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In the ultra-clean limit, l -~, we may neglect the 1 factor in Eq. (27) as compared to (e r ) . For niobi-
um at O'K, p~)=100and if we take ii=30 as an upper bound for p, , we obtain a ratio 1/)=10. For this
value of p, , the terms neglected in 6'„„are of order 0. 003 and those for (P„„oforder 0. 1. Our theory is
therefore valid for l /g ranging from ~ to about 10.

For l/$-10, r =1/30 so that 1+(re) =1. In Fig. 1, we plot H,«/H, s versus it(0)/H, sfor &o,sr =0 and ~,
where a&,s=eH, s/mc. For niobium h(0)/H, s=0. 75 and we have nearly tano, =co,sr, which agrees with the
experiment of Maxfield. "

Our calculation is performed in a frame at rest with the vortex. In this frame, the impurity scatters
are moving at a velocity vz, . Our neglect of this fact probably introduces errors of order vz, /vz which are
clearly negligible.
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The orthogonalized-plane-wave (OPW) series convergence up to 900 OPW's is illustrated for
equal-core-size compounds C, Si, ZnSe, and CdTe, for large-cation-small-anion compounds
ZnO, AIN, and Zns, and for large-anion-small-cation compounds BAs, BeTe, and ZnTe.
Herman's overlapping-free-atom-potential model is used primarily, although self-consistent
OPW convergence results are given for BAs. It is found that the first row of the Periodic Ta-
ble is exceedingly difficult to handle with the OPW formalism. The primary factors involved
in OPW convergence are found to be the presence or absence of core functions in the OPW's
(which was realized long ago) and the relative core sizes of anion and cation. Criteria are
given for estimating the OPW convergence behavior of compounds.

I. INTRODUCTION

A number of different techniques have been de-
veloped to calculate the energy-band structure of

crystals. The best-known techniques are the aug-
mented-plane-wave' (APW), Korringa-Kohn-
Rostoker (KKR), and the orthogonalized-plane-
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TABLE I. That portion of the Periodic Table is
shown which is relevant for this paper, together with
the last atomic state which is generally considered a
core state in OPW calculations for that row of the table.

Atoms

4Be 5B 6C
12 Mg 13 Al 14 Si
30 Zn 31 Ga 32 Ge
48 Cd 49 In 50 Sn

7N 80
15 P 16 S
33 As 34 Se
51 Sb 52 Te

Outer
core state

1g
2p
3d
4d

wave'~ (OPW) methods. Each technique has ad-
vantages and disadvantages which may vary in im-
portance in different parts of the Periodic Table.
In the APW and KKR techniques, the space in a
crystal is divided into spheres centered on the
atomic cores and the space between these spheres.
A spherically symmetric potential is usually as-
sumed within the spheres and a constant potential
is assumed outside the sphere —the "muffin-tin"
potential. The OPW method divides electron
states rather than space. It assumes deep tight-
ly bound nonoverlapping "core" states and loose-
ly bound "valence and conduction" states. A
spherically symmetric potential is assumed only
for the core states. The valence and conduction
states are expanded in a modified Fourier series
of reciprocal-lattice vectors.

Systematic studies of the advantages and dis-
advantages of the various techniques should be
made. For example, the validity of the muffin-
tin approximation should be critically examined
for various types of crystals. The OPW technique
has the strong advantage of relative simplicity.
The valence and conduction wave functions are de-
fined in all regions by the same expression. The
valence contribution to the crystalline potential
need not be spherically symmetrized in the core
regions. The OPW technique is probably the
easiest technique to make self-consistent. Its
greatest weakness involves the slow convergence
of the OPW series.

The purpose of this paper is critically to ex-
amine the OPW series convergence for diamond,
zinc-blende, and wurtzite semiconductors whose
constituents are taken from that part of the Peri-
odic Table shown in Table I. We will present de-
tailed results on the ten compounds listed in Ta-
ble II. These compounds were chosen to study
relative anion-cation core size and the effect of
the absence of core p states in the first-row ele-
ments. We have found the illustrations and cri-
teria established in this paper to be very useful
when planning OPW calculations on new corn-
pounds.

TABLE II. Compounds discussed in this paper are
shown classified by their relative cation-anion size.

Relative core sizes

Same-size cores
C (no p states in core)
Si
ZnSe
CdTe

Larger cation with small anion
ZnO (no O p state in core)
Alw (no N p state in core)
ZnS

Larger anion with small cation
BAs (no Bp state in core)
BeTe (no Be p state in core)
Zn Te

We will use Herman and Skillman's overlapping-
free-atom-potential (OAP) model5 for most of our
illustrations because of its simplicity and because
we can handle larger numbers of OPW's in this
model. In our experience, the over-aQ conver-
gence features are very similar for all OPW mod-
els. To support this, we will present results of
our own self-consistent OPW (SCOPW) model. ~

II. GENERAL OPW FORMALISM

In the OPW formalism, one must divide the
electron states of the crystal into core and va-
lence states. As many states as possible are
designated core states. The restriction is that
there must be no appreciable core overlap be-
tween neighboring atoms. If too few states are des-
ignated as core states, the convergence of the
OPW series becomes very poor. The choice usu-
ally made is indicated in Table I where the outer-
core state is given for the four relevant rows of
the Periodic Table. The resulting core overlap
is shown for ZnS in Fig. 1 where the number of
core electrons outside the radius r is plotted ver-
sus r, with the Zn and S nuclei separated by their
nearest-neighbor distance. The intersection of
the Zn and S curves gives a common-core overlap
of 0. 02 electrons. Corresponding results for all
ten compounds are given in Tame III, together
with the anion radius at which the crossing oc-
curs and the nearest-neighbor distance. Herman-
Skillman programs for free atoms were used for
these calculations. The results do not change ap-
preciably when SCOPW cores are used.

The core-electron wave functions are calculated
from a spherically symmetrized potential and can
consequently be written in the atomiclike form
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FIG. 1. Zn and S cores are shown separated by their
nearest-neighbor distance (in a.u. ) in ZnS. The num-

ber of core electrons outside radius x is shown.

In Herman and Skillman's OAP model, the atomic
potentials (Coulomb plus excha, nge) due to neigh-
boring cores are summed at each dissimilar core
center. The resulting "core shifts" (given in Ta-
ble III) are added to the free-atom core energies
to give the core energies in the crystalline environ-
ment. In our SCOPW model, the Coulomb poten-
tial and the charge density of the valence elec-
trons are spherically symmetrized about each in-
equivalent lattice site for the core calculation.
Madelung terms (site-dependent constant plus pa-
rabola) are added due to the 0 = 0 plane-wave
charge density and the unbalanced nuclear charges.
New core states are then calculated in this en-
vironment.

The valence and conduction-electron wave func-
tions are expanded in a modified Fourier series
of reciprocal-lattice vectors:

y(u, ) =Q &(u, )(I/gO) e*' "

-Q e' & ~Q A„',(k~)y„'...(x-R,)
a nl

k„=kp+K~ .
Here kp gives the location in the first Brillouin
zone, p„', „represents a core state with quantum
numbers nl, and rn = 0 when the g axis is taken in
the k~ direction. The A„,(k~) are chosen such that
each OPW is orthogonal to all core states. Thus,
when a variational procedure is applied, one ob-
tains convergence to the bottom valence state rath-
er than to the bottom core state.

In practice, all terms in the OPW series are
kept for which

X „thus gives the minimum Fourier wavelength
used in the series expansion. The minimum dis-
tance that can be defined with such a Fourier se-
ries is roughly

1
+m= ~~min ~

Table IV gives the x„corresponding to various
numbers of OPW's for several lattice constants
for the zinc-blende, diamond, and wurtzite crystal
structures. z is directly proportional to the lat-
tice constant, so these results are easily extended.
Because k space is equally populated by recipro-
cal-lattice vectors, extensions can be made off

TABLE III. Compound parameters which are presented include the crystal symmetry, lattice constant (a and c for
0

wurtzite) in A, nearest-neighbor distance in a.u. , anion and cation core shifts for Herman and Skillman's OAP model
in By, the core-electron overlap in electrons, and the anion radius in a.u. at which there is an equal fraction of an
electron (the core-electron overlap) for both anion and cation outside that radius. (D stands for diamond, W for wurt-
zite, and ZB for zinc blende. )

Compounds

C (D)
Si (D)
Alw (W)

zno (w)

ZnO (ZB)
ZnS (ZB)
ZnSe (ZB)
ZnTe (ZB)
CdTe (ZB)
BAs (ZB)
BeTe (ZB)

a (A)

3.5668
5.431
3.111,
4. 978
3.2494,
5.2055
4. 568
5.4145
5.653
6.07
6.482
4. 777
5.626

Ann (a.u. )

2. 92
4.44
3.53

3.69

3.74
4.43
4. 63
4. 97
5.30
3.91
4. 60

Anion core
shift (Ry)

—5.734
—2. 524
—4. 841

—2. 793

—2. 782
—1.838
—1.586
—l.368
—l.160
—3.070
—1.845

Cation core
shift (Ry)

—5.734
—2. 524
—4. 308

—2. 393

—2. 324
—1.750
—l. 630
—1.509
—1.198

3 ~ 321
—2. 061

Core-electron
overlap (electrons)

0. 00005
0. 0007
0. 0007

0.02

0.02
0.02
0.04
0.06
0.07
0.003
0.003

8 anion
(a.u. )

1.5
2. 2
1.0

0.5

0. 5
1.2
1.8
2. 3
2. 2
2. 7
3.0
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TABLE IV. Minimum distance r~ is shown for vari-
ous numbers of OP% s for three zinc-blende lattice

0
constants (in A) and two wurtzite values of the c lattice
constant. An ideal wurtzite c/a ratio was assumed.
is directly proportional to the lattice constant.

of a lower triangular matrix and its Hermitian ad-
joint

U= LLt,

L, , =O, fori&j .
Zinc

No. OPW's

27
51
65

137
229
307
459
725
965

1.00
0.85
0.71
0.58
0.48
0.43
0.38
0.32
0.29

1.67
1.42
1.18
0.96
0.80
0.72
0.63
0.54
0.48

blende or Diamond
~ (3 A) ~ (5 A)

2.34
1.99
1.65
1.35
1.12
1.01
0.88
0.76
0.68

23
55
73

135
233
313
451
737
989

2.21
1.38
1.25
1.06
0.88
0.79
0.69
0.57
0.53

Wurtzite
No. OPW's r~(5 A)

3.10
1.94
1.75
1.49
1.23
1.10
0.96
0.80
0.75

The eigenvalue problem then reduces to

which requires only one diagonalization rather than
two. The calculations of L and L ' require only
very short computer programs which are very
fast. Because II and U are both Hermitian, they
can be stored in the same matrix with only one ad-
ditional array of diagonal elements being required.

the bottom of the table by realizing that r is in-
versely proportional to the cube of the number of
OPW's. This cubic dependence severely hampers
OPW convergence.

The potential used by Herman and Skillman's OAP
model is simply the superposition of the free-atom
potentials of the atoms at their crystalline sites.
Overlap is taken into account by means of the
core shifts. In our SCOPW model, the OPW va-
lence wave functions are used with the iterated-
core wave functions to calculate the crystalline
potential. In both cases, the Hartree-Fock ex-
change potential is approximated by either
Slater's, Kohn and Sham's, ' or Liberman's ex-
change approximation in which the exchange poten-
tial is taken to be proportional to the total elec-
tron density to the one-third power. In the SCOPW
model, a fine crystalline mesh is used over which
the total charge density is calculated. In Herman
and Skillman's OAP model, the individual atomic
charge densities are raised to the one-third power
and then added. The Kohn-Sham exchange often
gives slightly better band energies in Herman and
Skillman's model, while Slater's exchange seems
to give consistently good (i.e., agreeing with ex-
periment) SCOPW energies without adjustments. '
We expect the gross convergence properties ex-
amined in this paper to be insensitive to the exact
form of exchange used. Slater's exchange is used
throughout this paper.

Application of the variational principle to the
bottom valence energy results in the matrix eigen-
value problem

~+r ~)

1'g Y
Uiy

III. CONVERGENCE

One's definition of convergence depends upon the
accuracy with which one must know the band ener-
gies. In modern OPW calculations, this accuracy
is about 0. 02 eV. When we say that an energy is
convergent, we mean that it is within 0. 02 eV of
the final flat value.

The Bri11ouin zone for the zinc-blende anddia-
mond structure is shown in Fig. 2. Most of our
interest is focused at the F, X, and L high-sym-
metry points. The variation of the SCOPW ZnS
(Slater exchange, 229 OPW's) energy bands through
the zone is shown in Fig. 3.

For this study, we will concentrate on the con-
vergence of the I"-point energies. Similar be-
havior is expected at the other zone points. Con-
vergence studies of the X- and L-point energies
of ZnO and BeTe wi11 be presented to support this
expectation. For convenience we will use the

Hg=XUP,

where the positive definite Hermitian matrix U re-
flects the nonorthogonality of the OPW basis set.
We solve this problem using a technique due to
Shankland which is especially useful for large ma-
trices where diagonalization time is very impor-
tant; One can easily decompose U into the product

FIG. 2. Zinc-blende Brillouin zone. Important zone
points for this paper are I"(0, 0, 0), X(1, 0, 0), andL(2,
1 1
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state) through three-core p states (four-core s
states) for equal-core sizes. The larger cation
compounds and the larger anion compounds then
show the effects of relative core size with and
without core p states.

Figures 4 and 5 display the results of our con-
vergence study. We have plotted in Fig. 4 the
quantity

v=4m p

for the anion bottom valence free-atomic state on
the same graph with the I',„band energy, the x
axis being r in one case and x in the other. The
convergence behavior of the higher valence and
conduction bands is shown in Fig. 5. Figure 5

also shows o for the cation (heavy line) and the

r X K
REDUCED NAVE VECTOR

(a) ZnSe
"iv

4a

—-45

FIG. 3. ZnS SCOPW-229 OPW-Slater exchange bands
are shown together with the position of the Zn 3d core
energy. SCOPW high-symmetry point values are indi-
cated by heavy dots. A pseudopotential interpolation
scheme was used to generate the lines.

0 0
L

I.O

Se~s

l.5
r (a.u. )

2.0

ZnS

~ I I I I ~ I ~ I I

2.5

—-47
—-46

same notation for the F-point representations of
the zinc-blende and diamond symmetries. The dia-
mond and zinc-blende F& states are s-like in char-
acter and contain no core p states. In wurtzite
symmetry, the F& splits into a F, and I',. The
diamond and zinc-blende I'» states are p-like and
involve no core s states. In wurtzite structure,
the F» splits into a I'„a I'3, a F„and a I"6.

Two primary factors are involved in OPW con-
vergence. One is the well-known presence or ab-
sence of core wave functions of the particular band

symmetry in the OPW's. For example, the first-
row elements have no p states in their cores,
and thus the F&5 series is a pure plane-wave se-
ries rather than an OP% series. This factor has
been discussed qualitatively by Callaway, Heine,
and Herman. " We will present the results of sev-
eral calculations which quantitatively show this ef-
fect. The other factor is the relative core size of
anion and cation. For a given number of OPW's,

is proportional to the lattice constant, and con-
sequently to the sum of the core radii. If one core
radius is much smaller than the other, r will
never get small enough to "feel out" the smaller
core. By feel out, we mean adequately to repre-
sent the valence wave function in the core region.

Table II illustrates how we have tried to separate
these two effects. The series C, Si, ZnSe, and
CdTe shows the effect of no-core p states (one s

0 .5 I.O I.5
r (a.u. )

2.0 2.5

(b) Zn0 (ZINC BLEM)E)

tv —-62

—-64
lvi

—-66 &

00 1.0 I.5
r (a.u. )

2.0

"Iv
Liv —-60

—-62
Pl

—-64

—-68

0
1.0

r (a.u, )
l.5 2.0

FIG. 4. Bottom valence-band energies are shown as
a function of r~. Charge density of the bottom valence-
anion free-atom state is shown on the same plot.
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obtained when x is equal to the radius at which 0

is a maximum, although there is occasionally some
slight falloff beyond this point. The X- and L-point
convergence is slightly slower, but substantially
the same. This convergence behavior supports
our choice of z as a proper distance measure for
our further considerations.

B. Dependence on Number of Core-State

Functions in OPW's

First we consider the equal-core compounds.
The C core consists of a single s state. The I',„
(which involves this Is state) has relatively good
convergence. Where x equals the radius at which
0 equals —,

' of its maximum, convergence is com-
plete. This is at around 700 OPW's. The C F,~

have no core states to aid convergence. The OPW
series becomes a plane-wave series —a straight
Fourier series. Convergence is very slow. We
suspect that relatively complete I"» convergence
for C would require an z of about 5000 plane
waves. The contrast between the C and Si con-
vergence is dramatic. Si has both 1s core states
to aid the I', convergence, and it has a 2p core
state to aid the I'» convergence. The l „state
has obtained complete convergence at about —,'0

The Si I'» convergence is comparable to the C
I"„convergence which is significant since they
both have one core state. As in the case of the C
F„state, convergence of the Si I » is obtained at
about —,'0,„. ZnSe and CdTe convergence is very
good. In each case, convergence is about complete

1
by 5omax

Looking at the Zn sequence from ZnO through
ZnTe, we note progressively better convergence
as the anion core becomes richer in orthogonaliza-
tion states. This qualitative behavior was, of
course, pointed out long ago by previous workers.

C. Dependence of j.'»„on Anion Core Size

F» convergence is worst for the large-cation-
small-anion compounds. In both ZnO and AlN, the
1»„valence state is above the I'&, conduction state
at large ~ . The 1"»„convergence clearly depends
critically upon the anion core size. In ZnS, I',5„
convergence will be complete Bt around 30
the anion core. Note that S has a single-core p
state to aid convergence. The F„„convergence is
much better for the large-anion-small-cation com-
pounds, substantiating the strong dependence upon
anion size. For example, in BAs and BeTe, the
I'&5 curves are flatter than for ZnO and AlN.
There is a leveling off as the anion core is pene-
trated, but a significant further lowering as the cat-
ion core (containing no p state) is penetrated. In

ZnTe, the I'„„and I"„,both level off at about ~o'
1

This occurs at roughly the same point for both
anion and cation for ZnTe.

The behavior of the X- and L-point top valence
bands is shown for cubic ZnO and BeTe. Again,
the ZnO valence bands go down much more steeply
than the BeTe bands, showing the critical depen-
dence of the p-like valence bands upon the anion
size.

We can see from these figures that the conver-
gence of the top valence band depends critically
upon the anion core size, with a weaker dependence
upon the cation core size. Convergence seems to
be complete when the smaller core is penetrated
to -o m« if the core contains one P state and by -'Om«

if the core contains more than one P state. If eith-
er core contains no P states, convergence is very
poor.

D. Dependence of I'& on Cation Core Size

In the large-cation-small-anion compounds, ZnO,
AlN, and ZnS, the I"„band can be seen to level off
almost completely when the cation core is pene-
trated to —,'Om, „for ZnO and AlN and Som, „for ZnS.
This is in contrast to the large-anion-small-cation
compounds BAs and BeTe where there is a signifi-
cant falloff of the I"„even when the large-anion
core is well penetrated. Clearly, the I"&, conver-
gence depends almost completely upon the cation
core size. Any dependence upon the anion size
is less obvious than the I"zs„dependence upon cat-
ion size because all cores contain at least one s
state to aid the convergence.

E. SCOPW Convergence

In our experience, SCOPW convergence seems
to be just slightly better than OAP convergence.
But the over-all features are the same. One can-
not count on self-consistency significantly to im-
prove poor convergence. (We tried this on ZnO. )
As an example of SCOPW convergence, we show
results for BAs in Fig. 5. It will be noted that
the addition of more OPW's does not always lower
the self-consistent bands as it does the OAP bands.
This is because the SCOP% potential changes with

The familiar variational behavior is thus seen
only for the OAP results.

IV. CONCLUSIONS

Two factors are relevant for OPW convergence.
One is the number of core-state functions con-
tained in the OPW's. The presence of even one
core-state function helps dramatically as was seen
for Si compared with C. The other factor is the
relative core sizes of anion and cation. For a giv-
en number of OPW's, x is proportional to the sum
of the core radii, while convergence depends upon
the penetration into the smaller core. As a rough
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rule of thumb, with one core function in an OPW,
one must penetrate to about —3o, W'ith more than
one core function in an OPW, one must penetrate
to about 50,„. The Fj„convergence can be judged
from the free-atom anion bottom valence state max-
imum in o. The I"»„convergence depends more
strongly on the anion core size, with some depen-
dence on the cation size. The I"&, convergence de-
pends very strongly on the cation size. Conver-
gence is similar throughout the zone. The fact
that the OPW's must penetrate the smaller core is

a major weakness in the OPW formalism. How-

ever, beyond the first row of the Periodic Table,
the OPW formalism seems adequate to handle any
compound if pseudocore states are introduced to
handle such things as high-lying d states.
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New Ordered Phases of Slightly Reduced Rutile and Their Sharp
Dielectric Absorptions at Low Temperature
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The temperature dependence of the complex dielectric constant of single-crystal rutile has
been studied at different frequencies and as a function of reduction. The results suggest the
existence of two new ordered phases in slightly reduced rutile. Sharp dielectric absorptions
have been observed in these phases. This is attributed to the hopping of low-mobility charge
carriers between two ion sites. The nature of the charge carriers introduced by reduction is
discussed. It is proposed that the room-temperature conductivity alone may not characterize
the state of a slightly reduced rutile sample.

INTRODUCTION

Metal-nonmetal transitions in transition- metal'
oxides have long received intense interest. The
recent identification of a Mott transition in Cr-
doped V20, is one of its highlights. With this point in
view as well and considering the anomalously high
dielectric constant (e =173) oi rutile (Ti02), the

study of stoichiometric and reduced rutile is in-
structive in the understanding of the electrical-
transport mechanism in rutile.

Stoichiometric rutile is a highly polar insulating
crystal with an intrinsic energy gap -3 eV between
the filled 2P band of O and the empty 3d band of
Ti~. Slight reduction of rutile byheatinginvacuum


