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Green's-Function Method for Energy Bands in Disordered Alloys.
II. Band Structure of Disordered CusAu
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A generalization of the Green's-function method (proposed by the authors in a previous paper) has been
used to determine the energy bands of disordered CuaAu. Energies have been calculated at the symmetry
points F, X, and I for a series of temperatures above the transition temperature. The crystal potentials
and the structure constants are calculated using the short-range-order parameters from the available x-ray
data. The results are discussed in terms of the available experimental information for this alloy.

I. INTRODUCTION
' 'N a previous paper' (to be referred to hereafter as I),

- a scheme was suggested for calculating the band
structure of disordered alloys. The method was applied
to o, brass, and was found to give a fairly satisfactory
description of both the conduction and the d bands.
The choice of n brass was made because of considerable
simplification in the computational aspects resulting
from the absence of the short-range order. ' The pair
correlation functions, then, become independent of the
order of the neighborhood and the structure constants
for a disordered lattice are related by simple factors to
those of a perfect lattice.

The present paper deals with an application of the
above method to a system which is well known for
exhibiting the short-range order effects. The alloy
Cu3Au is a classical example of one undergoing the
order-disorder transformation. For the perfectly ordered
state, all Au atoms are at the cube corners and Cu atoms
at the face centers of a cubic lattice. Above the critical
temperature of 390'C there is no long-range ordering
present. In this case all lattice sites may be occupied
by either Au or Cu atoms, but there is a preference in
the kind of neighbors about each atom, and this de-
parture from randomness is called the short-range order.
Both the x-ray and electron-diffraction methods have
been used to study the variation of the short-range
order with temperature in this system. ' '

Many physical properties of this alloy have been
experimentally measured both in the ordered and dis-
ordered states. The Hall coefficient was found to be
negative for the disordered alloy, but becomes positive
for the ordered phase. However, the variation of the
Hall coefficient with the short-range order was small.
Airoldi and co-workers have carried out measurements of
the magnetic susceptibility as well as the thermoelectric
power for Cu3Au as a function of the short-range order. 7
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They. conclude that the electronic structure and the
Fermi surface (if we may use the term) for CusAu in the
disordered state are quite similar to those of pure Cu.
The speci6c-heat measurements by Rayne' failed to
detect a difference in the density of states at the Fermi
surface, between the ordered and disordered state. Re-
cent and more reIIined experiments do show a variation
of 3.5% with the setting in of order. ' The soft x-ray
emission spectroscopy shows that the spectrum for this
alloy is almost identical with the spectrum of pure Cu.
Besides, there is no detectable difference between the
emission spectra from the alloy in the ordered and dis-
ordered conditions. ' The positron-annihilation experi-
ments by Dekhtyar et a/. revealed the maximum
conduction-electron momentum to be the same for the
ordered and disordered Cu3Au. " Very recently, both
the ordered and disordered Cu3Au have been studied
by the optical and photoemission techniques, and the
imaginary part of. the dielectric constant has been ob-
tained from a Kramers-Kronig analysis of the data.
The spectrum of the disordered sample was found to
be well represented by a superposition of the spectra of
the pure constituents. "

All these properties cannot be interpreted in terms
of the band structure. alone. Still, we thought it would
be interesting to investigate the dependence of the band
structure of the disordered Cu3Au, on the degree of the
short-range order. Fairly detailed calculations of the
energy bands have already been carried out for the
ordered CulAu by Gray and Brown. "They employed
the modified-plane-wave method in conjunction with the
orthogonalized-plane-wave method. The crystal po-
tential was constructed by slightly modifying the atomic
potentials of Herman and Skillman. "
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II. EVALUATION OF THE STRUCTURE
CONSTANTS

The method adopted in this calculation has been
described in detail in I, and we recount here the chief
steps, with emphasis on the calculation of the structure
constants. The energy values are given by the zeros of
the secular determinant Eq. (118)."

~
Bzz "'+x cot~Ii "bi( b„ I .

The Bl,z,
"' occur as coefBcients in the expansion of the

incomplete Greenians, defined in I. The incomplete
Greenians are given by the expression

1 exp(ilz(R —r ~)
G"'(R) = ——Q

4a. fR —r.
/

Xexp(ik r )P"'(r ), (2)

where the summation is over all lattice sites and P"'(r )
is the probability of 6nding an s'th type atom at a
position r with respect to an atom of sth type. This
probability may be calculated from the experimentally
determined short-range order parameters, as discussed
in I. In the case of a perfect lattice, all the P"'(r )
are unity, and Ham and Segall" have shown how the
Ewald procedure may be used to transform the Green's
function into a rapidly convergent sum. For a dis-
ordered crystal, the presence of P'"(r ) does not allow
us to follow such an approach. Therefore, we assume
that the short-range order extends only through a
neighborhood 0- beyond which it is significantly zero.
That is, beyond 0- the occupation probabilities are con-
stant —corresponding to the completely random occupa-
tion of the lattice sites. We call o. the order of the signifi
cant neighborhood If G(.R) denotes the complete
Greenian for the perfect lattice, we have

exp(i~~R —r t)G"'(R) =P~"'G(R) exp(ik r )
[R—r. i

XP'-'(r. )—P,-'], (3)

where Pzz'" is the limiting value of P"'(r ) in the ab-
sence of the short-range order. We may expand the
Greenians as"

1 coscR
G"'(R) = —— +p i'Dz88' j&(xR)'Jjz, (R) . (4)
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DI,"' are called the structure constants and are related
to the Bz,z,

"' of Eq. (1) by
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'5 We refer to the equations of Paper I by using the equation
numbers of that paper, but with the pre6x I."F. S. Ham and B. SegalI, Phys. Rev. 124, 1786 (1961).

and Cl,g L," are related to the Clebsch-Gordon coe%ci-
ents. We use real spherical harmonics 'Ifz(R) as defined

by Ham and Segall so that the structure constants are
real for E)0. j&(x) and n &(x) are the spherical Bessel and
Neumann functions. Making use of Eqs. (3) and (4),
we arrive at the following expression for the structure
constants.

Dz,"' Pp'——"Dz+Izi ' g' exp(ik r )$ni(xr ) ij i—(lzr )]
a&o

Xpz(r. )LP "(r.) —P~'"]. (3)

Here, the DI, without the superscript, denotes the struc-
ture constants for a perfect lattice. The summation
extends in direct space, through a neighborhood 0, and
the prime on the summation indicates that o.=0 is
excluded. In evaluating the second term on the right-
hand side, only the real part is to be retained. Thus,
Eq. (5) offers a very convenient way of calculating the
structure constants for the disordered lattice. The de-
termination of the phase shifts q~&'& is straightforward.
The eigenvalues are then obtained by evaluating the
determinant at a sequence of energies and then locating
its zero by interpolation.

III. POTENTIALS AND DETAILS
OF CALCULATION

In Sec. III of Paper I, it was shown how the averaged
crystal potential within a given type of the muon-tin
sphere may be determined by considering the overlap
from the neighboring sites. The same procedure has
been adopted here and the occupation probabilities
have been calculated from the available data on the
short-range order parameters. The potentials were con-
structed from the nonrelativistic atomic wave functions
of Cu and Au obtained by Herman and Skillman" from
the Hartree-Fock-Slater atomic calculations. The rela-
tivistic wave functions were not empolyed in view of
the fact that the band calculation itself is a nonrelati-
vistic one. The mUKn-tin radii r & were chosen to be
equal for Cu and Au, and r & was taken slightly smaller
than the radius of the inscribed sphere for the Wigner-
Seitz cell. The constant potential in the interstitial
region was taken as

I'.= s L~c-(r- )+ I'~-(r- )].
We have computed the energies for states of different

representations at the symmetry points I', X, and 1.
for the disordered Cu3Au at temperatures 405', 450',
and 550'C. Cowley's short-range order parameters' were
used for 550'C, while for the other two temperatures,
results from the more accurate measurements of Moss4
were employed. These parameters are presented in
Table I.

IV. RESULTS AND DISCUSSION

In Table II, we present the results of the calculations.
We choose r &=2.46095 a.u. In order to see how the
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TABLE I. Short-range order parameters p; for
Cu3Au employed in the present calculation.

Neighbor
i lms

Short-range order parameter
405'C 450'C 550'C

1 110
2 200
3 211
4 220
5 310
6 222
7 321
8 400

330
411

10 420

—0.218
+0,286—0.012
+0.122—0.073
+0.069—0.023
+0.067—0.028
+0.004
+0.047

—0.195
+0.215
+0.003
+0.077—0.052
+0.028—0.010
+0.036—0.015
+0.007
+0.015

0.131
+0.105
+0.026
+0.045—0.032—0.009—0.003
+0.019—0.011
+0.007
+0.007

"M. H. {ohen and V. Heine, Advan. Phys. 7, 395 (1958).
'e See, for example, F. Abeles, in Soft X-Ray Band SPectra and

the Electrorlic Structure of Metal and Materials, edited by D. J.
Fabian (Academic Press Inc. , New York, 1968), p. 191.

alteration of 0- affects the results, we performed calcu-
lations for 0.=6 as well as o-=10. Except for F2~ and
F» states (which changed by as much as 0.06 Ry), the
change was not more than 0.004 Ry. The satisfactory
convergence shows that the approximation involved in
calculating the partial Greenians is not bad. Although
the scheme adopted for the present calculations does
take account of the short-range correlations, it is still a
simplified treatment of a real disordered alloy. It was
therefore felt that a very detailed calculation of the
energy bands is not merited at this stage. Even with the
limited calculation reported here it is possible to have
an idea of the distortion of the Fermi surface, in the
manner suggested by Cohen and Heine. '7 The results
indicate only slight variation in the energy levels with
temperature. The fact that the shifts with temperature
in some of these levels are not regular is a bit unsatis-
factory, and may be ascribed to the different sources
of the short-range order parameters employed in the
calculation.

We have not attempted a detailed comparison with
the experimental data referred to in Sec. I. This is due
to the fact that even for the pure noble metals, the
assignment of definite transitions to the absorption
peaks is still a matter of controversy. "If we make the

TABLE II. Energy values at the symmetry points F, X, and L
for the disordered Cu3Au as a function of the temperature. All
the energies are in Ry, and relative to the muon-tin zero, U,= —1.1358. 0. denotes the order of the significant neighborhood,

405'C 405'C 450'C 450'C 550'C 550'C
0.=6 0 =10 0 =6 0-=10 0.=6 0-=10

~1
p2gr

~12
L11(lower)
Ln (higher)
1.2'

L31(lower)
L32 (higher)
X11(lower)
X12(higher)
X2
X3
X4.
X5

0.0041
0.5581
0.6009
0.4952
0.9938
0.5539
0.6023
0.6668
0.5013
1.1847
0.6548
0.5574
0.7753
0.6649

0.0042
0.6114
0.6410
0.4933
0.9906
0.5573
0.6016
0.6670
0.5017
1.1857
0.6542
0.5570
0.7693
0.6684

0.0041
0.5572
0.5390
0.4950
0.9894
0.5544
0.6022
0.6673
0.5004
1.1861
0.6558
0.5565
0.7746
0.6650

0.0041
0.5994
0.6276
0.4950
0.9883
0.5544
0.6019
0.6673
0.5026
1.1866
0.6558
0.5567
0.7714
0.6648

0.0041
0.6499
0.5717
0.4952
1.0281
0.5732
0.6005
0.6724
0.4981
1.2334
0.6604
0.5499
0.7930
0.6690

0.0039
0.6076
0.6469
0.4828
0.9790
0.5687
0.6003
0.6723
0.4982
1.2341
0.6604
0.5500
0.7933
0.6690

common interpretation of the peaks in the optical ab-
sorptivity as due to the direct electronic transitions,
we may attribute the peak at 2.4 eV observed by
Nilsson and Norris" to the X5—X4 transition. Our
calculations show this to be significantly constant at
1.5 eV. We also note that when compared with the band
structure of pure Cu, the positions of the s-p bands are
appreciably altered, but the d bands (relative to Fi) are
relatively unchanged. This explains why the soft x-ray
emission for the disordered Cu3Au is similar to that of
pure Cu, and conforms to Rooke's interpretation" of
this effect.
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