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Inversion of de Haas-van Alphen Data on Nearly Ellipsoidal Surfaces.
Application to As and Sbg
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A transformation theorem, relating de Haas —van Alphen areas and radii under a spherical mapping of
nearly ellipsoidal Fermi surfaces, has been developed. The transformation greatly increases the convergence
of the spherical harmonic expansions used to parametrize these surfaces. The theorem has been applied to
invert the L-centered electron surfaces of arsenic and antimony.

~ (tt, v) =E LP~.-'«.-'(0, v)+P~, -"~~.-"(8,v)j (2)

The real spherical harmonics are defined in terms of
the complex spherical harmonics Vt (0, p) by the
relations

(3a)C, „=(1/&2)(I', ,„+l', , ),

INTRODUCTION
' 'T is well known that the de Haas —van Alphen (dHvA)
- - effect measures extremal cross-sectional areas of the
Fermi surface. The question naturally arises whether
the specification of the angular dependence of the
extremal areas on a given sheet of the Fermi surface
(FS) is sufhcient information to deduce the actual
shape of the surface. Lifshitz and Pogorelov' have
shown that this inversion is indeed possible, provided
the surface in question satisfies two conditions. The
surface must (a) have a center of inversion symmetry
and (b) have only a single-valued radius vector mea-
sured from this center. As originally formulated, the
theorem was awkward to apply in practice, and
Mueller' has recently reformulated the theorem in
such a way as to simplify greatly its application. The
equivalence of the Mueller and Lifshitz-Pogorelov
formulation was demonstrated by Foldy. ' The theorem
was extended to cover the inversion of dlvA effective-
mass data into Fermi velocities by Ketterson, Wind-
miller, Hornfeldt, and Mueller. 4

We expand the square of the radius vector rs(e, y)
(measured from the inversion cen. ter) and the extremal
area A(g, y) (of the orbit whose plane contains the
inversion center) in real spherical harmonics

«'(~, v) =2 Ev~.-'C~.-'(e, v)+v~. -"C~. "(0,v)j, (1)

transformation p —+ —q. What Mueller showed is that
the relation between the coefficients in (1) and (2) is
given by

Pi,-=~~i(0)vi, - ~

SYMMETRY CONSIDERATIONS

The requirement of inversion symmetry allows only
even l in (1) and (2) since the parity of spherical
harmonics is given by (—1)'. Table I lists those of the
32 crystal point groups which contain the inversion
operator. In the following we define the s axis as the
axis of highest symmetry from which the polar angle
8 is measured, x as the orthogonal axis from which the
azimuthal angle p is measured, and y as the mutually
perpendicular third axis. The allowed values of m

depend on the point group symmetry of the surface.
For the group S& there is no axis of symmetry and so
the s axis may be chosen arbitrarily. All values of m

(from 0 to f) are included and both symmetric (g) and
antisymmetric (u) coefficient appear. For the group
C~~ the s axis is chosen as the twofold axis, and the
fact that the z axis is a twofold axis requires that m

be even. Both symmetric and antisymmetric coefficients
appear and the x axis may be chosen arbitrarily in the
plane perpendicular to s. For the group U~ we choose
the x, y, and s axes to coincide with the three twofold
axes; m is even and, since the x axis lies in a mirror
plane, only symmetric coefficients appear. The fourfold
axis is chosen as the s axis for the groups C4~ and D4y,

and m=0, 4, g, . . . , i.e., m=0 (m.od 4). The x axis is
chosen to lie within one of the two nonequivalent mirror
planes for D4I, and thus only symmetric coefFicients

appear. The choice of the x axis is arbitrary for C4q

C(, ——(1/i%2)(V(, —F(, ),
Cl, 0 I l, 0 ~

(3b)

System International SchoenQies

TABLE I. Crystal point groups having inversion symmetry.

The letters g and I refer to functions which are sym-
metric and antisymmetric, respectively, under the

[Based on work performed under the auspices of the U. S.
Atomic Energy Commission.' I. M. Lifshitz and A. V. Pogorelov, Dokl. Akad. Xauk SSSR
96, 1143 (1954).' F. M. Mueller, Phys. Rev. 148, 636 (1966).

3 L. L. Foldy, Phys. Rev. 170, 670 (1968).
4 J. B. Ketterson, L. R. Windmiller, S. Hornfeldt, and F. M.

Mueller, Solid State Commun. 6, 851 (1968).
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and symmetric and antisymmetric coefficients appear.
For the groups S6 and D~~ the threefold axis is chosen
as the z axis and m=0 (mod 3). The x axis lies within
the mirror plane for D3& and only symmetric coefFi-
cients appear. The choice of the x axis is arbitrary for
$6 and symmetric and antisymmetric coeKcients appear.
The s axis coincides with the sixfold axis for C@, and
Dpi, and m=0 (mod 6). The x axis for Dpi, is chosen to
lie within one of the two nonequivalent mirror planes
intersecting the x-y plane and only symmetric coefFi-
cients appear. The x axis is arbitrary for C6&, and both
symmetric and antisymmetric coeS.cients appear. The
group 0& requires special consideration and has been
treated elsewhere. '

It is well known that a small FS centered on a point
in the Brillouin zone having inversion symmetry is
nearly ellipsoidal. For the group S&, the ellipsoid has
an arbitrary orientation and the three principal axes
are nonequivalent. The specification of this ellipsoid
requires six parameters (a symmetric second-rank
tensor). For the group Cpi, the z axis lies along one of
the principal axes. The two nonequivalent remaining
principal axes are in general rotated by an angle yo in
the x-y plane relative to the x and y axis. The specifica-
tion of this ellipsoid thus requires four parameters. For
the group V~ the three nonequivalent principal axes
coincide with the x, y, and s axes and there are thus
three independent parameters. For the groups C4y„D4~,
S6, D3g, C6~, and D6~ the ellipsoid is an ellipsoid of
revolution about the s axis and the specification re-
quires two parameters. For the cubic case (0@) the
ellipsoid degenerates to a sphere and thus requires a
one-parameter specification.

AREAS AND RADII UNDER A
SPHERICAL MAPPING

An inherent weakness in the expansion scheme of
Mueller' is that the expansions (1) and (2) do not
terminate after a finite number of terms for an ellipsoid.
This shortcoming can be effectively circumvented, how-

ever, by performing a mathematical transformation on
the coordinate system which maps the ellipsoid into
a sphere and thus for a perfect ellipsoid the expansions
terminate after the first term. The higher terms in the
expansion can then be used to fit departures from
ellipticity. We will refer to the transformation which
maps an ellipsoid into a sphere as a spherical mapping
and the problem at hand is to determine how the radii
and areas behave under such a mapping.

O. COSy
cosy =

(sin'&p+u' cos'p)"'

y cos8

I
sin'8 (sin'y+u' cos'pp)+y' cos'8J~'

(7b)

Now the extremal area in the plane normal to a unit
vector $(Hp, (pp) is given by'

1
~(Ho, po)= — bLi(8o po) r(H, p)3'(H, v)» 8 dH dp (8)

2

It turns out to be convenient to evaluate the area in
the transformed (primed) system in terms of angles
measured in the untransformed (unprimed) system,
i.e. ,

1
~'(Hp, «) = —

bL&(Hp, p o) r(8', p ')jr"(8', p ')
2

XsinH'dH'd pp'. (9)

The integrand is a function of (Hp, q r', p8', q') and we
now evaluate it in terms of (Hp', yp', r,H, p). After some
calculation, Eq. (9) becomes

The orientation of the 5& group ellipsoid may be
specified by three independent parameters (e.g. , the
three Euler angles) and we can perform a series of
rotations on our coordinate systems so that x, y, and
s axes coincide with the principal axis of the ellipsoid
(principal axis transformation). Similarly, a single rota-
tion about the s axis by an angle yo aligns the C»
group ellipsoid. We will thus confine ourselves, for
simplicity, to a coordinate system aligned with the
principal axis of the ellipsoid. The equation of such an
ellipsoid is

xP/QP+yP/bPy zP/CP = I (5)
If we define u—=b/a and y= b/c—then the following
transformation maps the ellipsoid into a sphere of
radius b:

X =0!X) (6a)

y =y) (6b)
S'=VS (6c)

We express this transformation formally by writing
T(x,y, z) = (x',y', z') or in polar coordinates T(r,8, &p)

= (r',8', &p') Sim.ilarly, T '(x',y', z') = (x,y, z) and T '
(r',8', pp')= (r,H, p). A small amount of algebra yields
the following relations:

I
"(8' ~')

I

= Ir(8 p) IL»n'8(»n'~+u'cos'~)

+y' cos'8)"' (7a)

1
2'(Hp, q p) =—

2

E(Hp', v o') r'(H, p)

ELsin'Hp'(sin'ppp'+u ' cos'pp')+y ' cos'Hp')'~'I sin'8(sinP&p+u' cos'q )+y' cos'8ji")

uyr'(8, p) sinH d8 dq

I
sin'8(sin'&p+u' cos'~tp)+y' cos'8j"'

~ (1o)

5 F. M. Mueller and M. G. Priestley, Phys. Rev. 148, 638 (1966).



INVERSION OF DE HAAS —vAN ALPHEN DATA 465

If we use the property of the 8 function that 8/xf(x))
= $8(x)/f(x)), where f(x) is a smoothly varying func-
tion that has no zeros, Eq. (10) becomes

A '(Hp, happ)
=nyLsin'Hp'(sin'happ'+n ' cos'q p')

+y cos Hp ] I A (8p ~q&p ) . (11)

We drop the subscript and operate on all angles with
T ', obtaining

A'(T 'H, T Iq) =nyfsinsH(sin'q+n ' cos'&p)

+y ' cos'8]I"A(H, y). (12)

We rewrite Eq. (7a) for comparison

r"(TH, Ty) = Lsin'8(sin'&p+ns cos'q)
+y' cos'8)r'(8, y) . (7a')

Equations (12) and (7a') are the sought after relations
between areas and radii in the transformed and un-
transformed system.

An alternate approach to removing the nearly ellip-
soidal character of a data set makes use of the analytical
character of such a surface. Assume that the area data
A (H, p) are expanded as follows:

A(H, V)=A. (H, p)+2 t'ai, -'~I.-'(H, V)
L, m

+PI, "~I, "(8 ~)) (13)

where A, (H, p) is the area of an ellipsoid (or any other
analytic surface) which best represents the data, and
the remaining terms account for deviations from this
surface. On applying the inversion theorem we have

«'(8, 9 ) =«' (8,9 )+2 t:VI.-'«.-'(8, P)

+VI, "«. "(H,V')) (14)

where the yI, are determined using Eq. (4). Rather
than representing A, (H, p) and r s(8, p) as expansions
as in Eqs. (1) and (2) (which do not in general termi-
nate), it is more convenient to use the following ana-
lytical expressions (appropriate for ellipsoids):

A8(81)pp) =prLsin'8(a 'c ' sin'p+b 'c ' cos'(p)

+a 2b 2 cos28] I 2 (15)

Fzo. 2. $tereogram of the As A7 crystal structure with the
x, y, and s axes corresponding to that of the least-squares fit.
The upper half shows the available area data points in the system
before the spherical mapping was applied, while the lower half
shows these data points in the transformed system. Note the
concentration of points in the transformed system near the
center of the stereogram indicating how the angles are "stretched
out" near the large radii sector.

r,'(8, &p) = Lsin'8(b —' sin'&p+a ' cos'q)

+c ' cos'8)—' (16)

where a, b, and c are defined in Eq. (5). Obviously
Eqs. (15) and (16) are particular cases of Eqs. (12)
and (7a) when the transformed surface is a sphere. In
the following we will refer to this inversion technique
as the subtraction procedure.

The spherical mapping procedure and ',the subtrac-
tion procedure will each have particular cases suited
to them. Ke feel the spherical mapping procedure is
the best for $b and As for reasons which will be dis-
cussed in the following section.

INVERSION OF ARSENIC AND ANTIMONY
ELECTRON SURFACE

IW

FrG. 1. Brillouin zone for the A7 crystal structure appropriate
to $b and As. The points, lines, and planes of symmetry are
indicated.

The dHvA data on antimony' and arsenic are quite
accurate and complete. The 6eld rotation technique
was used in these measurements and thus the anisot-
ropy of the areas are known with high precision. Field
sweeps with the end points determined by nuclear
magnetic resonance were also included in these mea-
surements and thus the absolute accuracy is high. The
electron surface at the point L in As and Sb has the
point group symmetry C» and is thus invertible. The
hole surface contains only mirror symmetry and con-

' L. R. Windmiller, Phys. Rev. 149, 472 (1966).
7 M. G. Priestley, L. R. Windmiller, J. 3. Ketterson, and Y.

Kckstein, Phys. Rev. 154, 672 (2967).
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sequently this surface cannot be inverted to obtain
radii. The anisotropy of the radii of the electron surface
is quite large (on the order of 6:1) and thus the series

(1) and (2), when applied directly to the data, will

converge quite slowly. On the other hand, the surfaces
are reasonably ellipsoidal and appear to be ideal candi-
dates on which to apply the new spherical mapping
procedure contained in Eq. (12).

We proceed as follows: First, approximate values of

rr, y, and pp (the angle of rotation necessary to align
the ellipsoid in the x-y-plane) are determined from the
data. At this point we note that it is possible, for all

of the groups considered, to make all of the 1=2 terms
in the expansion vanish by a proper choice of the
transformation parameters n, y, etc. Finite values for
the 3=2 components imply that all of the ellipsoidal
character of the surface has not been transformed

away. Thus, by adjusting the transformation parame-

«» (the number of which coincides with the number
&= 2 terms) we can make the l= 2 components

vanish. After the approximate values of n, y, and po
have been determined, the area data are mapped into
the transformed system using Eq. (12). Next the data
are least-squares 6tted to a 6nite series of the form
given in Eq. (2). The radii in the transformed system
are then evaluated using Eqs. (4) and (1). The radii
are then mapped back into the untransformed system
using Eq. (7a). These procedures accomplish the
inversion.

Arsenic and antimony have the trigonal A7 crystal
structure. The Brillouin zone for this structure is
shown in Fig. 1. The A line formed by the points I' and
T is the threefold or trigonal axis and the Z line formed
by I' and E is a twofold or binary axis. A mutually
perpendicular third axis is called the bisectrix axis. The
tT plane formed by the points I., I', and T has mirro
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gether with the lit: (a) magnetic Geld
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symmetry. The electron surface is centered on the
point J. The F line formed by the points L and 8' is
a twofold axis. Since I- lies in the mirror plane, the
point group symmetry of I. is 2/m or C&z. Owing to the
threefold symmetry about the A axis there are three
sets of points L,, not related by inversion through F,
and thus the electron FS consists of three ellipsoids.
Similarly, there are three equivalent binary (and
bisectrix) axes. The three ellipsoids transform into one
another on making &120' rotations about the A. line.

dHvA data in As and Sb were taken in the planes
perpendicular to the trigonal, binary, and bisectrix
axes. The ellipsoid having its mirror plane coinciding
with the mirror plane formed by the particular choice
of trigonal-bisectrix axes used to define the data will
be called the principal ellipsoid. The remaining two
ellipsoids will be referred to as the nonprincipal ellip-

v
+0
+0, 0

+2, 0

y2 2g

&2. 2"
+4, 0

P4, 2

P4& 2

y4, 4g

p4, 4

Arsenic

0.224
0.805

99 0
5.466X10 '

—0.278X10 '
0.302X10 '

—0.393X10 3

—0.588X10 '
—0.572X10 '

0.011X10 '
0.150X10 3

0.286X10 '

Antimony

0.157
0.827—96.0

16.933X10 4

—0.140X10 4

—0.780X10 '
—2.540X10 4

—0,144X10 4

—0.061X10 4

1.161X10 4

—0.198X10 4

1.240X10 4

soids. For the magnetic field in the plane perpendicular
to the A. axis the extremal area of the three ellipsoids
will in general be different. The same is true for the
field in the plane perpendicular to the bisectrix axis.

TABLE II. Expansion coeKcients.
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For the field in the plane perpendicular to the binary
axis the extremal areas of the two nonprincipal ellip-
soids are identical, due to the 0- mirror plane.

In order to transform the data into the coordinate
system necessary to perform the spherical mapping,
three distinct coordinate rotations are performed. Ini-
tially, we choose the A axis as the s axis and Z axis
as the x axis. We must transform the data on the non-
principal ellipsoids into equivalent data on the prin-
cipal ellipsoid. This is accomplished by &120 rotations
about the s axis for the nonprincipal data. Next, a 90'
rotation about the bisectrix axis is performed such that

the new s axis coincides with the binary axis. As men-
tioned earlier, the choice of the x axis is arbitrary for
the C&~ group. We have therefore rotated the coordinate
system by an angle po in clockwise direction such that
the long axis of the ellipsoid coincides with the new
x axis. This completes the three rotations and the
principal "ellipsoid" is now oriented in its "principal-
axis system" with the s axis the twofold axis.

For arsenic, data on all three ellipsoids were available
in the trigonal plane. For the binary plane only the
principal ellipsoid data were available. For the bisectrix
plane the two nonprincipal ellipsoids were observed,
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binary plane; (b) magnetic field in the trigonal plane.
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but the principal ellipsoid was not. For Sb, data on all
three ellipsoids were also available for the trigonal
plane. For the binary plane the principal ellipsoid was
observed together with a small portion of the single
degenerate nonprincipal branch. For the bisectrix plane
only data on the nonprincipal ellipsoid were available.

The number of expansion coefficients, which may be
determined in Eqs. (1) and (2), depends on the quan-
tity, accuracy, and angular distribution of the available
data points in a nontrivial way. It was observed
empirically that with the available data we could fit
all the 1=0, 2, and 4 terms (a total of nine coefficients), ,

When an attempt was made to expand the fit to in-
clude all of the 1=6 terms, nega, tive values of r'(O, y)
resulted. A similar phenomenon was observed by
Mueller and Priestley. 4 It was observed that the 3=6,
m=0 term could be reliably determined, however. No
attempt was made to investigate which of the higher
coefficients could be determined, since this would yield
an incomplete set—a procedure which in our opinion
is unjustified. The problem stems from having an
insufficient data set. Ideally, one would lik.e to have
data points which are distributed densely over the
unit sphere. Furthermore, since the data are fitted in
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the transformed systems, the distribution of data points
should be favorable to this system. Figure 2, a stereo-
graphic projection where the x, y, and s axes correspond
to those used in our least-squares fit, shows in the upper
half the data points at which area measurements were
available. The lower half shows the corresponding data
points in the transformed system. Observe that while
some of the data points appear to cover adequately
the inner portions of the basic wedge in the untrans-
formed system, the same is not true of the transformed
system, i.e., the planes in which data were taken are
not well chosen from the standpoint of the transformed
system. The same amount of data would presumably
have allowed a higher-order fit had the data planes
been chosen more favorably. We hasten to point out,
however, that this does not necessarily mean that it
would be more favorable to fit in the untransformed
system using the subtraction procedure. As will shortly
become apparent, the "sharpness" of the distortions is
much more severe in the untransformed system and
thus the fit would be more slowly convergent in this

system. We must simply conclude that data over
important regions of the surface are absent. Nonethe-
less we feel that the expansion through /=4 in the
transformed system gives a reasonably good represen-
tation of the surface.

Figures 3(a), 3(b), and 3(c) show the dHvA data in
As together with the fit for the magnetic field in the
binary, bisectrix and trigonal planes. Figures 4(a),
4(b), and 4(c) show the dHvA data and the fit for
Sb. The values of the coefficients y~, together with
the values of n, y, and p0 used, are listed in Table II
for As and Sb. Figures 5(a) and 5(b) show the dHvA
data for As transformed according to Eq. (12), to-
gether with the fit as a function of the angles T '0
and T 'p for the magnetic field in the binary and
trigonal planes, respectively. Figures 6(a) and 6(b)
show the same thing for Sb. Observe that the devia-
tions are reasonably well accounted for by the fit. The
deviation from the ellipsoidal area is what must be
fitted when using the subtraction procedure. This devia-
tion for As is shown in Figs. 7(a) and 7(b) for the
field in the binary and trigonal planes, respectively.
Figures 8(a) and 8(b) show the same data for Sb.
Observe that the distortion is such that a much higher-
order fit would be required for an adequate representa-
tion using the subtraction procedure. In Sb and As
the spherical mapping approach has the advantage
that it "stretches out" the angles near regions where
r(8, p) is large. Thus the deviations can be more easily
accommodated by lower-order terms in the expansions
and the expansion made to yield a faithful representa-
tion with a smaller number of terms.

Figure 9 shows the radius of the electron surface in
the mirror plane for As. The directions parallel to the
trigonal and bisectrix axis are indicated. Figure 10
shows the same slice for the Sb surface. Observe that
the distortion from an ellipsoidal cross section is quite
apparent. As an over-all check on the program and the
transformations, the radii of a few slices (in the un-
transformed system) were integrated, using Simpson's
rule, to calculate the area of the slice; agreement was
observed to about five decimal places.

In conclusion we point out that the techniques dis-
cussed here may be easily expanded to allow the
Fermi velocity to be determined from effective mass
and area data.

Fro. 10. Cross section in the mirror plane of the electron surface
of Sb. The scale is in 0.1 a.u.
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