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Assuming that for all simple fluids at the melting
point g = 0. 45, the values for z are calculated
from (3) and (4) (see Table I).

Values of the self-diffusion coefficient for sev-
eral liquid metals at their melting points +ere
calculated with (2) using values of z„from Table I.
These values are compared with experimentally
measured self-diffusion coefficients, along with
the original self-diffusion coefficients calculated
by Ascarelli and Paskin using the correction fac-
tor 0. 73(g „/q)' ' (see Table II).

The agreement of all calculated values with the
melting-point data is remarkable, particularly
when, as pointed out by Ascarelli and Paskin, the
error of the data is generally on the order of 10/g.

The temperature dependence of (2) using (3) and

(4) for gallium' and tin' is illustrated in Fig. 1.

It is observed that the Carnahan-Starling equation
of state coupled with the backscattering correction
of 0. 73(g „/p) yields a higher temperature depen-
dence. Consequently, the data are more accurate-
ly represented over the full temperature range.
Similar results have been obtained on comparing
with available data for sodium, e mercury, ~ cadmi-
um, ' lead, ' silver, ' and zinc. ' Data for indium'
compare better using (3).

In conclusion, the equation of state recently
proposed by Carnahan and Starling yields the high-
er temperature dependence hoped for by Ascarelli
and Paskin. Experimental data over the entire
temperature range appear to be much better repre-
sented for most liquid metals tested.
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An anomalously large temperature dependence of the elastic behavior of AuGa2 occurs near
85'K. A singular exception (c44-type shear) should provide some knowledge of the band re-
sponsible for the unusual elastic and magnetic behavior.

Numerous reports have now been published
which indicate that the intermetallic compound
AuGa2 exhibits anomalies in its physical properties
which are not shared by the isostructural com-
pounds AuA12 and AuInz. The Ga ' Knight shift and
spin-lattice relaxation times, and the magnetic
susceptibility for AuGaa show a strong temperature
dependence between 20 and 300'K. The Seebeck
coefficient of AuGa~ has an unusual temperature

dependence in which the sign of the coefficient re-
verses at 14 'K and again at 145'K.~ These anom-
alies are not found in AuA1~ and AuIn~. However,
the electrical resistivity, ~ the Hall coefficient, 2

the electronic and lattice specific heats, ' and the
de Haas-van Alphen studies of the Fermi surface
of these three compounds do not indicate any dis-
tinction of the AuGa~ behavior. s To explain the
anomalies in the magnetic measurements, Jac-
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TABLE I. Strains, elastic moduli, and peak temper-
ature dependence of elastic moduli for AuGa2.
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carino et al. 1 have proposed a scheme in which
the atomic character of the wave function of the
itinerant electrons at the- Fermi surface changes
from p-like to s-like with increasing temperature.
From augmented-plane-wave (APW) band-structure
calculations, Switendick and Narath suggest that
this change results from thermal effects on a high
density-of-states band, located just below the
Fermi level.

The elastic moduli give the general strain de-
pendence of the internal (or free} energy. For ef-
fects which make a discernible contribution to the
elastic moduli, the tensor nature of this property
provides a means of establishing the anisotropy of
the mechanism. For anomalies resulting from
unusual features of the band structure, this anisot-
ropy may be at least qualitatively predictable.
The results discussed in this paper show that, in
general, an anomalously large temperature depen-
dence of the elastic behavior occurs around 85'K.
A singular exception (c44-type shear) should pro-
vide some knowledge of the symmetry of the band
responsible for the anomalous magnetic behavior.

The single crystal of zone-refined AuGaz mas
grown by Dorsi. The resistance ratio R(300'K)/
R(4. 2'K) =225. Cut and polished faces were pre-
pared for sound propagation in (111) and (110) di-
rections. The sound velocities V and elastic mod-
uli c are related by

c=pV,
where the density p= 9.92 g/cm~ has been calcu-
lated using the room-temperature x ray lattice
parameter 6. 074A. ' The elastic modulus tensor
for a cubic crystal has three independent compo-
nents, normally taken as c», cfog and c44. In Ta-
ble I, we list the high symmetry waves and the
associated elastic moduli. All five waves asso-
ciated with (111) and (110) were used. From
these velocities were obtained the three elastic
moduli, with two redundant measurements used to
check consistency.

Measurements of the sound velocity were made
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FIG. 1. Temperature dependence of the elastic modu-
li c&& and ci2 for AuGa2 between 4. 2 and 400 'K.
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FIG. 2. Temperature dependence of the elastic modu-
lus c44 for AuGa2 between 4. 2 and 400 K.

with an automated modification of the McSkimin
pulse superposition method. The relative accuracy
of the measurements, limited by nonideal sample-
transducer bonds, was 3&&10 to 10 ' over temper-
ature intervals -50'K. The absolute accuracy,
judged by the internal consistency of the data, was
-0. 3/o 8

The elastic moduli c&&, c», and c44 are shown as
a function of temperature in Figs. 1 and 2. Two
of these moduli exhibit an anomalous temperature
dependence which can be seen from a plot of the
logarithmic temperature derivative (1/c) dc/dT
shown in Fig. 3. This derivative shows a large
negative peak at T= 85 'K for c» and c &2, while
for c44 a much smaller peak of opposite sign oc-
curs. For most solids, this derivative, starting
from zero at T = O'K, decreases smoothly to
about —(1 to 4) && 10 at T - 50 to 100 'K, beyond
which temperature it is relatively constant. Thus,
for two of the elastic moduli an anomalously large
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negative temperature coefficient occurs, which
reaches an extremum at T= 85'K.

Consider next the anisotropy of the anomalous
temperature dependence. In Table I are listed
the extremum values of (1/c) dc/dT (which all oc-
cur at T = S5'K) for the moduli associated with all
longitudinal and shear strains along principal di.-
rections as well as the bulk modulus (for volume
strains) and the elastic anisotropy. lt is seen that,
with one exception only, all (1/c) dc/dT exhibit
large extrema. The single exception is for (001}
planes sheared in a perpendicular direction's (s4
strains) which, as noted, shows a small effect of

opposite sign.
The adiabatic elastic moduli associated with

strain e are given by
t'd U

c=~ d, 2 (2)

where U is the internal energy and S is the entro-
py. We consider the suggestion of Switendick and

Narath, that the temperature dependence of the
magnetic properties is due to the presence of a
band just below (by E„,) lthe Fermi level. Letting
X represent either the energy gap or the density
of states of this valence band, we obtain for the
modulus

&=&0+ ~3 ~
+ ~ y~2

where cp is the "background" modulus having a
typical temperature dependence (1/cs) dec/dt- —(1
to 4) X10 4('K) t for 50'K&T&300'K. For high

symmetry shear strains, we expect dX/d~ = 0.
The results of Table I show that, except for c44,
the elastic moduli for volume, longitudinal, and

shear deformations in high symmetry directions
show anomalies of comparable magnitude. Thus,
the gap or density of states of the valence band

responsible for the anomalous temperature depen-
dence has a large strain dependence for all but

(001) shear strains. Furthermore, since the
anomalies for the longitudinal strains are compar-
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FIG. 3. Temperature derivatives (smoothed data) of
the elastic moduli cj&, c&2, and c44 for AuGa2 between
4. 2 and 400'K. For a normal solid this derivative in-
creases from zero at T=O'K to —(1 to 4) &10 ('K)
at T-50 to 100 'K, beyond which it is nearly constant.

able with those for the shear strains, it appears
that the major contribution to the temperature de-
pendence comes from the last term in Eg. (3).

One may also calculate the occurence of extrema
in (1/c)dc/dt whenE„,/kT- 1 (very roughly) for va-
lence bands whose density of states exhibit certain
features near the band edge. For example, with a
density of states proportional to E" one finds, us-
ing exact statistics, an extremum in (d/dT) &U/0E~
(and therefore dc/dt) at some temperature (of the
order E, /k) for n & 0. Similar results also occur
for the number of carriers, magnetic susceptibili-
ty, etc. Quantitative results, however, depend
upon the details of the valence-band structure.

From the elastic moduli at 4. 2'K, the calcu-
lated Debye temperature at O'K is found to be
(200. 5+ 1) 'K using the tables of de Launey ~t This
compares favorably with the values 8 = (192+ 5)'K'
and e = 196 'K~ from specific-heat measurements.

I am indebted to William Royer for technical as-
sistance.
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