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The interaction between soft-optical-mode coordinates and the elastic strain at structural
phase transitions that have as soft modes linear combinations of the triply degenerate 12&
optical mode at the R corner of the Brillouin zone are discussed with the help of a model
Hamiltonian. The effect of the interaction on the soft-mode frequencies, the angle of rota-
tion, and the strain distortions are calculated. The theory is compared with experimental
results for SrTi03 and LaA103, and good agreement is obtained with the available experi-
mental data.

I. INTRODUCTION

A number of AJ303 compounds with perovskite
structure have structural phase transitions from
the cubic high-temperature phase to a tetragonal
or trigonal low-temperature phase which involve
rotation of the 806 octahedra. Recently, a great
deal of experimental' and theoretical
knowledge has been accumulated. SrTi03, ' ' in
particular, has been investigated by a wide range
of experimental techniques, and will together with

LaA103, ' be used in order to compare the
theory with the experimental results.

The rotation of the oxygen octahedra may be
either around a cube axis, as in SrTi03, to give
a tetragonal distortion, or around a cube diagonal
to give a trigonal distortion as in LaA103. In both
cases, the octahedra in neighboring unit cells ro-
tate in opposite directions. Associated with these
phase transitions is an optical-phonon instability,
the soft mode being the triply degenerate I'» op-
tical mode at the R corner of the Brillouin zone.

In a previous paper ~ (hereafter referred to as
I) these phase transitions were discussed using a
model Hamiltonian expressed in terms of localized
normal mode coordinates describing the rotation
of the oxygen octahedra. Although the model gave
a good qualitative description of the phase transi-
tion, quantitative agreement with all the experi-
mental results could not be obtained. In partic-
ular, for SrTi03, whereas the soft-mode fre-
quencies and the temperature dependence of the
rotation angle were well described by the model,
the value obtained for the magnitude of the angle

was too large, suggesting 1;hat additional interac-
tions need to be taken into account. The impor-
tance of the coupling to the strains has been em-
phasized by Slonczewski and Thomas, and in this
paper we extend the calculations in I to include
thxs interact&on.

The derivation of a model Hamiltonian describ-
ing the interaction is presented in Sec. G. In Sec.
III, we derive a coupled set of equations deter-
mining the soft-mode frequencies, the static values
of the strains and the correlation functions using
the equation of motion approach discussed in I.
The required thermal averages are determined in
a molcular field approximation. The derivation
will be presented only for the case of tetragonal
distortion. The corresponding set of equations
for trigonal distortion is given in Sec. IV. In Sec.
V, the theory is compared with experimental data,
and the model parameters determined by a best-
fit procedure.

II. MODEL HAMILTONIAN

In I, a Hamiltonian was constructed in terms of
vectors R(l) describing the rotations of the oxygen
octahedra and their canonically conjugate momenta
P(l). This Hamiltonian had the form

H„= p Z P(l) 8 '(ll') P(l ')

+ —,
' Q R(l) v(ll') R(l')+ 2 Q I'),~, (ll')

~[R~(l) —Ri(l )] [Ri.(l)-Ri,(l')], (I)
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where e;;(lk) are localized strain tensor compo-
nents and where u(lk) is the displacement of the
0th oxygen ion in the Lth unit cell from its equilib-
rium position X(lk) due to the rotational degrees
of freedom. The oxygen site has tetragonal sym-
metry, and Eq. (2) has six independent coupling
constants. The displacements of the individual
oxygen ions may be expressed in terms of the op-
erators R(l) by the transformation

u(lk) = )„x[R(l+0) —R(l)](2moa ) '~~.

Here

(3)

$, = a(1, 0, 0), $ = a(0, 1, 0), g = a(0, 0, 1), (4)

where a is the lattice constant of the cubic struc-
ture and mo is the mass of the oxygen ion. As
long as we are only interested in the coupling to
long-wavelength acoustic phonons, the 0 depen-
dence of the strain components e;;(lk) may be ne-
glected. Then the interaction Hamiltonian may be
written

H( (,
——2 G ()(gz). [e ()(1)+e„8(l')]

Xy(J(ll )[R&(l)R) i(l )+R&(l )R),.(l)] . (5)

The coupling constants G z&~» are listed in the
Appendix. Because u~(lk) =0, Eq. (5) contains
only four independent coupling constants.

The nonlocal form of this Hamiltonian reflects
the fact that oxygen ions forming a given octahe-
dron belong to more than one unit cell. When ex-
pressed in terms of its Fourier transform

the coupling function y&& has the simple form

y;;(q) = 2 [1—cos q;a]

= —,
' [1—cos q~a]

for i=j

fori &j 4k,
where i, j, and k refer to the three-cube axes.

Because y;;(q = 0) = 0,

the interaction Hamiltonian vanishes when all the
octahedra rotate in phase as required on physical
grounds as this leaves all the oxygen ions undis-

where ll refer to the different unit cells, and the
index X to the components along the cube axes.

A model Hamiltonian describing the interaction
between the elastic strain and the normal mode
coordinates R(l) may be obtained by expanding the
potential energy of the distorted crystal in terms
of the strain and the oxygen ions displacement
fields. This Hamiltonian is of the form

H(gg Zg'J)) ()8(J (lk)u~(lk)u()(lk)

xe„(l)+e22(l)e„(l)]

+ 2C,4+ [e„(l)'+e)3(l)'+ep, ( )'] (io)

where u(l) is the displacement of the c.m. of the
lth unit cell from its equiiibrium position X(l) due
to the acoustic-phonon modes, and M is the total
mass of the unit cell. The constants C;& have
units of energy and are related to the usual elastic
constants c;& by

C;&=a c;& (11)

The Hamiltonian given by Eqs. (1), (5), and (10)
has the symmetry appropriate for the cubic per-
ovskite structure. The distortion from cubic sym-
metry below the transition temperature is de-
scribed by nonvanishing expectation values of the
operators R,(l) and the strains e;,(1). The strain
tensor e,~(l) will, however, have nonvanishing ex-
pectation values also in the cubic phase above the
transition temperature which then describes usual
thermal expansion. We set

R,(l) =(R,(l)) +r,(i), (i2)

where the brackets denote the thermal average and
where x,(l) describes the fluctuation about this
average value. As the direction of the displace-
ment alternates from one cell to the next, we
write

(R (l)) =A e "&'"'"

where for tetragonal distortion

A. ), =A6qg

For the strain tensor, we set

e;;(l)=(e„(l))+ „(l)

(13)

The fluctuations about the average values of the
strain may be expressed in terms of the normal

placed. We also note that

r(g(q~) = 1,
for all i and j, where q& is the wave vector at the
R corner of the Brillouin zone.

Because the operators R(l) defined in I have the
units (energy)' ~

&& sec, and because y;&(ll ') have
been chosen to be dimensionless, the coupling
constants G&& defined in the Appendix have the
dimension of 1/sec .

The Hamiltonian describing long- wavelength
acoustic phonons may be expressed in terms of the
localized strain tensor components. For cubic
symmetry, we obtain

H, = —,'QMu(1) + —'C»Q[e»(l) +ez2(l)
l

+ess(l) ]+Cq~Q [e)((l)e~a(l)+~()(l)
l
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mode coordinates of the acoustic phonons in the
usual way,

1H = Cll(el+ 2e, )+ C,2 (eZ+ae, e2)

The linear term may be written

H,'" = [(Cll+ C12)e, + C»e, ]Z [u22(l) +u33(l)]
l

+ (Cll 1+2C12e2)ahull(i)
l

(18)

(as)

(l ) +~ &
177 x (l&

Pq

"[&e;(l q)+e,e;(l q)]Q(pq),
where Q(pq) is the normal mode coordinate for the
p, th acoustic branch of frequency o1(pq), wave vec-
tor q, and polarization vector e(p, q) .

When Eq. (15) is substituted in the elastic Ham-
iltonian equation (10), it separates into static
terms, terms which are linear in the fluctuation
u;;(l) and terms which are quadratic in the fluctu-
ations. For tetragonal distortion, in which case

(e„(l))=0, i4j
(e»(l)& =e,

( e22(l)& =( e33(l)& = e2

the static part of the Hamiltonian takes the form

The equations of motion are linearized by replac-
ing pairs of operators x)„by their thermal average
and by neglecting quadratic terms of the type
r,Q(p) , .Further we neglect in this paper the res
onant coupling between the eigenfrequencies e,
associated with the normal mode coordinate ~,
and the acoustic-phonon frequencies (d~. The ef-
fect of the resonant interaction as well as the
quadratic terms rlQ(p) are discussed elsewhere.
For the optical-phonon frequencies &)„, we then
obtain

el (qa) = (uo(q„) + 81',(2A'+ &,"')+ 21'2a2"'

+2I', 6 ' '+ (I', +2I'2) 61' '+2Glle, +4G12e2
(28)

e2, 3 (qa) = &o(qa) + I',(2A'+ 4,"')+ (8l', + I'2) 62"'

+ 2I', a2' ' + (I', + 2I 2) b 2' '+ 2 G»e 2+ 2 G»(e, + e 2),

(24)
where for simplicity we have given the form of
el(q) only for q=q„. When G„=O, Eqs. (22)-(24)
reduce to those given in I where also the various
constants and the correlation functions ~)', ' are
defined.

The equations of motion for Q(pq) are derived
from the Hamiltonian with the help of the commu-
tation relation Eq. (21). Requiring the static
parts to vanish, we obtain

+ 2M2 ohio(pq) Q(pq)Q(p, -q) (2o)

The term quadratic in the fluctuations is most
conveniently expressed in terms of the acoustic
normal mode coordinates,

H.'" = (I/aM) Z P(p, - q)

Cllel+ 2 C12e2+ 2 Gll(2A + +1 ) +G12 +2

+ G 13(&2"—&2

Cll 2 +C12(el+ e2) + 2 G12( A + ~1 + ~2

+ 4G11(+2 + +2 ) 2 13(+2 +2 ) y

where we have introduced

(26)

(26)

where P(pq) is the canonical conjugate momentum

to Q(pq),

[Q(pq), P(p'q') ]=i6... 6&;. . (21)

The equations of motion for the operators r„(l)
are calculated as in I. Relationships between A,
eq, e2, and the correlationfunctions involving pairs
of operators x), are obtained by requiring that the
static parts of the equations of motion be equal to
zero. From the x„equations we obtain, in the
notation of I.

A[olo (qa)+ Fl(2A + 8&,"')+2 I'2b2"'+ 21', b,, ' '

+(I;+21'3) n,,' '+2Gl, e, +46,2e2]=0 . (22)

Similarly, the strain variables in 0„,may be ex-
pressed in terms of the static strains and the
acoustic normal mode coordinates Q(pq) by means
of Eqs. (15) and (16).

III. EQUATIONS OF MOTION SELF-CONSISTENCY
CONDITIONS

b,,' '=I,2=I13 ~ 62 —I21 —I31 ) 2 I23 I32, (2V)(4) (5)

2
with I„.=—Zy ~ (q) & (q)

where &»(q) =(r,(q) r,(- q))

(28)

(as)

as defined in I.
In the present approximation in which the equa-

tions of motion are linearized and the resonant
coupling between the acoustic and optical phonons
are neglected, the acoustic-yhonon frequencies
are not affected by the interaction.

Equations (22)-(26) may be derived alternatively
by a free energy approach analogous to that used
~

n I 29,30

As in I, the thermal averages will be deter-
mined in a molecular field approximation in which
the wave- vector-dependent interaction tensors are
approximated by their average values over the
Brillouin zone. Upon averaging, all the correla-
tion functions vanish except 4~ ' = 4f +f +2 '

= &2 '= &2
' =—&2, and tQe molecular field equations

take the form
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cil el + 2 C12e2+ 2 Gll(2A + +1) +G12 ~2 0 (30)

C» e, + C,2(e 1 + e 2) + —,
' G,2(2A + &1 + &2}+ 2 G» &2 - 0

(01 = [202 &2 (qll) ]+4Z 1A

&2,3= [2Q —&0 (q, ) ]+2(I'2 —I'1+C )A'

(41)

A [(o'(q ) + r, (2A'+ 34,) + 2r,a

+ 2(G»e, + 2G,2e2)] = 0

L, =(r,(l)r, (l)) = —coth 2'
CO1

6 =(r (l)r (l)) =(r (l)r (l))

=—coth
1 P(d2

2

(g, = 2 02+ 3I'1(2A + 61) + 2I'2 42

+ 2(G11 el + 2 G12e2}

(31)

(32)

(33)

(34)

(ss)

+(r, —sr, +c,)(~, —~,), (42)

when we make use of Eqs. (SV), (38), and (40).
From Eqs. (37) and (38), the c/a ratio in the te-
tragonal phase is given by

c Cl 2——1 =e1 —e2=- (2A +a, —b,2).
2(G11 —G12

(43)

The transition temperature is determined from
Eq. (40) by noting that A -0 and &»-b, as T- T,
We obtain

+ =20 +1 (2A + &1)+(SI'1+I'2) &2

+ 2 IG11e2+ G12(el + e2) ] (36)

&(T,) = —(g2(qs) / (3I', + 2I', —C,).

For T&T, , »=&o2, 3-=sr. Using Eq. (44), the
molecular field equations may be written

(44)

The molecular field energies (d}, are used only to
determine the thermally averaged quantities A,
e1, e2, ~„and ~2. The true excitations of the
system are given by Eqs. (23) and (24).

In the molecular field equations and in the ex-
pressions for eigenfrequencies at q= q~ only the

three cubic coupling constants G117 6127 and t"44

enter.
From Eqs. (30) and (31), the strains may be ex-

pressed in terms of the order parameter A and the
correlation functions &1 and ~2. We obtain

e, =- — + (2A +&1)
1 2C1

~11 12 11 + 12

1 (d~ = —coth-
(d 2

(46)

The contribution to the thermal expansion for
T& T, is given by

2C
2(G„+2G„) (47)

Similarly, the soft-optical-mode frequencies may
be written

e', (q„)=4 r,A', (48)

~ = [202 —~2(qs) ] + (31"1+ 2I'2- C2) [b(T) —b(T,)],
(46}

1 —2C1 2C2
+ 2

011—G12 G11+ 2G 12
(3V) ~2, 3(q11) = 2(r, —1 + C )A + (I' —SI' + C )(6 —b. )

1 -C1 C2 2

6 G —G G 2G
(2A + )

11 12 11 + 12

for T& T„
& .(q ) = (3I', + 2r, —C, ) [~—~ (T.)]

for T &T,.

(48)

(60)

1 C1 2C2
+ 2 7011 612 G11+2G12

(38)

where we have introduced the constants

ll 12) C (Gll+ 2G12)

C11 —C12
' (Cll + 2C12)

(s9)

With the help of Eqs. (3V) and (38) the strains may
be eliminated from the remaining equations. For
T& T, (A 40), Eq. (32) may be written

(2 I'1 —~ C, ——', C2) A + &so( qz }+ (3r1 ——', C, ——,
'

C2) &,

+ (2r2+ —,
' C, ——,

'
C2) &2 = 0 (4o)

The molecular field energies for T & T, take the
form

From the requirement that &}„&0, we obtain stability
conditions for the tetragonal and cubic phases.

We note, that the self-consistency equations
(33}, (34), (40)-(42), and (44)-(46) depend on the
constants C;~ and G,~ only in the combinations C,
and C2. These equations may be solved by itera-
tion for any given set of the six-model parameters
Q2, &u2(qz), 1"„ I'2, C„and C2 to determine A, e„
e2, &„and 42. These molcular field values are
then used to calculate the soft-mode frequencies
from Eqs. (48) —(50). When in addition the elastic
constants are known, the strains are obtained from
Eqs. (37) and (38).

For T- T„ it follows from the molecular field
equations that



THEORY OF A STRUCTURAL PHASE TRANSITION 4807

and the soft-mode frequencies vanish at T„as
e', (qs)~( V'- T, )'" (52)

We obtain the same temperature dependence of the
soft modes and of the order parameter near T,
as in I. The phase transition remains of second
order also, when the interactions with the strains
are taken into account, and the qualitative conclu-
sions in I remain unchanged. As in I, the singlet
soft-mode frequency in the low-temperature phase
has the same temperature dependence as the order
parameter A or the rotation angle y; whereas,
the frequency of the doubly degenerate mode has
a more complicated temperature dependence. We
also note that the change in the c/a ratio is not
proportional to p'.

IV. TRIGONAL DISTORTION

In the case of trigonal distortion, we obtain
from simple symmetry considerations

for all X,
for i=j,
for s 4j

for A. = A. ,

for X 4X

(53)

The equations appropriate for trigonal distortion
may be obtained formally from Eqs. (33), (34),
(3V)-(42), and (44)-(50) derived for the tetragonal
case by a simple replacement of model parameters,
strain, and correlation functions according to the
prescription given in Table I.

The deviation from cubic symmetry, the rhom-
bicity, is measured by the angle n included by the
rhombohedral axes. In terms of the strains,

and G», or C& and C&, assuming the elastic con-
stants to be known. In addition to the data dis-
cussed in I, the measured pressure dependence
of the transition temperature and the c/a ratio
have been used to determine the model param-
eters —these therefore remain well overdeter-
mined.

From the observed pressure dependence of the
transition temperature, we obtain

G)2= —0. 63 Ggg or C2=1. 0 10 Cg

In Figs. 1-4, the experimental results are pre-
sented together with the theoretical curves. The
set of five model parameters that minimized the
difference between the mean square deviation of
experimental points and the theoretical curves is
given in Table II.

Agreement with the experimental results is gen-
erally very good. Only for the soft-mode fre-
quency for T&7'„shown in Fig. 3, is the differ-
ence between the theoretical and experimental
curves significantly bigger than the experimental
uncertainties. For T = 2 T, , the theoretical value
is too large by about 20%.

The thermal averages A), and 4), have been cal-
culated only in a molecular field approximation.
It is possible that an improved calculation may

2
I I I

TABLE I. The quantities in the first line are replaced
by those in the second line in Eqs. (33), (34), (37)-(42),
and (44)—(50) in order to obtain the equations for trigonal
distortion.

Tetragonal
Af D2 Cf f Cf2 Gf f G$2, e~, e2

Trigonal
—(I')+21'2), I'g, bg+2Q, 6g —h2, 2C44, 2G44, eg+2e2, ef e2

cos n = 2(e~)

V. COMPARISON WITH EXPERIMENTS

(54)
Mull

For SrTi03, the variation of the rotation angle
with temperature, ' the soft-mode frequencies, ' '

the elastic constants, the thermal expansion,
and the e/a ratio have all been measured. In ad-
dition, measurements have been made of the pres-
sure dependence of transition temperature" and
the shjft j.n the sound velocity at T, ' i4 whj, ch
yield information concerning the coupling constants
G &&. The theory presented in I contained four
model parameters which were well overdeter-
mined by the experimental data. The coupling
to the strain introduces two more parameters Gqq

0
0 0.5 Ti'Tg I.O

FIG. l. Angle of rotation of the oxygen octahedron
in SrTi03. Experimental points obtained by EPR. The
solid line is the theoretical curve.
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0 0.5 T/ Ta 1.0

FIG. 2. I"25 optical-phonon frequencies in SrTi03 as
function of reduced temperature in the tetragonal phase.
~ Experimental points obtained by Haman scattering. O
and + experimental points obtained by neutron scattering.
The solid lines are the theoretical curves.

remove this discrepancy. 3 It is, of course, also
possible that additional anharmonic interactions
may be important.

From the stability condition ez (qz) &0, we find
that the tetragonal phase is stable also when the
interaction with the strain is neglected. However,
because I'&- I'2, SrTi03 is then very close to the
stability limit separating tetragonal and trigonal
distortions.

For the harmonic mode frequency we obtain
&uo(q„) =i8 2meV. . This may be compared to the
result of model V in the model calculation of
Cowley for which vo(qz) =i17.4meV. This fre-
quency is, however, very dependent on the details
of the model as discussed by Cowley.

I I I I

C
Q
Q 2

Q

FIG. 4. Ac/a ratio in the tetragonal phase of SrTi03
as function of reduced temperature. experimental points
obtained by neutron backscattering.

The molecular field energy at T = T, , & = 22meV,
gives a measure of the width of the energy bands

For the coupling constants G» and G» we ob-
tain the values

G» = —2. 9~10 sec

G» $ 8 x ]0" sec

The sign of G» is determined by the fact that
c/a &1.

Due to resonant interaction between the acoustic-
and soft-optical-phonon frequencies, there is a
shift in the sound velocity in going through the
transition at T, . ' ' ' In addition, there is a
singular contribution to the sound velocity and the
ultrasonic attenuation due to critical fluctuations.

Using the values of G» and G», the sof t-mode
frequency e& and the distortion angle obtained by
the best-fit procedure, we predict a shift in the
velocity of a longitudinal sound wave propagating
along the c axis and along an a axis of 2. 7/0 and
1. 1%%uz, respectively. This should be compared
with reported shifts of 4%%uo'~ and 2. 7%%uc'4 obtained
from Brillouin scattering experiments for prop-
agation along a crystal axis. Within experimental
error, the measured shifts are consistent with

TABLE II. Model parameters giving best fit to ex-
perimental results. (Appropriate factors of 5'have been
supplied to convert all dimensions to energy. )

0
1.0 1.5 Ta 2.0

FIG. 3. F» optical-phonon frequencies in SrTi03 in
the high-temperature phase as function of reduced tem-
perature. O and 4 experimental points obtained by neutron
diffraction. The solid line is the theoretical curve.

0()
~() (qR)

r,
F2
C)

Model parameter

(me V')
(me V')
(meV3)
(meV3)
(meV3)

SrTi03

202
—68
246
255

50

LaAl03

447
—118

99
285
139
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the value predicted for propagation along the te-
tragonal axis.

From the shift in the transverse sound veloc-
ity, ' we obtain

20

l5—

I I
I

I

I aAIO

G44 = 1.7 10 sec
The coupling constant G44 does not enter the ex-
pressions for the soft-mode frequencies, the ro-
tation angle or the strains in the case of tetrag-
onal distortion, and is listed here only for com-
pleteness.

The strain for T & T, may be calculated from
Eq. (4'7). We find, that the interaction of the
strain with the particular soft-mode coordinates
considered here contributes only a few percent to
the over -all thermal expansion.

For LaA103, the variation of the order param-
eter with temperature has been measured by
EPR, the soft-mode frequency above T, by neu-
tron diffraction, ' and the soft-mode frequencies
in the trigonal phase by Raman scattering experi-
ments. The elastic constants have, however,
not been measured. We shall assume, that the
contribution of the interaction we consider to the
over-all thermal expansion is small also for
LaAl03, and set C~= 0. The experimental re-
sults together with the theoretical curves giving
the best fit are presented in Figs. 5-7. The cor-
responding model parameters are given in Table
II. Within the experimental errors, the data may
be well fitted by the model. However, for LaA10,
we have in effect one more free parameter than
for SrTi03 due to the limited amount of experi-
mental information available. The values for the
model parameters are therefore quite tentative.

Because I'&- 3 I'& for LaA10, one is beyond the
stability limit of the trigonal phase if the interac-
tion with the strains is neglected.

E

~ IO—

LLI

8
8

5 w

0
.5 1.0

We have extended the theory in I to include the
interaction between soft-mode coordinates and the
strains. Whereas, in I we were not able to ob-
tain a good fit for both the soft-mode frequencies
and the magnitude of the rotation angle, good
agreement is now obtained with all the available
experimental results. For SrTi03, the model
parameters are well overdetermined. For
LaA103, additional experiments to determine the
elastic constants and the coupling constants G&&

are required in order to determine the model pa-
rameters and to check the predictions of the
model.

FIG. 6. I'2g optical-phonon frequencies in LaA103 in
the trigonal phase. ~ Experimental points obtained by
Haman scattering. The solid lines are the theoretical
curves.

Figure 8 shows the predicted temperature de-
pendence of the rhombicity together with experi-
mental values measured by Granicher and Muller. '

VI. CONCLUSION

6o—
20 i i i &

I
i ~ g s

LaAI 0~

2'—

l5—

E

L5

e IO-

C
C0
G.

~ Axc ct al.

'0 .5 T/Tg I.O
0

I.O I.5 2.0

FIG. 5. Angle of rotation of the oxygen octahedron in
LaA103. ~ Experimental points obtained by KPR. The
solid line is the theoretical curve.

FIG. 7. F)5 optical-phonon frequency in LaA103 in
the high-temperature phase. ~ Experimental results ob-
tained by neutron diffraction. The solid line is the the-
oretical curve.
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APPENDIX

The interaction Hamiltonian Eq. (5) contains
four independent coupling constants. These are

1
& G11 G112211 ~113311 ~ 221122 ~223322

G331133 G332233

1
2 G13 G111122 G111133 222211

G222233 G333311 333322

1
2 (612 G18) G 112283 G11$322 22113$

= G 223311 G331122 G 332211

G44 G121212 131313 G 232323 ~

All other coupling constants G ~&»),. are equal to
zero.
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