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The dynamics of self-induced transparency in an inhomogeneously broadened attenuator is investigated
with special emphasis on delay times. One Qnds a strong dependence of delay times on the input value of the
area parameter 0 with pulses of 0; =x exhibiting much larger delay times than for 8; =2'. This investigation
is extended to include the effects of an atomic phase memory time T& which is of the order of ten times
the pulse width (i.e., in accord with current experimental circumstances) ~ The variation of other param-
eters is considered. A method of measuring 8 directly is presented.

'HE problem of coherent pulse propagation through
an inhomogeneously broadened medium has been

the object of recent interest. As McCall and Hahn' have
shown, when a pulse is produced with appropriate area
0= (p/A) fdt h(t, s) =2~, where p is the dipole-matrix
element ex, t, and configuration (hyperbolic secant), it
may pass through an attenuating medium unchanged
with a delay time of t&=-,nLt. Here n is the attenuation
coeKcient, t is the pulse width, and the Beer's I.aw
attenuation for a rod of length I is e ~. The self-
induced-transparency eRect has been investigated ex-
perimentally'' and delay times of the right order of
magnitude were reported.

In as much as the quantity 0 is the direct interest, a
simple means of measuring it is presented in this
communication. Furthermore, we wish to investigate
the dynamical evolution of a pulse as it developes into a
hyperbolic-secant shape. This is accomplished by nu-

merically integrating the equations which couple the
electromagnetic pulse and the atomic system. ' This
allows for considerable flexibility, since one may then
include in the investigation the roles of the atomic phase
memory time T2, the atomic lifetime TI, scattering loss,
detuning, etc. , as they aRect the evolution of the pulse.
The results of this analysis are at variance with the
experimental results of Ref. 2,

The theoretical development is a self-consistent
treatment which involves coupling Maxwell's and
Schrodinger's equations. 4 An electromagnetic wave of

*Paper based in part on a thesis submitted by F. A. Hopf to
Yale University in partial fu16llment of the requirements for the
Ph.D. degree.

$ Paper written while the author was pereuing an NRC-OAR.
Postdoctoral Resident Research Associateship.

f Work supported in part by the Advanced Research Projects
Agency Contract No. 50-90, and in part by the National Aero-
nautics and Space Administration.

'S. L. McCall and E. L. Hahn, Phys. Rev. Letters IS, 908
(196').' C. K. N. Patel and R. E. Slusher, Phys. Rev. Letters 19, 1019
(196').' F. A. Hopf and M. O. Scully, Phys. Rev. 179, 399 (1969).

4W. K. Lamb, Jr. , Phys. Rev. 134, A1429 (1964); C. K.
Rhodes, A. Szoke, and A. Javan, Phys. Rev. Letters 16, 1151
(1968); private communication; and to be published.

I

the form
E(t,s) = h(t, s) cos(ks —vt)

interacting with an inhomogeneously broadened en-
semble of two-level atoms /with a frequency distribu-
tion o (co)$ leads to the equations

0 h (t,s)(0s+ (1/c) 0 $(t,s)/0t

ax(T, t, s)/0t

dt'h(t', s) expL —(t —t')/T ]e

Xx(t—t', t', s) —~h(t, s), (2)

= —p'/2k' dt'8(t, s) 8(t', s) exp/ —(t t')/T, j—
&&Lx(T+t—t', t', s)+x(T t+t', t', s)j. —(3)

The velocity t,. is taken to be the velocity of light in the
inert background and z is the linear (unsaturable) loss

per unit length due to scattering. The attenuation
constant5 is given by

n= p'Nvrvo (v)/2Ac, .

where S is the number of atoms in the lower level minus
the number in the upper level, e is the dielectric constant
of the inert background, and the nonlinear susceptibility

( xtT, )sis the Fourier transform of the population
density

( xt,T)=sdn o (to)(phd(co, t,s) p..(n, t,s)—) cosn T. (5)

When T&))t and I~. = 0, the quantity 0 obeys the equation

d0/ds = —(-,'n) sin0.

5 In as much as this communication deals with an attenuator, it
is convenient to choose n as a positive number (i.e., an attenuation
constant); as a consequence there is a possible confusion of sign
between this work and that of Ref. 3 (i.e., here E goes as ppf,

—p, ,
and likewise x differs from the notation of Ref. 3 by an over-all
minus sign).
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The area is seen to converge on 2am, so that a pulse with
0;„between 7r and 3x will go to 2x and one with 0;„less
than ~ will go to a 0= 0 pulse. The energy of the pulse is
proportional to the quantity r(s) where

r(s) = (p/A)' df 8'(f,s).

Fig. 1. In this Qgure, we show the results of a numerical calcula-
tion for an input pulse of 10 nsec in width and area 1.3m. The
medium is chosen so that Ty»f, a=0, and e " =0.0012. (a) We
show the pulse envelopes p8(y, s)/A, where Ij, =t —s/c. The input
pulse (broken curve) is at 2, =0, p =I, and the output pulse (solid
curve) is at s =I, IJ, = 3 —I./c. The leading edge of the pulse occurs
at the left, and time Qows to the right. The delay time tz is as
shown in the figure. The delay due to the inert background (rela-
tive to vacuum) is eliminated by choosing "c"to the velocity of
light in the background. (b) We show the square root of the power
spectrum I(~,s) at x=0 (input pulse, broken curve) and a=I
(output pulse, solid curve). Note that pI(v, 0)jUs=1.3s.=g;„and
P(~ ~)7"=1p~=s-~

Io' ~/4 ~ra
I

8 (0)
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The quantity I(cs,s) is proportional to the spectral
density, and 0' will be proportional to the value of I at
co= v as in Fig. 1(b).

We now turn to a discussion of the time evolution of
the electromagnetic pulse. As is well known, ' when a 2'
hyperbolic-secant pulse passes through an attenuating
medium it will be delayed in time relative to where it
would be if it were passing through the inert back-
ground. This time delay is a direct consequence of
atomic coherence. We now wish to consider the delay
times for an arbitrary (8&2s.) situation. We will be
particularly interested in the dependence of the delay
times and pulse attenuation as a function of the energy
of the input pulse, and we consider the change in these
relationships as we vary T&, T2, linear loss, and detuning
from the center line. We will see that there are some
particularly marked effects on the delay times as one
varies the input-pulse amplitude. The delay times for
0;„=or are shown to be proportional to t;„exp( nsL) and
these might differ by as much as several orders of
magnitude from the delay time of the 2s pulse (which
goes linearly as f; rrL). In each of the numerical inte-
grations, the initial pulse shape is of the form h(t, 0)
=Ct exp( —P/Cs), where Cr is adjustable, to give the
proper value of 0;„, and C~ is chosen to give an initial
width of 10 nsec. The medium is chosen such that

The pulse width t is taken to be the full width at half-
height of the envelope 8(f,s) and the delay time tn (s) is
the shift in the peak of the pulse relative to the velocity
of light in the inert background (see Fig. 1).Equations
(2) and (3) are solved numerically in order to obtain the
quantities 0, 7, t, and tD.

In as much as the area 0 is of direct interest here we
discuss its measurement. One way to measure 0 would
be to shine the pulse on an atomic beam. The atoms at
resonance with the carrier frequency would respond
directly to 0 and by noting the extent to which the
atomic wave function is changed, 0 could be inferred.
This would not be easy and would 6x 8 only up to a
multiple of a constant angle. An easier and more direct
method involves measuring the power spectral density,
as measured by a spectrometer. In particular, if one
writes

E(co,s) = (p/h)'
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Fxo. 2. This figure summarizes the results of the computer
calculations for rp t/7" versus T; . The value of 8; corresponding
to ~;„ is shown on the top scale. The solid curve is for the case
T~&&t, TI&&t, I(:=0, with no detuning. The dash curve gives the case
T2 ——50 nsec. All of the other curves that we have obtained lie
within the shaded region on the graph (the boundary represents
the case of six degenerate sublevels). These results are to be
contrasted with the dot-dash curve calculated from the data given
in Fig. 1 of Ref. 2 (at a SF6 pressure of 0.021 T).The dotted curve
is a saturation curve~given in the limit that T2((g. The formula
usediis'given in. Ref. 3. One notes that, on a log-log scale, there is
not much diGerence between the steepness of the saturation and
transparency curves.
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FIG. 3. In this figure, we show a plot of delay times versus input
8. The de1ay time is i11ustrated in Fig. 1(a). The value of r;,
corresponding to 8; is shown at the top scale. The solid curve is for
the case T2))t, TI))t, a=0, with no detuning. The dot-dash curve
is for the case T,=150 nsec and the broken curve is for the case
T2 ——50 nsec. The other parameters are the same as with the solid
curve.

e I=0.0012 and T2*=1 nsec. We vary the input 8 and
the phase-memory time T&. In Fig. 2, we show the
attenuation of the pulse r(out)/r(in) as a function of
r(in) plotted on log-log paper (for the case of Ts»f). In
this figure, the transparency of the 2ex pulse is evident,
with the curve approaching unity for inputs of 2m. and
4x. We note that there are significant deviations from
the small-signal attenuation for input pulses as small as
~x. The corresponding delay times are shown in Fig. 3.
One notes that the delay times for 0;„=x are very much
larger than for 8;„=2x. This phenomenon can be
understood by a fairly simple argument. For any fixed
rod length I, one can choose a pulse with 0;„so close to
x that it will not change its total area in one passage
through the rod. The energy (taken from Fig. 2) will
change so that T g T; exp( ——,'nL). From the condi-
tion that r(s)t(s) =8'(s) and recalling that 8 remains
constant, we can deduce that the output-pulse width is
t,„"=t;„expPnL). Under conditions' where t,„~&&t;„it
is reasonable to approximate the delay time by t& =2t,„&.
Thus we arrive at an estimate of the delay time for a x
pulse which is tn=(art; ) exp(snL). For our choice of
parameters, this leads to an estimate of delay time which
is an order of magnitude larger than the delay time
for 8; =2m. This large delay time is apparent in Fig. 3.

Thus far we have been considering the time depend-
ence of the pulse under the "ideal" circumstances Tj and
T2 much greater than t", with no scattering losses and no
detuning of the atomic system. In as much as these

'The condition that the output-pulse width be much larger
than the input-pulse width implies that the absorbtion must be
large (e ~((1). For a weak attenuator the delay time for a ~
pulse is not as large as the 2x delay. The maximum delay is for a
pulse slightly less than 2m-. The delay times in the region around 221.

are discussed in Ref. 2 and in a new publication by the authors of
Ref. 1.

conditions are not met in practice we now turn to a
discussion of how the previous results are modified when
we vary these parameters.

Since we are interested in the nonlinear effects, in all
that follows we will keep the small-signal attenuation
r,„&/r;„ the same for each case (i.e., r,„&/r;„is always
0.0012).

sects of atomic phase diffusion (Ts). Here we in-
vestigate the consequences of allowing the atomic
system to have a finite memory time T&. We note that
the large delays at 8;„=m. are more sensitive to T2 than
the delays at 8;„=2~.This is evident since the phase-
memory time must be long compared to the output
pulse for the effect to be seen and the output pulse is
much wider than the input. The broken curves in Fig. 3
show the delay times when T& is 6ve and fifteen times
longer than the input-pulse width. The delay for the w

pulse is seen to vary considerably whereas the 2x delay
is changed very little. The effect of T& on the energy
behavior of the system is to raise the transition point
slightly and to eliminate the transparency~ at 8;„=2&

(see Fig. 2).
Egects of atomic hfetimes (Tr). In low-pressure gases

it is reasonable to expect T~ and T2 to be comparable.
We have, accordingly, carried out several calculations
for the case T2= 150 nsec, T~——150 nsec. The modifica-
tions of the theory to include T& are found in Ref. 3.One
finds, for this case, that one has a further reduction in
the maximum delay time (t&=30 nsec) and a slightly
higher value for 8;„at the transition point.

Variation of loss Per unit length (~). The presence of a
small linear loss a has the effect of shifting the maximum
delay to higher values of 8;„and tends to produce some-
what larger maximum delays. Because it is linear and
hence independent of 8;„,the loss prevents any complete
transparency. One notes that r,„&/r; is always less
than e

Shift of the jnhomogeneons live center from the carriver

frequency. The eGect of having a center frequency in our
medium di6erent from the carrier frequency has re-
ceived a limited amount of investigation in this work. .
To date, the results indicate that there is no effect
produced by a small amount of detuning. This is in
agreement with the results of McCall and Hahn who
found one could obtain 2~ hyperbolic-secant pulses even
if the system were detuned.

In conclusion, we emphasize (as was 6rst noted by
McCall and Hahn) that the self-induced transparency
eGect is shown most dramatically in its e8ect on pulse
delay. In fact, Fig. 2 shows that the curves corre-
sponding to self-induced transparency (SIT) and satu-
ration are not dramatically different in shape, except in
the region r(L)/r(0)=1. These differences are not
readily observable in the usual experiments. One might

' Sy transparency, we mean that r,«= r; to within the limit of
accuracy of the computer program (2 or 3% for the 2npulse). The-
transition point is the point on the curve of v,~t/r; versus r; for
which 7'pt'tg/7 j~ =exp ( go'L).
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argue that the curves (for SIT and saturation) are
displaced by a significant amount, however, this dis-
placement is meaningful only if the dipole moment p is
known. A measurement of the amplitude of the peak of
the power spectrum can be used as a direct verification
of the area theorem. ' The spectrum would also help to

show whether the carrier could be properly described as
a monochromatic wave, or whether there were fast
frequency changes present.

We wish to acknowledge helpful and stimulating
conversations with Professor E. Hahn and Professor
A. Szoke.
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This paper resports our study of Hartmann and Hahn's technique of rotating-frame nuclear double
resonance (RFDR). We consider the Lie—Lir system in LiF and obtain the cross-relaxation dynamics
from the Li' free-induction-decay data via a general expression which we derive. We find that the
presence of F" spins, which constitute a third species interacting strongly with the Li systems in LiF,
may easily be taken into account, and that the resulting RFDR behavior does not differ qualitatively
from that in a simple two-species system. The cross-relaxation time dependence is well described by an
exponential or sum of exponentials for times longer than the order of Tq, with nonexponential behavior
for shorter times. The cross-relaxation rate 8'cR exhibits a Lorentzian dependence on the magnitude of the
Li rf field, H&6, for the case where the Li' system has been adiabatically demagnetized in the rotating
frame; these results show that the Gaussian behavior previously assumed is incorrect. For the case where
the Li' rf tmld is of the order of the local field, Won(Hie) is asymmetric about Hahn's double resonance
(DR) condition, with the larger Won corresponding to Hie less than for the DR condition. The cross-
relaxation times at the DR condition are on the order of 0.4 msec. We observe no spin-diftusion bottleneck
in a sample of LiF with an isotopic abundance of 0.008% Li . Finally, we draw some general conclusions
about the application of RFDR to other problems.

I. INTRODUCTION

"UCLEAR double resonance in the rotating frame
(RFDR) was first suggested as an ultrahigh-

sensitivity NMR technique in $960 by Hartmann and
Hahn. ' The classic analyses of the method have been
given by Hartmann and Hahn' (hereafter referred to as
HH) using the general density matrix techniques, and
by Lurie and Slichter' (hereafter referred to as LS)
using a thermodynamic treatment. Several groups have
used variations of this technique to obtain NMR and
NQR spectra of rare isotopes or impurities in solids. ' '4
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The work reported here is primarily an experimental
study of the RFDR method itself rather than an
application of the method to obtain high-sensitivity
spectra of a particular solid.

The reader is referred to the excellent descriptions of
the general technique given in HH and LS. In Sec. II,
we will review these basic ideas principally as a means
of introducing our notation.

We consider two nuclear-spin systems with strong
resonant rf Gelds applied to each. The proper way to
describe such a system is in a double rotating-frame
representation. " In this representation, each of the
two spin species can be made to sense a different
"effective Geld, " and thus the effective Zeeman split-
tings of the two species can be made equal, thereby
allowing rapid cross relaxation. This condition of equal
e6ective field splittings is called the double resonance
(DR) or Hahn condition.

The standard method of high-sensitivity spectroscopy
is then as follows. The rare-species resonance system is
modulated in such a way as to pump energy into the
rare-spin effective Zeeman levels. This pumped energy

"A. Hartland, Proc. Roy. Soc. (I-ondon) A304 361 (1968).
'~ R. E. Slusher and E. L. Hahn, Phys. Rev. 1 6, 332 (1968).
"' K. F. Nelson and W. D. Ohlsen, Phys. Rev. 180, 366 (1969).
'4 E. I . Hahn, 1VNclear Magnetic Resonance and Relaxation in
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