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The two-mode conduction of thermal energy as proposed by Holland has been used to explain the tem-
perature dependence of the phonon conductivity of Mg2Sn in the temperature range 4-300'K, especially
the change in slope at about 80'K. The elastic part of Kwok's expression for the resonance-scattering
relaxation rate for phonons is shown to account for the magnitude near the conductivity maximum. The
present work also shows that practically all the transport of thermal energy is due to transverse phonon.

I. INTRODUCTION

ECENTLY, thermal conductivity of Mg&Sn has
been studied by Martin and Danielson' in the

temperature range 4—300'K. In order to account for
the observed values of the phonon conductivity at
different temperatures, they considered phonon-phonon
scattering, isotope scattering, boundary scattering, and
scattering by bound donor electrons. Martin and
Danielson could explain their data only up to 50'K
(see Figs. 4 and 5 of Ref. 1), where the phonon-con-
ductivity —versus —temperature curve shows a change in
slope which persists up to room temperature. Martin
and Danielson remarked that phonon conductivity
beyond 150'K shows a T ' dependence but did not
make any attempt to explain their data beyond about
80'K, although it may be remarked that it would not
have been possible for them to explain the change in
slope as well as the phonon conductivity data beyond
50'K on the basis of their expressions of the combined
relaxation time r, in the framework of Callaway's
theory. ' It may be seen from Figs. 4 and 5 of Ref. 1

that the discrepancy between theory and experiment
increases continuously with the increase in tempera-
ture beyond 50'K.

The above difhculties are, however, quite satis-
factorily removed and it is possible to explain the
phonon conductivity results in the entire temperature
range 4—300'K, including the change in the slope which
occurs at about 80'K, if one considers the two-mode
conduction first proposed by Holland. Here one has to
consider separately contributions of longitudinal pho-
nons and transverse phonons which act as carriers of
thermal energy. Although Holland's approach involves
more computational labor, it is more general in the
sense that one makes a distinction between longitudinal
phonons and transverse phonons. The calculations are
more realistic in that the actual dispersion curves
along certain symmetry directions are used in obtain-
ing the frequency and temperature dependence of

' J. J. Martin and G. C. Danielson, Phys. Rev. 166, 879
(1968).

s J. Callaway, Phys. Rev. 113, 1046 (1959).

T3-ph o
' for transverse phonons, in determining the

average phonon velocities for the different branches,
and also in determining the limits of the conductivity
integral.

It may also be remarked that Martin and Danielson
have used co4 dependence for the resonant scattering of
phonons, 3 which is not valid when Ace))46 and k~ T&&46.
Here the difhculty lies in that the value of 4A, which is
the energy difference between the donor electron ground
state and the first higher-energy state, is not known.
Martin and Danielson could obtain good agreement
between theory and experiment for the values of the
phonon conductivity near the maximum which lies
below 50'K by considering 46=5)&10 4 eV. If we
consider this value a reasonable approximation to the
correct value, then the temperature at which resonance
occurs is T„s(46/ktt) —1'K. Thus the temperature
range of interest in the present work, 4—300 K, corre-
sponds to &co&)46 and k~T&&46. Recently, Kwok4 has
derived expressions for phonon attenuation due to the
resonant scattering of phonons by considering both
elastic and inelastic scattering of phonons off the
ground state as well as off the next higher-energy
state. For Ace)&46 and k~T))46, it can be shown that
the resonant-scattering relaxation rate r„'ccco2. Thus
we have preferred to use r„'~co' rather than 7-„'~co',
which is valid for k~((46 and k~T&(46.

The aim of the present paper is to explain the phonon
conductivity results of Mg2Sn in the temperature range
4—300'K as well as the change in slope in the E-versus-T
curve at about 80'K. The basis of the explanation is

sought in the two-mode conduction approach proposed

by Holland. ' This also enables us to investigate the role
of transverse phonons in the thermal resistance of

Mg2Sn. For the resonant scattering of phonons by
bound donor electrons we have considered Kwok' s

theory which leads to r„'~ co' for the present tempera-
ture range of interest.

s A. Grit)in and P. Carruthers, Phys. Rev. 131, 1976 (1963).
4 P. C. Kwok, Phys. Rev. 149, 666 (1966).
5 M. G. Holland, Phys. Rev. 132, 2461 (1963).
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II. THEORY

The lattice thermal conductivity' E is separated
into two parts: (1) Er, which is the contribution of
transverse phonons, and (2) Ez,, whic'h is the con-
tribution of longitudinal phonons. E is then given by

where

and

E=KI,+Er, '

x'e*(e*—1) ' dx
Cz

Lattice vibration spectra as obtained by Davies
et cl. for Mg~Sn have been used in determining the
limits of integration as well as the phonon velocities
for the different regions of the curves.

ing relaxation time, ~ is the average phonon velocity,
I is the effective Casimir7 length which is known in
terms of the dimensions of the specimen, AM =7p&
corresponds to scattering of phonons by point defects
such as isotopes for which Rayleigh scattering is as-
sun&ed, and 3 is the point-defect scattering strength
which is known accurately for mass-difference scatter-
ing such as isotopes from Klemens's formula. ' BJoPT'
= 7pp

' is the inverse of the phonon-phonon scattering
relaxation time for longitudinal phonons, where it
is assumed that this form takes care of both normal
and umklapp processes, Bl, is the scattering strength
which is treated as an adjustable parameter, Bz,coT'
= (r» ')r, „&„,is the phonon-phonon scattering relaxa-
tion time for transverse phonons for ~(~~, where it is
assumed that umklapp processes are absent for co(~~,

El, = 3T
x4e'(e' 1) —' dx

CL, (2) 2

T'I1y Jfj, o1 1g~+P1'2
sinh (h(o/ZsT)

x=, 0;=
EgT Egg

andi=I. and T.
As has been discussed in detail by Holland, one

can calculate the contribution of transverse phonons
to phonon conductivity by separating the correspond-
ing conductivity integral into two parts: (1) contribu-
tion of phonons whose frequencies range from 0 to co~,

and (2) contribution of phonons with frequencies from
co& to co2. Here cv& is the frequency where UE processes
start and cv2 is the highest TA mode frequency. The
lattice thermal conductivity due to transverse phonons,
therefore, is given by

Kz Ez,+Es, ——

derived 6rst by Holland for Ge, is the inverse of the
phonon-phonon scattering relaxation time for umklapp
processes for transverse phonons in the region co~(co
(co~, and it is assumed that normal phonon-phonon
scattering processes make negligible contribution in
this region. The scattering strengths B~, and B~, for
transverse phonons are treated as adjustable parame-
ters. The average sound velocity v is given by

s—'=-'s(2ttr '+tz ').
The characteristic length I. is given by 2R for a speci-
men of circular cross section of radius 2R and is equal
to 1.12S"' for a rectangular cross section of area S.
The point-defect scattering strength for mass-difference
scattering, according to Klemens, ' is given by

=2T3
3

'"~ C,x4e'(e*—1)-' dx

"'~ Cr,x4e*(e* 1) ' dx—
—1

TT2

where Vo is the atomic volume, ns; is the mass of the
ith species of the atom, and m is the average atomic
mass.

and

rl —r =e/L+g(g4+B~~&T~

rr, '=e/L+A(v4+Br, cdT',

BTgeo

rr, '= —+Aco4+
I. sinh(ku/EeT)

where e/L= re ' is the inverse of the boundary scatter-

' L. C. Davies et al. , J. Phys. Chem. Solids, 28, 439 (1967).

where Cp, and C~, can be calculated from the phonon
spectrum of the substance. Lattice vibrational spectra
and elastic constants for Mg&Sn have been reported by
navies et al. '

The relaxation times used are

III. SCATTERING OF PHONONS BY
DONOR ELECTRONS

From the measurements of the Hall coefFicient and
electrical resistivity, Martin and Danielson have deter-
mined the donor concentration in Mg2Sn, which is
approximately 2&(10" cm ' for the sample 2a. The

7 H. B. G. Casimir, Physica 5, 595 (1938).
8 P. G. Klemens, Proc. Phys. Soc. (London), A68, 1113 (1955).
9 Recently, G. L. Gntherie LPhys. Rev. 152, 801 (1966l] has

shown that for longitudinal phonons in the high-temperature
regiOn, One ShOuld uSe 73phpnpn AT rather than 73-pQpnpn AT.
However, the longitudinal contribution to phonon conductivity
remains small even if one uses 7.3-ph o AT. Hence, for the sake
of using a minimum number of adjustable parameters, we have
used &3 pQ AT for longitudinal phonons both for the low-
temperature and high-temperature regions.
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FIG. 1. Thermal conductivity of Mg2Sn. E» is the contribution
of transverse phonons of frequencies lying between 0 and co&,

Egm is the contribution of transverse phonons of frequencies
lying between ~& and co2, El, is the contribution of longitudinal
phonons, and E is the total thermal conductivity. The calcula-
tions of r~z ' have been done using Eqs. (8).The solid line through
the plotted points is the experimental curve, and the dashed line
is the calculated curve.

deformation potential and the ignorance about the
details of the band structure is lumped into the pro-
portionality factor H. Here fs(T) and f(T) represent
the population of the ground state and the next higher-
energy state, respectively. 45 is the energy separation
between the ground state and the next higher-energy
state. The form factor F(q) is given by

F(q)~(1+r 'ce '/4C ')-' (9)

where ro is the average radius of the donor orbit. The
values of 4A and ro used in the present calculation of
the resonant-scattering relaxation rate on the basis of
Kwok's theory are the same as those used by Martin
and D anielson.

The first term in Eq. (Sa) (for A~0,q&&46), representing
the elastic scattering of phonons oQ the ground state,
is proportional to the population of this state and to
the fourth power of phonon frequency. The second
term in Eq. (Sa), corresponding to the elastic scattering
of phonons oG the next higher-energy state, is propor-
tional to the population of this state and the square of
the phonon frequency. Equation (Sb), representing the
elastic scattering of phonons off the ground and the
excited state (both contribute almost equally when
~,y»4h), is proportional to the population of the state
considered and to the square of the phonon frequency.

donor levels are approximately 1&(10 ' eV below the
conduction band. Umeda" has reported the electronic
structure of Mg~Sn and showed that one can apply
the many-valley conduction-band results of Ge and Si
to this lattice.

The elastic scattering of phonons by bound donor
electrons due to virtual electronic transitions may be
written symbolically as

Aoi, q+ (ground state) (int. ) Ao~, .i, +(ground state),

fred, q+(excited state) (int. ) Ao~, .q.+(excited state),

where the states mentioned in parentheses are the
hydrogenic states of a shallow donor atom. Here cv,z is
the phonon frequency for the phonon (q, )i) and oi,z

=co, q. for the elastic scattering of phonons.
It has been found in the present investigation that

elastic phonon scattering processes alone account for
the observed thermal resistance. Considering only the
elastic scattering part, one can simplify the expressions
for the resonant-scattering relaxation rate as obtained
by Kwok4 (ko~,qW46). The simplified expressions can
be written as

, '=~F'(q)uo(T)(~. /4~) +f(T)r ~
'

for ho~, ),&&46 (Sa)

=&Fs(q)Lfs(T)+f(T)]o~,)s, for Aoi, g&&46. (Sb)

Here H is proportional to the fourth power of the shear

"T.Umeda, J. Phys. Soc. Japan 19, 2052 (1964).

IV. COMPARISON OF THEORY
AND EXPERIMENT

TABLE I. (a) Parameters used for Tqi, ' pffs, r are the adjustable
parameters used in Eqs. (8) (Kwok)g. (b) Parameters used for
lat tice thermal conductivity.

(a)
v =3.59X10' cm/sec

HL, =10' deg~ sec '
4~=5X10 4 eV

p =3.592 g/cm'
Hp=1.5X10' deg ' sec ~

rp=40 A
E =2.4X10"cm '

(b)
coy =1.1842X10"sec err=3. 1926X10' cm/sec
co2 ——1.5526X10"sec vr, = 1.1651X10' cm/sec
co3 =3.1842 X10"sec vl, =4.7895 X10' cm/sec

~& ' ——1.0406X10' sec '
A =5.6X10 "sec' BL,=2.92X1M'sec deg '

8»=2.29X10 "deg Bp~=5.84X10 "sec

Martin and Danielson have studied the thermal
conductivity of Mg&Sn at di6erent temperatures in
the range 4—300'K. Here, we have calculated the
thermal conductivity of the sample 2a with Casimir
lengths L=3.45 mm. We have used a two-mode con-
duction model for the thermal conductivity. The vari-
ous parameters used in the calculation of the phonon
conductivity are given in Table I. Figure 1 shows the
comparison between theory and experiment for the
temperature dependence of the phonon conductivity of
Mg2Sn.

The following conclusions may be drawn from the
present work:



(1) The assumption that the thermal conductivity can
be expressed as a sum of the two contributions, K~ due
to longitudinal phonons and Kz due to transverse
phonons, is valid for Mg2Sn. The change of slope in
the phonon conductivity versus temperature, which
occurs at about 80'K, can be explained by the present
approach of two-mode conduction (first proposed by
Holland for Si and Ge, and later used by us for InSb,
GaAs, and Si-Ge alloys" ).

(2) It has been shown that almost all the heat trans-
port at high temperatures is by transverse phonons.

"C. M. Bhandari and G. S. Verma, Phys. Rev. 138, A288
(1965); 140, A2101 (1965).

(3) In order to account for the observed magnitude of
phonon conductivity, especially near the maximum, one
has to consider the resonant scattering of phonons by
bound donor electrons. The elastic scattering part of
the second-Born-perturbation results of Kwok's theory
alone accounts for the observed values of the phonon
conductivity near the maximum.
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The composite wave variational method has been utilized to determine the electronic band structure,
Fermi surface, and Fermi energy of Au in the nonrelativistic approximation. The crystal potential utilized
in these calculations was constructed from Liberman, Waber, and Cromer's numerical Hartree-Fock solu-
tions of the Dirac equation for the Au atom, including crystal exchange in the Slater p'" approximation.
Comparison is made with Shoenberg s experimental determination of Fermi-surface parameters using the
de Haas —van Alphen e6'ect.

I. INTRODUCTION

HE work reported here is an application of the
composite wave variational method" (CWV) to

calculation of the energy-band structure of gold. This
marks the first application of this technique to an
investigation of the band structure of a heavy element.
The previous applications of this method have been to
calculations of the band structure of the light alkalis, '
x-ray scattering factors, and charge densities for Li, '
and to positron annihilation in the alkalis. 4

In Ref. 1 (SM), we presented several variational
principles for the energy which apply to trial wave
functions which are discontinuous on a surface within
a unit cell in the crystal. ' These expressions, which are

t Supported in part by U. S. Army Research Oiiice (Durham),
under Contract No. DA-31-124-ARO-D-307.

*The bulk of this research was performed at the Polytechnic
Institute of Brooklyn, Brooklyn, N. Y. 11201.' H. Schlosser and P. M. Marcus, Phys. Rev. 131,2529 (1963).

'Preliminary results reported at Chicago APS Meeting, Bull.
Am. Phys. Soc. 13, 57 (1968).'E. Jensen and H. Schlosser, Bull. Am. Phys. Soc. 12, 485
(1967).

4 H. Schlosser, Bull. Am. Phys. Soc. D, 644 (1968).' The application of the variational principle for discontinuous
wave functions (SM) to semiempirical molecular calculations has
been suggested by R. G. Parr (private communication), while
T. Loucks )Phys. Rev. 139, A231 (1965)j has obtained matrix
elements for a relativistic APW scheme from a generalization of
the variational principles of (SM).

at the heart of the CWV method, lead directly to the
various forms for the matrix elements and secular
equation given in SM. They also lead directly to the
rapidly convergent iterative procedure for solving the
secular equation which is a major advantage of the
CWV method, ' and which is discussed in detail in
Sec. II4 of SM.

In this calculation we make use of a crystal potential
which was constructed by superposing Lib erman,
Waber, and Cromer's~ numerical Hartree-Fock solutions
of the Dirac equation for gold, including a crystal
exchange contribution in the Slater p'~ approximation.
The energy bands have been plotted out in a number of
symmetry directions and also E(k) has been calculated
at a large number of general points. This has enabled a
precise determination of the Fermi surface. Comparison
is made with Shoenberg's' experimental determination
of Fermi-surface parameters using the de Haas —van
Alphen effect.

sIt should be pointed out that Loucks (Ref. 5) has not made
optimal use of the variational principle for discontinuous wave
functions in his relativistic calculations since he does not take
advantage of the iterative procedure, described in Ref. 1, for
solving the secular equation.

7 D. Liberman, J.T. Waber, and D. T. Cromer, Phys. Rev. 137,
A27 (1965).

s J. C. Slater, Phys. Rev. 81, 385 (1951).
v D. Shoenberg, Phil. Trans. Roy. Soc. (London) A225, 85

(1962).


