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Singularities in the X-Ray Spectra of Metals*
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Recently, Nozieres et a/. have shown that Mahan's model x-ray problem (coupling between the deep
hole and electron-hole excitations) could be solved exactly for the singular exponents. Here, it is shown
that Lundqvist's model x-ray probelm (coupling between the deep hole and plasmons) may also be solved
exactly. Furthermore, an exact solution for the singular exponents may be obtained for the more general
problem where both effects exist simultaneously. Finally, a perturbation method is developed to treat
both effects on an equal footing for a real interacting electron gas.

I. INTRODUCTION

ECENTLY, much progress has been made in the
understanding of the singularities in the x-ray

absorption and emission spectra of metals. Mahan, '
Anderson, ' and Nozieres et a/. '4 have considered the
threshold singularities caused by the coupling of the
deep hole with the particle-hole excitations of the elec-
tron gas. Lundqvist5 ' has, on the other hand, empha-
sized the importance of the effects of the coupling of the
deep hole to the plasma oscillations of the electron gas.
Here, we show that: (i) I.undqvist's model problem may
be solved exactly with results qualitatively different
from his; (ii) if both plasrnon and particle-hole coupling
to the deep hole is included, the problem may still be
solved, essentially, exactly (in the sense of Ref. 3);
6nally, (iii) a perturbation expansion may be developed
to treat both effects on an equal footing for a real inter-
acting electron gas.

Here, we shall consider only model Hamiltonians of
the form

K= ec c+cc V+H

where c is the creation operator for the deep hole of
energy e, V represents the interaction between the deep
hole and the conduction electrons and involves only
conduction-electron coordinates, and 8, is the Hamil-
tonian for the conduction electrons alone. In using (1),
we assume, as in Refs. 1—6, that the deep state is struc-
tureless and that all effects giving it a width, lifetime,
or extra degrees of freedom are neglected. Of interest
for x-ray absorption will be the density of occupied
states for X+(co) for the deep level; for emission, the
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corresponding function is X (a&), the density of unoc-
cupied deep states. In terms of (I), we may write

dt
&+(~)= —e'-«4, let(0)c(i) I4,),

— 2'
(2a)

dt
'v-( ) = —'"'&0-I (&) '(o) l4-),

— 2'
(2b)

where c(f)=e'~'ce '~' Her.e, lib+) is the exact ground
state of the no-hole Hamiltonian, that is, it is the prod-
uct of the state containing no deep holes and the
ground-state wave function of H, . Similarly, lib ) is
the exact ground state of the one-hole system, that is,
it is the product of the state containing exactly one deep
hole and the ground-state wave function of H,+V.
Generally, we shall obtain 1V+(co) by calculating the
deep Green's function

g.(i-f') = —'Q. l
& (1)"(1')lo.)

In terms of g, 1V+(ca) may be expressed as

a-Ãg(to) =+Imgg(a&air)),
where

(3)

g~(s) = g~(&)e'*'d&

and where y is a positive infinitesimal. The x-ray ab-
sorption will generally be proportional to the convolu-
tion of lV+(~) with the I'ourier transform of the conduc-
tion-electron correlation function (ck(t)c~(0)) provided
that this correlation function is calculated in presence
of an interaction which is equal to V for times after the
x ray as absorbed and before it is re-emitted, but which
equals zero otherwise. A similar relation holds for emis-
sion involving JV (&u). N+(co) will also be important in
determining x-ray photoemission and the electron-
energy loss spectruin.

II. EFFECT OF PLASMONS

In this section~ we adopt Lundqvist's model
Hamiltonian

K =ectc+Qq cctgq(Gq+Gqt)+Qq MqGqtGq, (6)
7 Similar techniques have been applied to the optical problem by

M. Lax, J. Chem. Phys. 20, 1752 (1952). See also R. P. Feynman,
Phys. Rev. 84, 108 (1951).
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the right. For simplicity at this point, we make the un-

necessary assumption that orq=~„=const, that is, we
neglect plasmon dispersion. Then

Frc. j. Approximation used by Lundqvist to calculate the self-
energy of the deep hole. The double solid line represents the deep
Green's ~function and the wavy line represents the plasmon
Green's function.

2»r;V+(a)) = e'&"—'&'(0
~
exp(i8t)

~
0)dt, (7)

where ~0) =c~f+), and H is the one-hole Hamiltonian

~=II + l'=Eqgq(«+«')+E» ~»«'&' (8)

Since (8) represents a collection of displaced harmonic
oscillators, the solution to (7) is imminent. Since
P»=-,'i(« —«t) is the momentum conjugate to the dis-

placement Qq= «+«t, then expL2if»P»] is the unitary
transform that displaces Qq an amount 2fq. Explicitly,
U«Ut= fq+«, where U=expLP» fq(« —«t)], as may
be checked using the nested commutator expansion
e"Be ~=8+(A,B]+ . Picking fq=gq/~q diagonal-

izes H:

where an't is the creation operator for a plasmon, cvq M—
q

is the plasmon frequency, and g, =g ~=g~* is the
coupling constant between the plasmon and the deep
hole. Lundqvist attempted to solve (6) by calculating
the self-energy of the deep Green's function in lowest-
order perturbation (see Fig. 1).The results are sketched
in Fig. 2; the 5-function threshold contribution is re-
duced and shifted, while the lost spectral density ap-
pears as a broad plasmaron peak beginning at a fre-
quency or~ below the threshold.

Actually, using (6), alt+(m) may be calculated exa" tly.
The zero-hole Hamiltonian is just P» a&q«t«, so that

~ P+) is the state that contains no holes and no plasmons.
Hence, according to (2a)

2»r.y+(~) = dt e'&~ ~ ~~q&'e ~ expLae'"q'] (14)

where a= Pq fq'= ~~ ' g» g, '. The Fourier transform is

easily performed by expanding the last exponential to

We note that the broad plasmaron peak of second-order
perturbation theory is replaced by a series of 8-function
peaks in the exact treatment. The weight factor e 'a"/n l

represents the probability that the final state having n
real plasmons is contained in the initial state contain-
ing no plasmons. This interpretation may be confirmed

by carrying out the Fourier transform (7) directly,
obtaining

cv, (~) =(o
~
s(~—a+11)

~

o)

—P.
~
(0~$.) ~

&(~—~ —~~.+~~,), (16)

where the ~P„) are the exact eigenstates of 8; which
according to (9) contain n real plasmons in addition to
the ground state of H.

The emission spectrum ~V (&v) may also be easily cal-
ulated. Here, ~P )= Ut~o) where ~0) contains no
plasmons and no deep electrons (one deep hole). Ac-

where

Hence,

UII Ut = —De++» (oq«t«,

~q =+q gq /~q.

(9)

(1o) DELTA FUNCTION ~

&0[exp(i~t) IO) =(o
I
U' expt i Zq ~»«'«t]Ul 0)& ""

= (0
~
Ut(0) U(t)

~
0)e '~"

where

U(t) =exp)i g» co»«taqt] U expt —i P» co»«t«t]

=exp[+» f (a e '" ' «te'" ')]. —

Substitution back in (7) yields

(12)

(0
~
exp(iHt) ~0) = e '~"e ~"exp)+» fq'e'"q'] (13)

after making use of the identity z&+&=z&t»z—~~2~~ »
several times to move all the destruction operators to

FIG. 2. Deep density of states %+{co)obtained using
the approximation of Fig. 1.
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cording to (2b), (6), and (9), we have

2»r.rV (cv)

dte"" ' ~"(Oi U expi —i Q» ~»u»ta»t]U~ i0&.

(17)

Using the same procedures as in the absorption case, we
write

where ck ~ is the creation operator for a conduction elec-
tron of wave vector k, spin o., and energy ek. The third
term causes the Anderson orthogonality block. This
Hamiltonian may be solved exactly because the plas-
mons are taken to be well-de6ned excitations indepen-
dent of the pair excitations.

To proceed, we note that now i&+& has no holes, no
plasmons, and no pair excitations of the electron gas.
Hence,

(0 i
U exp L

—i P co,a„ttJ t]U ~
i 0& 2»r)V+ (ca) = dt.'e'& —"(0

i
exp(iHt)

i 0), (22)

Therefore,

= (0
i
U(t) Ut(0)

i 0) =c a exp(tM ' ') . (18)
where i0)=cirro& andH=H'+H",

H =2» f»(tt»+tt» )++» ~»tt» tt»

iV+(u) = P (e 'a"/rt!) t't(~ e ace—„W—neo„) . (19)
n=o H = Q Vkk'CkgtCk g+Pr6k gkCCgtr .g

kk'0. ko

(23)

The probability is that, for emission e u"/I!, there are
n plasmons bound to the initial deep hole. This inter-
pretation may be conhrmed by Fourier transforming
(17) directly as

-V-(~) =P-1(Po I
t~&

l

'~(~ —~ —&~.+&~.» (20)

where
i Po) = U~

i 0& and where all states labeled
i
rt) con-

tain exactly n plasmons. ' We note that the emission and
absorption spectra for the deep state are similar in that
they begin at the same energy a+a~~; however, the
plasmon satellites are on the low-energy side of the zero-
plasmon peak for absorption, but on the high side for
emission. One might also note that for absorption, the
first moment J'd~(cd —e)tV+(cd) exactly vanishes; this
is true for any Hamiltonian of the form in Eq. (1).

where we have used the results of Sec. II. The quantity
(Oi et~"ti 0&—=ec"&ti is precisely the quantity calculated
by ND who found that, asymptotically, for large t

C"(&) ~ —is& —~Lln
i
D&

i ,'i~ s—gn&]. (23)

The energy shift 6 and the effective energy cutoff D
depend on the details of the potential V~I, , the exponent
n, on the other hand, is determined solely by the phase
shifts of Vyy. at the Fermi level:

Since H' and H" commute (by assumption), Eq. (22)
factors:

(0i c' "'i o&= (o i
c'""Io&(oI c'""'Io&

(0i &iH" ti 0&c t'aagtc ae—xp(tt&t—apt) = c&(t) (24)

III. PARTICLE-HOLE EXCITATIONS
AND PLASMON EFFECT

n=P (tt't ./»r)'.
trna

(26)

Anderson' has shown that the conduction-electron
parts of the zero-deep hole and the one-deep hole wave
function are orthogonal for an infinite system (in the
presence of an interaction between the deep hole and
the conduction electrons), so that the threshold
function will have zero weight. It is replaced by a power
law singularity as shown in detail by Nozieres ef, al. ' '
One might expect that the plasmon satellites will be
similarly modihed. Here, we address ourselves to this
problem by considering the model Hamiltonian

SC=eC C+Q CCtg»(C»+&» )+ Q Vkk'CkgtCkg'CC

+Q fart»G» 8»+Q ekCkg Ckg, (21)

Since the hole has only one degree of freedom (it does not re-
coil), there is no correlation between the emission (and reabsorp-
tion) of subsequent virtual plasmons. It therefore follows from
probability theory that if a is the average number of plasmons
surrounding the hole, then the probability that there are exactly
n at a given time is given by the Poisson distribution e u"jn f.

2»l Vg(trt) = d~&i(co—e) t&Cy(t) (27)

with

C~(t) -+ —i (tjtd„+ 6)i—a/1 —e+*"~t]
—nDni Dti W-', iver sgnt]. (28)

As noted by ND, the asymptotic form of C~(t) is all
that is necessary to obtain the singular parts of E~(~);
the terms linear and oscillatory in t determine the posi-
tions of the singularities; the other divergent terms
determine the shape of the singularities. From (27) and

(28), we fin.d that

V~(ca) =+„(e 'a"/tt!)8~(ta —e —6—~„&t»(u„), (29)

where
8~(&v) ~ i&vi '0(w~) (30)

One can similarly extend these results for emission as
well, obtaining
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theoretic method for this is described in Sec. V. As a
prelude, however, we show how the plasmon problem of
Sec. II may be solved by summing all the terms in
perturbation theory, using a method analogous to ND
for the particle-hole problem.

Consider the absorption case first. The diagrams for
the deep propagator fg+(t —t') are of the usual electron-
phonon type as shown in Fig. 5. The double solid line
represents the bare deep propagator

sg~&" (f t') =——8(t' —t)e *''t' '& (31)

DELTA FUNCTIONS and the wavy lines represent the plasmon propagator

(32)

(Up

IE'I

QJp

Fro. 3. Exact density of states E+(ca) according to the Hamil-
tonian

I see Eq. (6)g. The peaks are shown here decreasing in
weight with decreasing co, but for sufficiently large a (u&1), their
weights will increase before decreasing. The center of gravity of
the distribution is always ace„ to the left of point A, i.e., at point
B.The deep state spectra for emission 1V (co) is obtained by reflect-
ing the above graph about point A.

near &v= 0. Here, 0(x) equals zero or 1 for x negative or
positive, respectively. Thus, the effect of the interaction
with pair excitations is to replace the 8 functions of
Fig. 3 by 8~, as shown in Fig. 4. Up to this point we
have neglected dispersion, which will soften the singu-
larities of the satellites, but we leave the zero-plasmon
singularity intact. Of course, in real materials, the width
and lifetime of the deep state would soften the threshold
singularity as well.

It should be mentioned that to obtain the actual
x-ray emission or absorption spectrum, Eq. (29) must
be convoluted with an effective conduction-electron
density of states F, which as shown by ND is to be
calculated in the presence of the transient potential
mentioned earlier. The only point we wish to make here
is that Ii is not affected by the plasmon interaction in

(21), although it would be in a more realistic model
where the plasmons were allowed to interact directly
with the conduction electrons.

where Ps = as+ a st and Ds(t) = e '"~'. (Note that this is
the same as the bare propagator in the absence of inter-
action. In the emission case, the two are not the same,
but we shall use the symbol Sn(f) for the bare prop-
agator in that case also. ) Each solid dot (vertex) re-
ceives a, factor of —jgn. It is clear that g+ (t t') vanishes—
unless t'& t and also that all solid dots in the diagram-
matic expansion must have intermediate time variables
(between f,

' and t) in order to yield a nonvanishing
contribution. Furthermore, except for the trivial ex-
ponential factor, whose only effect is to give an over-all
exponential factor to g+, the quantity —ig+' ) is equal
to unity, with the proviso that we order all the times in
the sequence in which they appear on paper in a given
diagram. Hence, as in the XD case, g may be written

IV. PERTURBATION THEORETIC SOLUTION

An obvious weakness of the model Hamiltonian of
Sec. III is the assumption that the plasmons are well-
de6ned excitations independent of whatever particle-
hole excitations are present. One would like to have a
method for calculating the spectrum directly from the
properties of the interacting electron gas. A perturbation

(dp

FIG. 4. Deep density of states iV~(w) according to Eq. (29), The
dashed curves show the effect of plasmon dispel'sion.
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where

C+(t) = —P g, '
de D(q, (u) (1+mat —e'"')

ol

C &'(t) = —P gq'
q

d(o D(q, (o)(1—i(ot —e '

D(q, ar) = e'"'D (—t) = 8((o—(v,) .
— 2'
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ag ag~&= «te Za etege(a~+act)+2» A ae

+P, (u,a, ta, . (36)
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'

a reem
d in Sec. II.

icated. Tog
e t the interme ia

h
preserve

d t' we must rewrite e5 be between t an t we m
E . 6) as

=2 (—ig~)(+ig~) dr'in(r —r') (39a)

C "(t)= —P gq'
d(o D(q, co) (2ia&t)

(39b)
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It may also be written as

es(g, M)
~(q,~) = —— —0(~),

4v'e'
~ e(q, (o)

~

' (46)

(b)

Fro. 8. Two distinct "linked" diagrams for C (t t') —No.te that
t&r&r'&t' in (a), but that t&r&t' and ~ &r'& —~ in (b).

electron gas Hamiltonian, and

(41)

where p~ is the qth Fourier component of the conduction-
electron density, a,nd Vq is the interaction potential.
The diagrams for g+ are, of course, the usual ones for an
external particle interacting with an electron gas. As in
Sec. IV, one uses the linked-cluster theorem, except now
there are an infinite number of linked diagrams for C.
Some of these are illustrated in Fig. 9.

The rules for calculating C~(t —l') are as follows: For
each conduction-electron line associate a, factor i', &'~

(t—t'), where Gs, &'l(l —3') is the bare propagator for
a conduction electron of wave vector k and spin o-, for
each dashed line associate a factor —i(4v-e'/q'); for each
dot associate a factor &iV„and for ea,ch cross associ-
ate, a factor —i' for emission, but do not include
crosses for absorption; integrate crosses and dashed
lines from times —~ to ~; integrate dots from t to t'

for absorption and from t' to t for emission; conserve
momentum and spin at Coulomb vertices in the usual
way, and give a factor of —1 for each closed G loop. '
Finally, g is determined by

g+(&—l') = g+ &ol(l —l') e"t'-'l,

where C is the diagrammatic sum above and

where e(q, es) = er(q, &o)+ies(q, &e) is the dielectric function
of the electron gas.

To see how things go, we use the Lindhard value' of
e in (46), which has the form (for &o) 0)

es(q, (o) =Eg(q, (o), for co+q'/2m(yves
—&v(q, to), for ~~ rJ'/2m—

~
(ps (&o+g'/2m

=0, for qv~) ~a) —q'/2m~ . (47)

Eg(q, &u) = (-', v-) ((u/qvF) P.'/q'), (48)

where vp is the Fermi velocity and A. is the Thomas-
Fermi wave vector, so that this contribution to C is"

E& and E& both contribute to the energy shift 6 and to
the energy cuto6 D. However, only Ez contributes to
the logarithmically divergent term. This is because the
integral involving Ev in (44) is perfectly convergent for
each term alone, so that the 6rst term will give a con-
stant, the second will give an energy times (it), and the
third will give a function of t well behaved as t~~.
Therefore, so far as the threshold behavior is concerned,
only the term involving Ez will be important. Ez is
given by

ig, «&(t) = +0(al)e-'". (43)

The simplest viable approximation is to treat V~

only to second order, that is to include only those dia-
grams of the type shown in Fig. 10. In this case, C~
may be written down, by inspection, in analogy with
Eq. (40) as

X(i+i~/ —e+'"')/~', (44)

where 5(q, a&) is the dynamic form factor for the electron
gas, that is,

'Each diagram receives the usual combinatorial factor: A
diagram of ei Coulomb lines, eq dots, and n, crosses is to be di-
vided by nife&Ie, ~2" & and multiplied by the number of ways the
2e~+ng+n, vertices can be connected with 6 lines to form that
particular diagram. In the general case, the method of coupling-
constant integration provides a more convenient way of keeping
track of these combinatorial factors.

Fio. 9. Typical diagrams contributing to C for the interacting
electron gas. Diagrams with crosses contribute only to the emis-
sion case. All diagrams have at least one dot. The long-range part
of diagram with one dot and no crosses is cancelled by the interac-
tion of the hole with the other ions. Generally the e8ect of such
diagrams is included in the definition of e, so they are omitted.

"J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 28, 8 (1954).

"The fact that the two terms in the integral in Eq. (41) do not
individually converge is a manifestation of the Anderson orthog-
onality block. In fact, the exponential of the first term alone is
the weighting factor for the "zero quasiparticle line. "For a finite
system of volume U, the lower limit would not be zero, but rather
would equal the minimum excitation energy of a particle-hole
pair ~ U '". Hence, this zero quasiparticle weighting factor is
cc exp(o. lnV ~13)= V «'8 in agreement with Anderson's results
[see Eqs. (44) and (46)g.
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&& (1—e'"')/(u'd(o (49) (a)

where E(0) is the density of states at the Fermi level,
and &u = qn~ —q'/2m. We have omitted the i cot term in
the square brackets, since it just leads to an energy
shift and is therefore uninteresting. Equation (49) may
be written as (@=cot)

Ar(0) +mt 1 eking

dr. (50)
qvp e x

I e[q&(x, t)] I

(b)

FIG. 10. All the diagrams which contribute to C when V& is
treated in second-order perturbation theory. Diagrams (a) con-
tribute to both absorption and emission, while diagrams (b) con-
tribute only to emission. Here I' is the complete four-point func-
tion for the electron gas. In this figure, the solid-6 lines represent
the full interacting propagator.

Asymptotically as ltl —+~, Eq. (50) becomes

where
(51)

Combining (51) and (56) gives an expression of the form

C~(t) = —iAt —a[1—e+'"~')
—n[lnl Dtl wi-,'~ sgntj, (57)

and

I
vql' N(0)

n= P
«sqr

I e(q 0)
I

' qnF
(52)

Imb = Wo.

(sgA t )oo Sing 7r

dx = Wo,—sgn3. (53)

n= P (8(„./~)',
lmo

(54)

where the b~ 's are to be calculated with the shielded
potential V,/e(q, 0).

The other contribution to C arises from the zeros of
the denominator of (46). Neglecting plasmon dispersion

The real part of 6 contributes to the effective energy
cutoff D, but does not affect the phase of the logarithm.
There are other contributions to D from the E~ term.
Finally, we note that (52) is the Born approximation for
the phase-shift sum

which is the same as (28), although now we have an
explicit prescription for calculating the constants. In
addition, one could calculate the whole spectrum from
(44), which, due to our general arguments, should not
differ qualitatively from Fig. 4.

The Friedel sum rule suggests that the use of second-
order perturbation theory in V~ may not be too good.
It should be interesting to investigate higher-order
effects which include the modification of the effective
plasmon coupling constant and the plasmon propagator
by the transient potential. It should also be interesting
to investigate the cancellation eKects (Glick and Longe' )
which arises from plasmon vertex corrections.

Note added in proof. I thank B.Lundqvist for pointing
out that plasmon dispersion was included in the
theoretical calculation plotted in Fig. 2. Plasmon dis-
persion has been included numerically in the present
theory by L. Hedin, B. Lundqvist, and S. Lundqvist,
Proceedings of the National Bureau of Standards
Conference on Density of States, 1969 (to be published).
Thus, a more accurate comparison of the exact and
approximate theories is to be found in this latter work.

Sni.. .„(q,(e) co„(q'/Ss-e') 8((u —(v„), (55) ACKNOWLED GMENTS

9+ roc

dco g(1+~t e+'—"') (u 6—((o—a)r) . (56)
p GO Sue'

for say q&a&~/v& q, . The plasmon contribution to C is
therefore,
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of the work of Ref. 5, and for helpful and stimulating
discussions on this and other matters. I thank the staff
of the Physics Department at Cornell, where the finish-

ing touches were put on this paper, for their kindness
and hospitality.


