sample with natural isotopic abundance of
7.43%; all other conditions were the same. One can see
from these results that, within the experimental un-
certainties, the cross-relaxation dynamics are the same
for these two concentrations of pumped spins, and one
cannot observe a spin-diffusion bottleneck of the RFDR
process even in the very rare Li' sample. Using the
theoretical treatment of cross-relaxation dynamics
proposed by Slusher and Hahn" and the measured
properties of our LiF samples corresponding to the
experimental conditions of Fig. 11, we have calculated
the behavior predicted for the 0.008%%uo Li' case. The
calculated f(r) is indicated in Fig. 11 by the dotted
curve which exhibits a spin-diffusion-limited initial
logarithmic slope somewhat less than half that for the
7.4% natural abundance sample. This diffusion-limited
slope continues out until 7~4 msec before starting
slowly to recover toward the nonlimited value; this
predicted behavior is well outside the experimental
errors of the results presented in Fig. 11.
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We have, consequently, reexamined theoretically the
role of spin diffusion in the cross-relaxation process
using a different approach than that of Slusher and
Hahn. We will present our detailed analysis in a sub-
sequent publication, but our preliminary results show
clearly than one should not expect to observe spin-
diRusion limitation effects in the system we have
studied. It appears that the observable results predicted
by the Slusher and Hahn approach arise primarily
because the approximations employed give a greatly
exaggerated spin heating close to the pumped-spin site
as the pumped-spin concentration becomes small.

V. SUMMARY AND CONCLUSIONS

Ke have observed the dynamics of the cross relaxa-
tion between Li' and Li in LiF for RFDR. There are
four main areas in which we may draw some conclusions.

The first and most obvious conclusion is that the cross
relaxation as defined by f(r) in Eq. (8) proceeds
exponentially for times longer than the order of T&. For
short times, on the order of T~, we observe a non-
exponential roll-off. Such a roll-off ought to be expected
and was erst predicted by Redtield. 4

Secondly, we have found that the cross-relaxation
rate kVga, , for the case in which the Li' spins have been
adiabatically demagnetized in the rotating frame has a
quasi-Lorentzian dependence on H~6. This behavior
extends well into the tails of a Lorentzian whose half-
width is on the order of the local 6elds in LiF. This
quasi-Lorentzian behavior of 8'&H, explains the broad
minimum in Li~ magnetization versus V~6 for the ADRF
case.

Our third set of conclusions concerns the effect on
Li —Li RFDR of the F' spins in LiF. Ke have found
that such a third species has two main effects. The first
is that the dipole-dipole interactions involving the F"
spins, as defined in Eq. (26) and shown schematically
in Fig. 1, contribute significantly to the heat capacity
of the detected system; this must be taken into account
in calculating BI. and c. We also And that the F"
Zeeman part of the total Hamiltonian plays no role in
the Li'—Li RFDR energy transfer, as ought to be
expected. The second effect of the F" spins is to open
an additional cross-relaxation path via the Li —F
dipole-dipole interaction. This two-channel process
suggests a qualitative reason for the peculiar changes
occurring in Won(Hie) when Hi7 is varied as is illus-
trated in Fig. 7.

Finally, we have looked at a LiF crystal with an
isotopic abundance of 0.008% Li' and find that the
cross-relaxation dynamics are indistinguishable from
the behavior of a natural LiF crystal with 7.43%%uz Li'.
Thus there is no detectable spin-diffusion bottleneck at
this concentration. We also have found that the RFDR
determination of Li' concentration for this sample is in
good agreement with the concentration determined by
other means.

These general conclusions have the following im-
plications for setting optimum experimental conditions
in RFDR spectroscopy. First, since f(r) is basically
exponential, one wants 7- as small as possible, but due
to the small 7 roll-o6, one wants 7 larger than about T2.
This con6rms the criteria proposed by Reweld. 4

Secondly, because of the Lorentzian behavior of
Won(Hi6), the setting of Hiq is not very critical when
the detected system is in the ADRF state, as was erst
experimentally observed by Lurie and Slichter. ' The
only consideration is that the pumped system H& be
somewhat larger than the local field. When one is not
in the ADRF state, the situation is more complicated
and is governed by the dependence of sea, on H~p., in
general, one should expect that the exact DR condition
is not necessarily the optimum setting of H~l, as shown,
for example, in Fig. 10. For LiF there seems to be a very
wide range of B~6 values which give M7 destruction
close to optimum. Concerning the presence of a third
spin species, we observe that RFDR works as expected
if one includes the effect of that third species in Hz, as
shown in Sec. II. In general, a third species decreases
the RFDR sensitivity because it tends to decrease e,
but this detrimental effect may largely be compensated
by the creation of additional cross-relaxation paths
which increase 8'~H, . Finally, that we observe no
evidence for a spin-diffusion bottleneck in the RFDR
cross relaxation, even for our most dilute 0.008 j~ Li'
sample, implies that the full RFDR sensitivity en-
hancement for rare-species detection extends to much
more dilute rare-species concentrations than previously
anticipated.
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