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Finally, we have pointed out the puzzling and most
interesting behavior of the lettered series of lines.
A more detailed study of these remains to be
made.
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A calculation, based on the microscopic theory of superconductivity, is made of the Hall
angle of a normal current flowing through the core of a single vortex. The magnetic vector
potential is assumed uniform throughout the core region and the moments of the current are
taken with the electric field. The ratio of these two quantities yields the tangent of the Hall
angle. In agreement with a prediction of Bardeen, we find tanc, '= (e7/mc)iH«~, where 7' is the
relaxation time of the electrons, and the effective magnetic field H,« is in part due to the de-
pression in the order parameter at the core of the vortex and in part to the actual magnetic
field in the core of the vortex. For niobium, H,« is very nearly equal to H,2. At O'K for
niobium, our theory is valid for I/$ ranging from ~ to about 10, where I is the mean free
path and ( the coherence length.
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I. INTRODUCTION

When a transport current J~ flows through a
type-II superconducting sample containing a vor-
tex, the flux line flows at a velocity v&. This oc-
curs provided that there are no pinning forces or
that the transport current is sufficiently strong to
overcome pinning. In a perfectly clean sample,
the vortex will flow with J~ at a Hall angle of
&m, whereas in a very dirty sample, it will flow
at right angles to the transport current at a Hall
angle of 0.

There has been considerable theoretical and
experimental interest in determining the Hall an-
gle for situations in between these two extreme
cases. In a local model of a superconductor,
Bardeen and Stephen predict a Hall angle of tan&
= (ev/mc)H, where 7' is the relaxation time of the
electrons and H is the magnetic field in the core
of the vortex. ' Using a hydrodynamic model,
Nozieres and Vinen obtained the same expression
for tan@ with H replaced by H,a, the upper critical
field of the superconductor.

There have been microscopic theories of flux
flow in type-II superconductors for fields near
H, &.

' ' Here a perturbation expansion in the or-
der parameter is possible, since this quantity is
small near H,~. In one of these papers, Maki
finds that the Hall angle n is given by (). = (er/mc)
XB, where B is the magnetic induction.

Experimentally, the Hall angle in flux flow was
detected by Kim, Hempstead, and Strnad. Im-
proved measurements were made by Niessen and
Staas on dirty samples and by Reed, Fawcett, and
Kim on clean samples of niobium. & There are
further examples of such measurements although
we do not presume to give a comprehensive
list. &

' For clean samples, the Hall angle in-
creases with magnetic field. However, there is
evidence that n is constant in the mixed state for
clean niobium. " This result would agree with
Nozieres and Vinen. and with our calculation.

In Sec. II, we present our formulation of the
problem which is based on the microscopic theory
of superconductivity and proceed in Sec. III to
evaluate the Hall angle.

II. FORMULATION

We assume that the magnetic vector potential
has two components: e()Ap(F) is that of a vortex
at rest and is due to supercurrent flow about the
vortex axis. The magnetic vector potential A, (x)
drives the transport current through the core of
the vortex, and we have

A(x) = e()Ap(t')+ Ag(x) (1)

The reasonable assumption is made that A&(x)

is small compared to Ap(x). The current density
is then given by

J(x) = e()Jp(r') —(e /mc)NA, (x)

+ (i/c) (f [J(x),J'(x')]) A, (x') d'x', (2)

where Jp(x) is the supercurrent flowing about the
vortex axis in the absence of transport current.
Based on our assumption that A, (x) is small, we
have employed linear response theory to calculate
the current generated by the electric field in the
core of the vortex. In E(l. (2), Z(x) is the elec-
tric current operator of second quantization, and
we have taken a thermal average of the current-
current commutator.

Defining the retarded correlation function

P (x, x') = (i/c) ([J(x),Z(x')]) 8{t—t') (3)

and the response function of Abrikosov, Gor'kov,
and Dzyaloshinski

J,(x) = —f Q"(x, x') A, (x')d x' (4)

we have

Q (x, x')=(e N/mc)6(x-x') —P (X, X') . (5)

In terms of the Nambu field operations

+( )=
( (( ))

the electric-current operator is given by

Z(x) = (e/2im){@ (x) V @(x)—[V@ (x)]4'(x)},(6)

and Jp(r) = (J (x))."
We calculate the response function in the tern-

perature domain where

(P(x, x') = (1/c) (TJ(x, v) J(x, v')) (7)

with v' the complex time and T the time-ordering
operator. Defining a one-particle Green's func-
tion in the usual way, "the temperature-correla-
tion function may be rewritten as follows with the
help of E(l. (6) for the current operator:

P(1, 2) = —(e /c)[(Vq —V', )/2im][(V3 —Va)/2im]

x Tr [g (1 2 ) 9(2 1 )] = ', = ' ~ {8)

Here the Green's function is a 2 ~ 2 matrix and Tr
takes the trace of the product of the two Green's
functions.

The Green's function may easily be expanded in
terms of the eigenfunctions of the system:

n ~V -&v( v- 8) / @e&&(&&')-
Q -- 2m'

fp(g p) 4 f 4
gQP -E~~g,

It is customary tp expand 8 as the sum of two
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terms, one of positive-energy eigenfunctions and
another for the negative-energy ones. ' In Eq.
(18), we sum over both positive and negative en-
ergies.

The Green's function appearing in Eq. (9) is
that for a superconductor containing a single iso-
lated vortex in the absence of transport current.
This is the Green's function for the unperturbed
system. The eigenfunctions u(r) and v(r), where

satisfy the Bogoliubov equations with energy E
for a superconductor containing a single vortex.
The bound-state spectrum of this system was
first investigated by Caroli and Matricon and cal-
culations of the scattering solutions were first
made by the present author. '

&
' A WKBJ tech-

nique was employed in both cases. Recently,
Bardeen et a/. have made extensive calculations
of these functions for a range of ~ values, where
a is the Ginzberg-Landau parameter; there have
also been some recent calculations by Hansen
and by Bergk and Tewordt. '

The gradient operators of Eq. (8) are confined
to the x, y plane so that we can perform a Fourier
expansion of (P (1, 2) in frequency and in the z
component of momentum. We have

xI.ZQ

tann = —I,/I„
where I„=Re f d'x Efe„.J,
and I,=Ref d3xE,*e;J,

(i2)

(is)

(i4)

In fact, I„ is equal to the power lost.
In order to determine the power P, it is neces-

sary to determine A, near the core, which is not
equal to A, far from the vortex. Determining the
Hall angle does not necessitate this extra step as
E, cancels out of the ratio. By avoiding the self-
consistency condition, the calculation becomes
tractable.

To determine the normal current from P, we
consider only the contribution of the lowest branch
of the bound-state spectrum. This assumption in-
creases in validity as the temperature decreases
and the more highly excited states depopulate. The
approximation should be exact at T = 0.

x»[8„'(r„r,', k) 9„(r„r,', k]. . .,. , (10)

where (d' = ~+ co,.
The function (P of Eq. (10) is evaluated for the zero

z component of momentum, since this is the only
component we shall need.

Equation (4) must be solved for self-consistency
together with V J =0, the equation for conserva-
tion of current. Once A, is known and hence E„
we have for the power lost

P=Re f d x E,*e„J~ (ii)
We shall make the assumption that A, is uniform
near the core of the vortex. To the accuracy of
this assumption, we may take the Hall angle as

III. CALCULATIONS

before proceeding with the calculation of (p, we point out how the diamagnetic term of Eq. (2) is to be
treated. $n a, complete calculation of J„ the frequency sum in Eq. (9) must be performed prior to the
momentum integration in order to obtain proper convergence. The diamagnetic term is exactly equal to
o. for a normal metal, and the difference between 0' for a superconductor and for a normal metal converges
sufficiently rapidly for the momentum integration to be done prior to the frequency sum. ' In this process
6' for the normal metal simply vanishes. In this paper, therefore, we shall neglect the diamagnetic term
and do the momentum integration prior to the frequency sum.

Returning to Eq. (10), the diagonal xx component of the correlation function is given by

e f(p' —u)(8, -8,)» . , sine,
(Pgg(1 fy 12' (00) g IT — e, »' ' cos8t p

—i(p, + p, ')
4m c „~ ~ 2'„,~. (27KJ 8r, r1

9 8 . , sine2x cos8~, —8, —i(p+ 9') Tr , [ ~„.(r„r2', p', k)G„(r2, r„p, k)]. .. ~ 2. . (15)
gr~ r2

We carry out the derivatives with respect to r in Eq. (15) and integrate (P „„over 8, and 82 to obtain
1r Ie~ ~ ~ dk

d82(P..(rt, r2, ~o)= 16m' ~ "2m
8 8x+Tr [g„.(r„r2, p —1, 0)+ 9„.(r„r2, p+1, g)] g„(rz, r„g, y)
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8 8
rak P—. 1, k)+ g"'(~ik ~22 P+, 1, k)] g„(~ak '[2 ",2 k)

~xi y2

8 8 [g .(x„r2, P —1, k)+ g„.(x» Xzk P+1, k)] g„(r2, r» Pk k)
8'Vi R 2

8 8
+ [g„'(~gk ~gk 9 —1, k)+g„'(&gk ~gk V+I k)] 8 g "(~P2 '[2 Pk k)

1
— [(2g — 1)g„,(x„x2, p-l, k) —(2p+1) g„.(r„x~, p, +I, k)] g„(t2, r„p, , k)

8

+1 8fg

+ [(2p —l)g„,(r„xz, p, —1, k)-(2p, +I) g„.(r„x2, p, +1, k)] g„(r2, r„p, , k)
1

8%2

+ —[(2g —1)g„,(x), x2, g —1, k) —(2p+I. )g„.(r„rz, p+1, k)]g„(x2,x„p, k)
1
&2

1 8——[(2p —1)g„.(v„vz, p —1, k) —(2p. +1)g„.(r„rz, p, +1, k)] g„(r2, r„p, k)
y'2

[(22 —1)~2.(r„rr 2 —1,k)+(22+1) 2,(r„r~, 2+1, k)] 9 (r~, r„k, k)}Jif p
(16)

In order to simplify our calculation, we shall assume that p~$ is very large and that p, /p, $ is small.
These approximations ensure that we are in the linear part of the bound-state spectrum and that the wave
functions are given by

( )
A cos[pp7 slnG —2$, 7f- 4v+ gg~] (17)(p~r si»)' ~cos[pzx sinn ——,'p, v ——,')[- ~2„])

except for a very small region about P~xsinn = p. A is a normalization constant. At x= 0, the wave func-
tions vanish. The functions q ~ and (' are those Bardeen et al. " i$„ is real and negative. In what follows,
we keep in mind that (8/Bp)q' I/P, ~g. '8

With the wave function given by Eq. (1V), we may easily see that the derivative terms 8/ar in Eq. (16)
are of order (p~g)' larger than the 1/r terms. In the calculation, we encounter the matrix elements JC „.,
x(r)(~/~r)4'(r)rdr which are of order pz because of the phase factor ~vp, which appears in the wave func-
tion. On the other hand, fC ~„(x)C„(r)dr-(1/pe) ), since the wave functions are almost orthorgonal.
Again, this is due to the —,wp factor in the wave function. The last five terms in Eq. (16) may be immedi-
ately discarded as they are at least of order p. (P~$) smaller than the terms which we keep.

Consider from the first two terms in the curly brackets of Eq. (16)
8 8 8 8Tr

2
-[2,(r„rs, k-l, k)]

2
2 ( r„rk)-k2.(r„rz, 2 —1, k)k 2 2 (rz, r„li, k)}

=k„,(r,) k„fr&) (ir' — k)( 5- 1)kk„(r, ) k„,(r, ) — [k„(r,gk„,b;) }
Here we have introduced a renormalized frequency in the usual way v = &u+ (I/2r) sgn(&u) to take care of
scatte ring.

From the third and fourth term in the curly brackets of Eq. (16) we get

[2 -,(r, )]2„(r,) 22(r, ), i„,(r, )- [2 (r,)k„,(r, )} ((O'-Z, , ')(i~-k„,)

for the p, —1 terms.
When the integration over xi and x~ is performed, we may carry out an integration by parts:

rdr —[C T(r)]4~-,(r) = rC „(r)4„-,(r)
~ 0

— rdr 4, (r) —4„;(r) dr 4„(r)C-~,(r) (16)

The wave functions vanish at 0 and ~ and the last integral is of order (P'$) relative to the first.
Therefore, the four terms we have considered may be approximated by
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Similarly, the terms in p + 1 give

—4O...(r, ) 4i(ra) [O„(r,)] 4i„,(r,) (i~' —E„.. )(i~ —E„„)lb+a a sr ~ a

We have, therefore, for the integral of the correlation function

Le' Y I dk y 8
dr~dra „„(r„ra,vo) = —

a T ~
~

— rdr C, (r)—C. ..(r)4' c ~ -~ 27T

x([I/(i & ' -E„&)][I/(i & -Eii )]+ [I/(i & ' -E„+&)][I/(i v -E )]] .
Here we have employed the fact that the wave functions are real.

To a very good approximation

r dr@„(r) e„,(r) = p~a sinaiif'+1 E

This is in part due to the fact that (d/dp)pl, -I/pp$. "
The sum over ~ and p. may easily be performed:

TZ Z [1/( '-E„)][1/(' -E,)7+[1/(G' -E„„)][I/(' -E )] = (4 o/ )[I/[I+( ) ]f .

(20)

We take E= pE, where & is independent of p. The sum over p. is converted to an integral and the limits of
integration can be extended to +~, since the integral is convergent.

For & we approximate

e = (~ /Pp& sinn)

from Caroli and Matricon, and also e = (eH,«/mc) = ur, from Bardeen et al. ' '
Performing the analytic continuation vo = —iso&, we have for the spatial integrals of the retarded correla-

tion function

dl y dra P„„(ry ra (og) ='LM)L „( a) (22)

+pg(rgi rai~Q) a LT~ d& Z i2 ia sineq — i l +—cose, (P + P, ')
m c -

~ ( 7T) sr( sr() ry

»»a(~+ u
') e""' """"' » [g.'(r„ra, u', &) g.(ra, r,', u, &)] i-i, ,a a

&ra ] rp (22)

which has the correct sign for positive resistance.
If we estimate f dra —- 7p(af)a where a = 2. 4, we find that the cores have a conductivity o„/[I+((&u,r) ) ] equal

to that of the normal metal in a magnetic field (H„). This is an interesting result often employed by theo-
rists and experimentalists alike. Equation (22) demonstrates that our result for the diagonal component of
the conductivity tensor is quite reasonable.

The off -diagonal component of + is given by

Integrating over 8
& and 82, we have

f d8, f'd8ap, „(r„ra,&uo)= —(Le /16m c)TQ f (dk/2v)

9 8
&&Tr +i

s [g„.(rg, ra, p, - I, k) — g( g,rrpa, +l, fa)] g„(ra, r„p, k)

8 8
[g'cg' (rlirai V' li~) g~'(rlirai I+ li ~)] g&a(rair1i I ia)i

'Vy

8 8
[g'„.(r„r„p,—1, k) - g „,(r„r„p,+ 1, k) ] g„(r„r„p,k)

~ &s

~ 8 8
[gcd'( |i ai P i ) rd'( li ai P + i )] gtd( ai li Pi
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8 1+i
&

[(2p. —1)g„.(x»r» p, —1, k)+(2p, +1)g .(r„x» p, +l, k) g„(rz, r„p, , k)]
1 X2

2 8
H2p —l)g .(~g, &p p 1 ~)+(2/+1)g '(+g +a V+1 ~)] s g (+2 +1 Pt'p 8 f'j

8
[(2p, —1)g ~a(7» t'aq p, —lq 0) + (2p, + l)g~i(x» K» p, + lq 0)] g~(/2) xy) p p 0)

'Vg 8+~

2
+ [(2p —l)g~'(t»t'» 'p, —lq 0) + (2p, + 1)gt(t'» t'» p, + 1) ii')] g ~(f'» t»p~ 'k)

(24}

As in the case of the diagonal components of 6', we need only evaluate the first four terms in the curly
brackets of Eq. (24). Here, however, the neglected terms are only of order p, (pe)) smaller than those
kept. This is due to the fact that the terms in j[L, —1 and p, +1 subtract instead of add.

We have for the correlation function

~ f[(i(d'-z„.,)(i(o —z )] ' —[(i(u' —z„„)(i(d—z )] '].

Performing the sum over ~ and p, , we have

T Z„Z, ([(&„~- i~)(Z, i~)]-' —[(&„g-i~')(&„-i~)] '}=-i4(dg /(1+&'7'2).

The Hall angle is therefore given by

tano. = 5 [1+&'v] 'si ' ndorof, [e(1+@r )] 'sin'odn,

(25)

(26)

which is positive and of the correct sign for negative carriers.
For e, we employ the result of Hansen as given by Bergk and Tewordt: ' '

e = (e/2mc)[(H, 2/sino, ) + h(0)],
where H,~ is the upper critical field and h(0) is the field in the core of the vortex.

Our result for the tangent of the HaQ angle can be expressed as

tano. = (e H„, /mc) v,

(28)

where H,« is a function of z, the Ginzberg-Landau parameter, and of ~, the relaxation time. The depen-
dence on v, however, is very weak. As predicted by Bardeen et a/. , H,« is due in part to the actual field
in the core of the vortex, h(0), and due in part to the depression of the order parameter which gives an ef-
fective field of order H,&.

l.2

I.O

.8

4

.2

FIG. 1. Hegf/Hc2 versus h(0)/Hc2 f r (dc+ =
The tangent of the Hall angle is given by tano. = (eH, fz/
mc) 7 and ~~2= (eH,2/mc) . H,2 is the upper critical fieM
and h(0) the field in the core of the vortex. h(0)/H~2 is
inversely proportional to v, the Ginzburg-Landau pa-
rameter.

0 .I .2 .3 .4 .5 .6 .7 .8 .9 I.O

h(o) / Hcp
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In the ultra-clean limit, l -~, we may neglect the 1 factor in Eq. (27) as compared to (e r ) . For niobi-
um at O'K, p~)=100and if we take ii=30 as an upper bound for p, , we obtain a ratio 1/)=10. For this
value of p, , the terms neglected in 6'„„are of order 0. 003 and those for (P„„oforder 0. 1. Our theory is
therefore valid for l /g ranging from ~ to about 10.

For l/$-10, r =1/30 so that 1+(re) =1. In Fig. 1, we plot H,«/H, s versus it(0)/H, sfor &o,sr =0 and ~,
where a&,s=eH, s/mc. For niobium h(0)/H, s=0. 75 and we have nearly tano, =co,sr, which agrees with the
experiment of Maxfield. "

Our calculation is performed in a frame at rest with the vortex. In this frame, the impurity scatters
are moving at a velocity vz, . Our neglect of this fact probably introduces errors of order vz, /vz which are
clearly negligible.
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The orthogonalized-plane-wave (OPW) series convergence up to 900 OPW's is illustrated for
equal-core-size compounds C, Si, ZnSe, and CdTe, for large-cation-small-anion compounds
ZnO, AIN, and Zns, and for large-anion-small-cation compounds BAs, BeTe, and ZnTe.
Herman's overlapping-free-atom-potential model is used primarily, although self-consistent
OPW convergence results are given for BAs. It is found that the first row of the Periodic Ta-
ble is exceedingly difficult to handle with the OPW formalism. The primary factors involved
in OPW convergence are found to be the presence or absence of core functions in the OPW's
(which was realized long ago) and the relative core sizes of anion and cation. Criteria are
given for estimating the OPW convergence behavior of compounds.

I. INTRODUCTION

A number of different techniques have been de-
veloped to calculate the energy-band structure of

crystals. The best-known techniques are the aug-
mented-plane-wave' (APW), Korringa-Kohn-
Rostoker (KKR), and the orthogonalized-plane-


