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Energy bands are calculated for hexagonal NiS using lattice constants and crystal poten-
tial appropriate to the metallic phase. Group theoretic results for s, p, and d bands in the
NiAs structure are obtained, and the calculation is performed using a first-principles tight-
binding method. The energy band structure is characterized by a 3d band about 3 eV wide,
hybridized with a broad s-p band, indicating s-d-type conductivity. The Fermi energy lies
just below the top of the d bands and the density of states exhibits a strong, sharp peak about
1 eV below the Fermi energy. Since the energy bands suggest considerable structure in the
low-energy region of the reflectivity, selection rules, polarizations, and energies for some
of the spectra are presented. The band structure is discussed in terms of the metal-to-
semiconductor transition which has been observed for hexagonal NiS.

I. INTRODUCTION

This paper reports an energy band calculation
for the metallic phase of hexagonal NiS. NiS
crystallizes in the NiAs structure, which is com-
mon for binary compounds of transition metals,
yet there have been no calculations for these com-
pounds owing to the difficulty in performing first-
principles calculations for this structure, and be-
cause of the lack of experimental data needed to
perform simpler pseudopotential calculations.
This paper appears to be the first attempt to per-
form a band calculation in the NiAs crystal struc-
ture.

Transition metal compounds have long presented
difficulties to band theory, but their wide variety
of electric and magnetic properties make them
both interesting and challenging. The extent to
which band theory alone can account for proper-
ties of these compounds has not been determined,
and is the subject of some controversy. ~ The
most famous example of the apparent failure of
band theory is Nio. Although it is certain that
band theory must be corrected in some instances,
such as NiO, it is not clear just how it can best
be adapted to account for essential features of
the electronic correlations which are responsible
for its failure. Clear cut decisions must await
reliable data on good crystals, which are not
available for most of these compounds. Inter-
pretation of data from these compounds is con-
fused by experimental problems of defects, im-
purities, nonstoichiometry, and mixed phases.
However, substantial advances have been made
in recent years, so band calculations are useful
at this time. Data available and the report of a
metal-to-semiconductor transition have moti-
vated the choice of NiS for this investigation.

In order to yield reasonable results for transi-
tion metal compounds, band theory must provide

a computational method which can adequately
treat both the broad and narrow bands which are
present, while using a realistic crystalline po-
tential. Corrections to muffin-tin potentials have
been found to be important in the case of Re03,
and are presumably important in all the transi-
tion metal compounds. An additional difficulty
in the NiAs structure is the presence of two
molecules per unit cell, so that the number of
bands is large. This complicates orthogonalized-
plane-wave (OPW) calculations because of the
large number of core orthogonalizations required,
while in augmented-plane -wave (APW) calcula-
tions it slows the rate of convergence of the APW
expansion considerably, and in tight-binding
calculations it increases the size of the minimal
basis set. The tight-binding method has been
chosen for this study.

The remainder of this paper is organized as
follows. In Sec. II the experimental information
available for ¹iSis reviewed. Section III de-
scribes the method of calculation and discusses
some group theoretic results for the NiAs struc-
ture which are used in the band calculations. En-
ergy bands, density of states, and optical transi-
tions are presented and discussed in Sec. IV. In
Sec. V the metal-to-semiconductor transition is
discussed in terms of the energy bands presented
in Sec. IV. Section VI contains concluding remarks.

II. EXPERIMENTAL INFORMATION

The properties of NiS are summarized by Adler~
and by Sparks and Komoto. A brief review is pre-
sented in this section.

Above 620'K NiS crystallizes in the NiAs struc-
ture, space group Dz„. When cooled slowly, a
crystallographic phase change occurs in which
two different phases appear to coexist. However,
if quenched from above 620 'K to room tempera-
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ture, the NiAs structure is retained. Upon fur-
ther cooling, the c and a axes shrink slowly, but
at 264 'K an abrupt discontinuity occurs in both
lattice constants, c increasing by about 1% and a
by about 0. 3%%up. There is a simultaneous transi-
tion from metal-to-semiconductor, accompanied
by an antiferromagnetic alignment of spins along
the p axis forming a hexagonal layer structure
of spins characterized by ferromagnetic coupling
within layers and antiferromagnetic coupling be-
tween adjacent layers, as shown in Fig. 1, which
is a unit cell for the NiAs structure. This situa-
tion persists down to 4 'K with no distortion from
the ¹iAs structure detected. Upon warming back
through the transition, a hysteresis is observed in
resistivity, magnetic susceptibility, and lattice
parameters, indicating that the transition is first
order. The width of the transition is about 3'.

Resistivity measurements show characteristic
semiconducting behavior with activation energy of
about 0. 3.2 eV just below the transition, while
above the transition temperature there is metallic
resistivity with a positive temperature coefficient:
p (T)/p (0 'C) = 0. V6+ 6. 8 x 10 T (T in 'K). u

Through the transition the resistivity jumps by a
factor of 40. The transition temperature and
width of the transition depend sensitively upon
stoichiometry, excess sulfur causing substantial

lowering and broadening: T, = (V5+ 15) 'K for 3%%uo

excess sulfur. An early report' of a Noel tem-
perature at 150 K presumably corresponds to
about 2%%up excess sulfur in the samples used.

Neutron diffraction studies of NiS yield a mag-
netic moment of (1.66+ 0.08)ge at 4. 2 'K and

(1.50+ 0. 10)ps at 260 'K, so that just below the
transition temperature sublattice magnetization is
9(F/q saturated. Above T„ the magnetic moment
for nickel atoms is less than 0. 5p, ~, as deduced
from the absence of paramagnetic diffuse scatter-
ing. Studies of NiS under pressure show a large
negative pressure dependence of the Noel temper-
ature: d T„/dp = (- 6. 0+ 0. 3)'/kbar, and neutron
diffraction studies of NiS under pressure show a
small, almost temperature -independent compres-
sibility. '

There have been no optical studies of NiS, for
which good single crystals are desired. Single
crystals tend to crack on undergoing the phase
transition; this difficulty must be overcome for
optical studies. Likewise, there have been no
Fermi-surface studies on metallic NiS. Further-
more, these seem to be out of the question due to
the high temperatures and short mean free paths
in the metallic phase. However, it might be pos-
sible to get Fermi-surface information from posi-
tron annihilation which can be done above 265 'K.

III. DETAILS OF CALCULATION

A. Method

FIG. 1. Unit cell for the NiAs crystal structure. Open
circles are nickel atoms, dark circles arsenic atoms.
Arrows on the nickel atoms shown spin arrangement for
semiconducting NiS.

The tight-binding method has been used in this
calculation. The method will not be described in
detail here, since adequate discussions are given
elsewhere. The particular version of tight
binding used in this paper has also been discussed
elsewhere.

The electronic wave function in the crystal is
expanded in a set of Bloch functions constructed
in the usual manner:

5„, (k, r, r,)=~ 5~e'"'' ~' ~'g„,„(r-R„—f, ),

(1)
where N is the number of sites in the crystal and
the summation is carried out over all N of these
sites R„. Here f, is the position (in the cell at
the origin) of the ith type of atom with electronic
wave function g„, , where nlrb are the usual
atomic quantum numbers. It is convenient to form
linear combinations of these g„, which have spe-
cial transformation properties under the group of
the wave vector k before performing the Bloch
sum in Eq. (1). The appropriate combinations
are described below. Energy bands are obtained
by taking matrix elements of the one-electron
Hamiltonian between these functions, and solving
the secular equation
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lH, (k)-zs, (k)
l
=0, (2)

where i stands for the labels nlrb and 7;, and

H = —'(7~+ V(r ). The overlay, kinetic-energy, and

potential-energy matrix elements are given by

tk,, (k) = exp [ik (f~ —7,)] &~„exp [ik ~ R„

x(4...(~;) g. . .(R.+~,))],

T;~(k) = exp [ik ~ (7& — ~)]5~„exp [ik ~ R „

x(&...(~;) l
-&'l 8. . .(R. +~, )],

V;)(k) =exp [ik (i&-7';)]Z„exp [ik R„

x()t)„, (~i)l v(r) I (t)k'i'~ (R +7 )]

(3)

The overlap and kinetic-energy integrals are two-
center integrals and may be evaluated by standard
techniques. ' The potential-energy integrals are
three-center integrals and are far more difficult
to evaluate; it is the intractability of these poten-
tial integrals which has heretofore forced what
often turned out to be drastic approximations in
applying the method of tight binding. Until re-
cently, the tight-binding scheme has been used
primarily as an interpolation scheme to fit more
accurate calculations, or used as the basis for
pseudopotential calculations. The method used
here for evaluating these three-center integrals re-
quires analytic expressions for the atomic wave
functions in the form of sums of Slater-type or-
bitals, and a Fourier-series expression for the
crystal potential. ' ' For this calculation the
analytic wave functions for neutral atoms of nickel
(3d 4s ) and sulfur (3p ) were obtained from
Clementi's tables. The crystal potential was gen-
erated from the same wave functions.

V(r ) =Q„U(k„)cos (k„r), (4)

willi V(k„)= I
V(r)e'"" d r, (5)

0

where 00 is the volume of the unit cell and k„are
the hexagonal reciprocal-lattice vectors and the in-
tegral is over all space. Noting that there are two
molecules per unit cell, the superposition of
atomic potentials is

B. Crystal Potential

The Coulomb part of the crystal potential was
constructed as a superposition of spherically av-
eraged atomic potentials, so that, with analytic
wave functions, the Fourier coefficients could be
written explicitly. Since NiS has a center of inver-
sion, the Fourier series may be written as

V(r) =&~„V„,(r -R„-rq)+ VN, (r —R„T-2)
+ V~(r —R„—7 3)+Vs(r —R„—74),

where V„, and Vs are the spherically averaged
atomic potentials for nickel and sulfur. Changing
variables in each integral of Eq. (5) and perform-
ing the sum over p,

V(k „)=—(exp (-ik„r )fV„, (r)exp ( —ik„r )d r
0

+exp (-i „k)freV (r)„e,xp ( —ik„. r)d r

+exp (-ik r,)fV„, (r )exp (-ik„r )d'r

+exp ( —ik„rr)f Ve(r)exp (-ik r)d r),„(P)
where the integrals are taken over all space. Us-
ing the spherically averaged potentials, these in-
tegrals may be written

224m 8w

J
V„, r exp -ik„~ r d x= — ~+ 3k„ k„

e5 N(n)) I ~
U„, (r) ~'relet„rdr, (8)

n 0

where X(nl) is the occupation of the atomic state
nl and U„, is the radial part of the atomic orbital
for that state. Throughout this paper atomic units
are used, with energy measured in Ry. For
Clementi's wave functions the integrals are ele-
mentary, although the number of terms involved
makes them useful for computer calculation only.
A similar expression holds for the sulfur integral.

The Fourier coefficient for k„=0 must be cal-
culated separately by a limiting process, and for
nickel the integral is

lim V„, (r ) exp (-ik„r)d )v
0„"0

= ——''Gx(nf)
( l v„,(~) l'~'d~,

nr 0

and similarly for sulfur.
A p exchange potential of the type proposed

by Slater was used in this calculation. Fourier
coefficients of this exchange potential were cal-
culated by obtaining a spherical average of the
crystal charge density about each atom in the unit
cell and performing the integrals of p(x)'~3 over
atomic spheres with radius half the nearest-neigh-
bor distance, combining them as indicated in Eq.
(7). The average value of this potential in the in-
terstitial region was —0. 4 Ry. The exchange po-
tential integrals were multiplied by an adjustable
parameter X when constructing matrix elements,
so that variations in the exchange potential could
be investigated.

Some comment on the Fourier-series expres-
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sion for the crystal potential is appropriate at this
point. From Eq. (8) the large k dependence of the
Fourier coefficients is 1/k and the series (4)
will not converge after any finite number of terms.
This, of course, is due to the nuclear point
charges located at atomic sites, so this part of the
potential is the Fourier equivalent to a Madelung
potential. Since the atoms are assumed to be in
a neutral configuration in this calculation, there
is no difficulty with convergence of the other se-
ries expression (6), contrary to what is found in
ionic crystals. The solution to this problem for
the ionic case is given by Ewald, but for the
present purposes it is sufficient to observe that
it is not the series but integrals with the series
(4) which appear in this calculation. Integrals
involving atomic function centered on different
sites have additional factors exp( —k„R), where 8
is the separation of the centers, so convergence
of these integrals is quite good. For crystal field
integrals (two wave functions on the same atom),
the Fourier series for the integral converges more
slowly, coefficients for the integral are inverse-
ly proportional to (o. +k~)2k for large k, where n
is the sum of two of the Slater exponential param-
eters. Convergence of this sum is slower for
more localized functions, i.e. , the deep core
functions. On the other hand, these crystal field
integrals are only two-center integrals and may
be evaluated directly instead of with the Fourier
series, if convergence is not rapid enough. Al-
though it was not necessary to sum the Fourier
series (4) in this calculation, it was useful to
compare (4) and (6) to check that Fourier coeffi-
cients had been obtained correctly. This was done
by comparing contributions from electrons only,
which eliminated the simple, but troublesome,
term in (4).

One further comment about the Fourier series
(4): In the tight-binding method the time con-
suming task is evaluation of the three-center in-
tegrals. These can be evaluated once for a given
set of atomic wave functions for each value of R „
and k„and saved. The potential can then be ad-
justed to self -consistency merely by recalculating
the Fourier coefficients and regenerating the band
structure, without spending the time to calculate
integrals, since they remain the same. Of
course, if some or all of the Slater exponents are
adjusted variationally, the integrals must be re-
computed. However, for a reasonable choice of
starting atomic orbitals it is likely that improve-
ments of this type are unimportant compared to
improvements which need to be made in the treat-
ment of other solid-state effects, especially ex-
change interactions in the transition metal com-
pounds.

C. Crystal Structure

The NiS crystal structure, belonging to a non-
symmorphic space group D~„, specifies the di-
rect lattice vectors, reciprocal-lattice vectors,
and atomic positions v& in the unit cell which ap-
pear in expressions for the crystal potential. A
unit cell is shown in Fig. 1 for NiS, which may
be viewed as a simple hexagonal nickel lattice in-
terpenetrating with a hexagonal close-packed lat-
tice of sulfur atoms. The lattice constants used
in this calculation were g = 6. 5064 and g = 10.046,
in atomic units, corresponding to values observed
just above the transition temperature. The prim-
itive vectors for the direct lattice E; and recip-
rocal lattice b are

t, = —,
' a ( v 3 i —f), b, = (4)T/k" 3a) i

t =aj, b~= (2v/~3a) (i+ v 3j), (10)

t3 —-pk, b, =(2v/c)k,

where i, j, k are unit vectors along the x, y, and
z coordinate axes. Locations of the atoms within
the unit cell are given in terms of these primitive
vectors. For NiS (NiAs structure) there are
nickel atoms at f& = (0, 0, 0) and rz= (0, 0, —,'), and
sulfur atoms at 7's=(3

Q g) and 74 (—',, —,', —-~).
Using these nonprimitive position vectors and de-
fining a reciprocal-lattice vector by k„=n&b&
+nqbz+nsbs, the structure factors in (7) may be
written explicitly and the Fourier coefficients
of the potential become, for n3 even,

V(k „)=„— "V„,(r) e~ (-fk„r )d'~
0

+ (- 1)""~'" ~' "~"' [cos —,
'

v(n, -n, )]

x I V ( )exrp (-ik„r)d r),
and, for n3 odd,

y(k ) ( 1)(2ng e2n pen 3+1) /8[sin &
+(n n )]n g 0

Vs r exp -ik„r d x,

where the integrals are given by Eq. (8) for nick-
el and a similar equation for sulfur.

For n3 odd there are sulfur contributions to
V(k„) but not nickel contributions, because there
exists reflection symmetry through the plane
Z = 0 for nickel atoms, but not for sulfur atoms.
Less apparent symmetries for the NiAs structure
and for the space group De„are discussed by
Slater, 6 who gives operations of the group and
tables of irreducible representations. Using
standard group theoretic techniques it is possible
to block diagonalize the Hamiltonian and overlap
matrices and factor the secular determinant (2)
by forming linear combinations of the tight-binding



4608 J. M. TYLER AND J. L. FRY

. H'=
a0

I

0()

H

(i P

K

of atomic orbitals for the NiS crystal are given
in the Appendix. These combinations show which
atomic functions (s, p, d) on each atom in the unit
cell transform according to each of the irreduc-
ible representations of the group of the wave vec-
tor, and which, therefore, are coupled by the
crystal Hamiltonian. This information is very
useful in interpreting results of the energy band
calculation and comparing with crystal field and
molecular orbital models previously proposed.

V

T /
i)K =K IV. RESULTS OF BAND CALCULATION

A. Energy Bands

FIG. 2. Brillouin zone for hexagonal space group
D6„. , with symmetry points and lines labeled after Her-
ring (Ref. 27).

basis functions (1) which transform like rows of
these irreducible representations. This has been
done for NiS at points and lines of symmetry in
the Brillouin zone which are shown in Fig. 2,
where the standard labels of Herring have been
used. The linear combinations were obtained by
a projection operator technique, using matrix ele-
ments for the irreducible representations found
in Slater's book. Presence of nonprimitive
translations in some of the operations of this non-
symmorphic space group complicated these pro-
cedures as well as other group theoretic proce-
dures for this crystal. Symmetrized combinations

Energy bands were first calculated using 4s and

3d orbitals from nickel and 3p orbitals from sul-
fur. Since there are two atoms of each type in
the unit cell, this required a secular determinant
with a complex 18& 18 matrix. Energy eigen-
values in the vicinity of the Fermi energy at
points and lines of symmetry in the Brillouin zone
are shown in Figs. 3 and 4, where the exchange
parameter X was chosen as 1.0, corresponding to
Slater's original exchange potential. Figure 5

shows energy bands along the Z axis for X = 0. 85,
a value used in band calculations for Ni. 8

When constructing matrix elements given by
Eg. (3), care was taken to obtain convergence in
the sum over lattice vectors. Convergence of
this sum was slowest for integrals involving s
functions, so to ensure convergence, 38th neigh-
bors were summed for s-s integrals, 18th neigh-
bors for s-d, and 19th for s-p. Similar precau-
tions were taken in the reciprocal-lattice sums in
Eq. (4). With respect to these sums, energy
bands given in this paper are believed converged

- 0,5- M4

M
C9

LU
Gl~ -0.6-

M I~
, 2 X~-

M
X

I+
2

M~'~ x
I

I 4

M4

M
I

-0.8

FIG. 3. Energy bands for metallic NiS.
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to within an accura, cy of at least 0. 001 Ry.
In this tight-binding calculation the entire set

of Slater-type orbitals (STD) used by Clementi to
expand the atomic functions were included in the
analytic form of the atomic wave functions, which
resulted in additional sums in matrix elements and
further lengthening of the calculation. It might be
possible to use a truncated set of STO basis func-
tions for the atom, as was done in a calculation of
the energy bands of metallic lithium, but results
of calculations in Ni and MnS2 indicate that
choice of atomic wave functions may be important.
In fact, it should be noted that the Hartree-Fock
linear combination of STO's given by Clementi
may not be the best combination of these orbitals
for the solid, and it may be desirable to use the
entire STO basis set in the solid instead of that
linear combination which satisfies the variational
principle for the atom. With the method of ob-
taining the integrals used here, no additional work
would be required to evaluate integrals of STO's,
although the size of the secular determinate would
be increased accordingly. Since this calculation
was the first attempt to understand the band
structure of ¹S,the smaller determinate (com-
plex) was preferred for calculational convenience.

B. Comparison with MnAs

IVl r
FIG. 5. Energy bands along the Z axis for exchange

parameter X= 0.85.

Although there are no theoretical or experimen-
tal determinations of the band structure of other
transition metal compounds with the NiAs crys-
tal structure with which this work may be com-
pared, Goodenough has proposed a model to in-
terpret the magnetic properties of MnAs, both in
the hexagonal phase and orthorhombic phase.
His model is based upon molecular orbital the-
ory, which has been the traditional approach to the
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theory of transition metal compounds. ~ To ex-
plain the phase transitions which occur in MnAs,
he invoked the concept of a critical distance R, ,
such that for Mn-Mn nearest-neighbor distances
R &R, manganese g electrons behave as localized
electrons, while for R &R, they behave as col-
lective, or band electrons. He further assumed
that the d bands and Fermi energy fall in the gap
between s-p bonding and antibonding bands, with
four Q electrons per manganese ion occupying
orbltals g f g and g, which are identified in
this work with Z (7', )a Z (72); XF(f,) +XV(7,) and
[X (7,) —Y'(f, )] a [X (v s) —Y'(7 2)]; and YZ (7 t)
s FZ(7's) and ZX(rt) a ZX(%3) orbitals, respectively.
According to his model [Fig. 6(a)], the at and e

s-p ontibonding

a%%%%%%%%~%%14%
s-p bonding

(a)

s-p ontibonding

"
PM

Ov

(b)

A~s-p bonding

FIG. 6. (a) Band model for MnAs, after Goodenough
et al. (Ref. 30). The bands labeled s-p bonding are bands
derived from 4s and 4p arsenic levels and are either bond-
ing with respect to arsenic or bonding with respect to
manganese (antibonding with respect to arsenic). The
bands labeled s-p antibonding are derived from 4s and
4p manganese levels which are antibonding with respect
to manganese or antibonding with respect to arsenic
(bonding with respect to manganese). (b) Band model for
NiS. The bands labeled s-p bonding (antibonding) are
primarily nickel 4s bonding (antibonding) with respect to
nickel. These bands necessarily overlap and together
correspond to the bands labeled s-p antibonding in (a).
Bands corresponding to s-p bonding bands of (a) are not
shown in (b), but would lie below the bands shown.

bonding and antibonding orbitals form collective
bands, while e bonding and antibonding orbitals
represent localized electrons, which follows from
the observation that the hexagonal lattice con-
stant are such that Rt=c/2&R, = 3. '7 A, and R2
=g &R, . The a& bands were assumed most stable
(lowest in energy) followed by very narrow er
bands (localized), with the collective e bands
highest in energy. The magnetic moment 3. 1 p, ~
was explained by an exchange splitting, so that
the four d electrons per manganese ion filled g&

and e for n spin, but filled only-,' of the e band
of n spin (i. e. ,

—', electron per manganese atom)
and s of the a, P spin band.

Differences between this model for MnAs and
the results of the present calculation for NiS are
immediately evident when Figs. 3 and 4 are exam-
ined. The major difference is the position of the
4s nickel bands relative to the d bands. Although
the 4s nickel and 3p sulfur bands mix, a group of
bands in the range —1.8 to —0. 8 Ry may be iden-
tified as predominately 3P sulfur, containing only
very small amounts of nickel s. Bonding and
antibonding 3p bands lie in this range. The nick-
el 4s bonding band begins at —1.43 Ry at l" and
can be seen entering at the bottom of Figs. 3
and 4 near A and exiting at the top after hybrid-
izing with d bands in the middle. The low-lying
bands near M are sulfur 3p bands. The 4s anti-
bonding band overlaps the 4s bonding band
throughout much of the Brillouin zone, and the
two are always degenerate at A. In fact, it is a
requirement of group theory for this lattice, that,
with respect to the same, sublattic, bonding, anti-
bonding bands be degenexate at the zone bounda-
ries k, =+ v/c, whereas they are split at the cen-
ter of the zone. This may be verified by refer-
ring to the symmetrized orbitals given in the
Appendix, and is a consequence of time reversal
symmetry: There can be no real gaps between
the bonding and antibonding bands in the solid.
The molecular orbital model has approximate va-
lidity only at the center of the zone. ' However,
it is worthwhile to compare relative positions of
P bands, which is best done by studying the NiS
d bands without hybridization, shown in Fig. 7.
Without hybridization, the order of levels at I'
is altered. s and p bands do not interact with the
1 6d levels, so they will not be affected by the
addition of nickel s and sulfur p basis functions,
while the other levels at I' are shifted. The ad-
ditional labels in Fig. 7 are the molecular orbital
labels of Goodenough. The + and —symbols in-
dicate bonding and antibonding orbitals with re-
spect to the nickel sublattice. The two -dimension-
al irreducible representations at I' contain both
e bonding and e antibonding functions or vice
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FIG. 7. Energy bands for metallic NiS using d basis
functions only.

Energy bands presented in Figs. 3 and 4 were
obtained using nickel 3d and 4s and sulfur Sp
orbitals and a crystal potential constructed from
neutral atoms. The calculation was not done self-
consistently, nor was spin-orbit interaction in-
cluded in the Hamiltonian. While spin orbit could
substantially affect the shape of the Fermi surface
by splitting and moving the d bands near the Fer-
mi energy, it should change relative positions of
the bands by small amounts only: This will be
discussed further in Sec. V. However, self-con-
sistency is a more difficult factor to anticipate,
and it is possible that a self-consistent potential
would lead to important reordering of bands. Al-
though, in principle, a self-consistent calculation
could be carried out for NiS, the present experi-
mental information does not seem to justify the

time and expense, which would be substantial. A

versa. The labels assigned in Fig. 7 correspond
to the largest component, which is usually more
than 90%%ug. A schematic diagram for these NiS
bands is shown in Fig. 6(b) for comparison with
the MnAs diagram, Fig. 6(a). The major differ-
ence observed for d bands is overlap of the e and

aq bands. As seen from Fig. 3, hybridization
with nickel 4s and sulfur 3p bands tends to nar-
row the e band and widen the e band, but does
not split away the e band. Thus, the potential
used in this calculation does not produce enough

crystal field splitting to prevent overlap of all the

d bands. The total width of the d bands is about

3. 5 eV, but, as anticipated by Goodenough, width

of the e bands is considerably less, about 0. 15
eV.

C. Discussion

TABLE I. Effect of nickel core s functions on energy
eigenvalues at I'. Energies are expressed in Ry. The
high-energy state belongs to the nickel 4s antibonding
band.

Level

r'
3

Without core

4.910

—0.566

—0.717

—1.186

—1.430

With core

5.260

—0.561

—0.717

—1.184

—l.169

crude estimate of consistency of this calculation
can be made by comparing assumed occupancies
of atomic energy levels used to construct the
crystal potential with occupancies of correspond-
ing energy bands. This is difficult to do since s,
p, and d bands hybridize and mix throughout the
zone, making proper correspondence uncertain.
From Figs. 3 and 4, the effective configuration
in the solid is approximately Ni(3dv 4s ' ) S(3p~),
i.e. , filled 3p bands, whereas the assumed con-
figurations were Ni(3d 4s )S(3p ). Similar re-
sults were obtained for Re03 with neutral atom
potentials and TiO with singly ionized atoms. 3

By examining charge densities within AP%'

spheres the latter case was found to be nearly
self-consistent even though band occupancy indi-
cated doubly ionized atoms.

Other uncertainties which are involved include
exchange contributions and the, importance of ad-
ditional basis functions, both core and conduction
type. To investigate exchange effects, several
values of X were used to obtain energy bands.
Figure 5 shows typical results for X = 0. 85, where
the main feature is differences in Fermi energy
and Fermi surface caused by the relatively small
changes in the exchange potential. Note now the
presence of Z heavy mass holes in the Fermi sur-
face. X is a convenient parameter for adjusting
positions of d bands relative to s bands. Values
of X in the range —,'-1 did not alter the order of
levels at l, so it is not expected that s -d hybrid-
ization can be removed by using a slightly differ-
ent treatment of exchange.

This s& hybridization, which presents diffi-
culties in Sec. V, could be altered by interaction
with other bands not included in this calculation.
To investigate this possibility additional core
functions were added. All necessary integrals
had previously been calculated for s orbitals in
the core of nickel, so these were added to the
basis set. Energy levels affected at I' are given
in Table I with and without the nickel s core.
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Nickel s functions transform as 1& or I'3, and
affect only positions of nickel s and d, ~ bonding
and antibonding levels. On the other hand, sulfur
s functions transform as I'i and 1"4 and would alter
only the nickel s and d,~ bonding levels at I' if
they were included in the basis set. Since the
sulfur 3s level is the next highest core level, it
is possible that it could substantially change the
4s I"& level. To avoid lengthy computations re-
quired to include the sulfur s functions, a second-
order perturbation estimate was made, based
upon first-neighbor interactions only. This esti-
mate indicated that sulfur s functions would con-
tribute approximately the same order corrections
as nickel s functions, so that the order of levels
at I' would remain unchanged.

Uncertainty related to contributions from con-
duction bands is probably larger. Additional s
functions on nickel or sulfur would lower the 4s
I'& level relative to d bands. Sulfur 3d conduc-
tions bands may also be important, as noted by
Wilson, who reported energy bands for n MnS
calculated by the APW method. He found that
manganese d bands were pushed down below man-
ganese 4s bands by interaction with sulfur 3d
bands. Whether this is the case with NiS
is uncertain, since sulfur d functions interact
with both s and d bands in the NiAs structure and

will lower both energy bands. Nevertheless, it is
clear that more accurate calculations for NiS
must allow for this possibility either by inclusion
of more tight-binding functions or addition of
plane waves to the basis set.

D. Density of States and Optical Properties

In Fig. 8 is shown the density of states for en-
ergy bands of Figs. 3 and 4 (X = 1), which was ob-
tained using a grid of 327 points within z4 of the Bril-
louin zone. The Fermi energy is —0. 616 Ry. This
density of states is characterized by two strong
peaks in the d bands, one just above and the other
below the Fermi energy. A broad peak below the
Fermi energy corresponds to s and P bands. The
strong, sharp peak just below the Fermi energy
may be traced to the lower T2, Ts bands (Fig.
4) and corresponding bands along other axes.
These bands are the narrow (0. 14 eV) e bands
described by Goodenough, which are possibly re-
sponsible for the magnetic properties of transition
metal compounds which crystallize in the NiAs
structure. A density of states characterized by
a Fermi energy lying in a minimum between two
d band maxima is considered by some to be favor-
able to antiferromagnetism. '

The narrow d bands and large peaks in density
of states near the Fermi energy suggest that there
should be substantial structure in optical reflec-
tivity of ¹iSin the infrared region. For the pur-
pose of understanding this structure, and in hopes
of stimulating experimental investigations, selec-
tion rules and transition energies have been
worked out for the band structure presented here.
Selection rules were obtained by standard group
theoretic techniques. Transition energies were
chosen for transitions likely to exhibit structure
in the ref lectivity: Those for which the joint den-

q(E) I

I

I

I
I

11
I

FIG. 8. Density of states for
metallic Nis.
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sity-of -states function is large. This was done

by examining energy bands shown in Figs. 3 and

4. A list of important electric dipole transitions
below 10 eV, along with selection rules for light
polarized parallel or perpendicular to the Z axis
is given in Table II.

V. METAI TO-SEMICONDUCTOR TRANSITION

The metal-to-semiconductor transition in NiS
has been attributed to antiferromagnetic ordering
of magnetic moments of nickel atoms. It is in-
teresting to examine the band structure of the
metallic phase of NiS to see whether conditions
are favorable for antiferromagnetism. If so, a
spin-polarized calculation using lattice constants
for the semiconducting phase might be successful
in explaining the semiconducting behavior below
the Noel temperature. According to simple band

theory it is necessary that the spin splitting of
the bands leave completely filled or completely
empty bands. This is most easily accomplished
when an exactly half -filled band, which does not

overlap any other band, is split in half. This
would be the case when bandwidths are small
compared to crystal field splittings which in turn
are small compared with spin splitting, which

appears to be the case with NiO. Energy bands

Transition Energy(e V)

Selection rules
)[c axis lc axis

A(-A(
Z3-Z3
Z3-Z4
Rg 3-R) 3

U2-U2

R& 3-R2 4

Rg 3-R2 4

Rg 3-R( 3

z,-z,
X(-Xe
Z3-Z4
Z3-Z2
T2-T1
Ts Tf

S(-$(
8(-S(

9.4
7.9
8.4
1.52
1.63
0.32
1.27
0.98
0.44
1.20
1.74
0.87
1.30
0.10
0.32
1.03
1.36
1.57

Yes
No

No
Yes
Yes
No
No

Yes
No

No
No
No

No
Yes
Yes
Yes
Yes
Yes

No
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No
Yes
No
No
Yes
Yes
Yes
Yes

TABLE II. Some low-energy electric dipole transi-
tions for metallic NiS as deduced from the band structure
of Figs. 3 and 4. Light polarized parallel to the c axis
transforms like I 2, while light polarized perpendicular
to the c axis transforms like I'6. Only direct transitions
are considered here, and no selection rules relying on
time reversal symmetry are included. All + + or

—transitions such as M( Mg or I'3 I'6, etc. ,
are forbidden.

obtained here do not satisfy these conditions.
First, the d bandwidths are larger than the crys-
tal field splittings, causing bands to overlap in a
complicated way. Second, the 4s bands overlap
all the d bands, and, since they are so wide, will
probably overlap all d bands after a spin splitting
is introduced, since it is not likely to be larger
than the bandwidth of the combined 4s bonding,
antibonding bands. Thus it is not easy to vi-
sualize a model band structure which would be
split correctly by antiferromagnetic alignment of
spins to give a real gap in the density of states.

In order to construct such a model from results
of the present calculations it is essential to con-
sider spin-orbit effects. This is done crudely by
relabeling energy levels according to the double
group notations and reconnecting them as required
by symmetry, as shown in Fig. 9. No spin-orbit
splittings are shown: Results from band calcula-
tions of fcc nickel suggest that these splittings
would be less than 0. 2 eV. Degeneracies will be
removed whenever two different double-group ir-
reducible representations appear as labels at the
same point, except for those which are required
to be degenerate by time reversal symmetry,
e.g. , A4+A. s. By arbitrarily moving levels at
F, A, and L above or below the Fermi energy
and introducing a spin-orbit splitting of Ae from
A. 4+A. 5, it might be possible to obtain a band
structure favorable toward formation of an anti-
ferromagnetic semiconductor. However, due to
relative positions of s and d levels and the re-
sulting hybridization, it is very difficult, if not
impossible, to find a way to make minor adjust-
ments of these energy bands that will lead to a
real gap in the density of states after the energy
bands are split by introducing the magnetic Bril-
louin zone. For reasonable values of spin split-
tings it is not possible to obtain a real gap even
by arbitrarily moving levels by amounts of the
order of widths of the d bands.

On the other hand, if the 4s band is first lifted
above the 3d bands by an amount large compared
to the spin splitting, the Sd bands are connected
differently, and it is then possible to obtain a
band structure (perhaps not a very probable one)
in which a gap can appear. Since d bands of the
same spin but different symmetries will pre-
sumably still overlap after the spin splitting is
introduced, the largest band gap which can occur
must be less than the maximum spin-orbit split-
ting, about 0. 2 eV, which is not inconsistent
with the observed activation energy of semicon-
ducting NiS, 0. 12 eV. Without splitting apart of
the d bands by spin-orbit interactions there can
be no gaps introduced by spin splittings, even
when the order of s and d bands is altered.
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FIG. 9. Energy bands for metallic NiS labeled according to double-group irreducible representations.

Thus, about the only possibility of understand-
ing the phase transition in NiS in terms of a spin-
polarized model and the band structure presented
here requires reordering of s and d levels and

invoking both spin splitting and spin-orbit split-
ting of d bands. If this model is correct, the NiS
transition might in fact be a semimetal-to-semi-
conductor transition.

However, if the present band structure is cor-
rect as far as order of s and d levels, crystal
field splittings, and bandwidths, it may be nec-
essary to take another point of view to understand
the phase transition: that the transition is a col-
lective-to-localized one, in other words, a Mott
transition. In this case, magnetic order would
not be necessary, but could be attributed to local-
ization of the d electrons.

VI. CONCLUSION

In this paper the energy bands of NiS have been
examined by using a tight-binding method. Although
the method has been applied with greater rigor than
usual, it is possible that further refinements will
alter the band structure obtained here. Addition-
al tight-binding basis functions may be needed,
and perhaps a better treatment of exchange. The
former could be added with sufficient labor at this
time, but the latter improvement would need some
experimental guidelines which are not available
at present. Probably the most important consid-
eration for further refinement is improvement of
the crystal potential toward self -consistency.
Conclusions reached here about the band structure
of NiS are based upon a neutral atom crystal po-

tential and the crystal field splittings, bandwidths,
and band overlaps associated with it. Although a
self-consistent calculation starting from the pres-
ent band structure could conceivably produce
changes in all three of these band properties, it
is not possible to anticipate whether they are sub-
stantial enough to alter conclusions reached here.

The principal results of this calculation may be
summarized as follows:

(a) It has been demonstrated that a straightfor-
ward application of the tight-binding method is pos-
sible for a fairly complicated transition metal
compound (two molecules per unit cell, and a hex-
agonal nonsymmorphic space group).

(b) The nickel Sd bands of metallic NiS are
about 3. 5 eV wide and overlapped by and hybrid-
ized with the nickel 4s band.

(c) The Fermi surface is complicated: Con-
ductivity is due to both s and d electrons and
holes.

(d) An abundance of low-energy electric dipole
transitions should be observed in the infrared re-
flectivity of ¹i8.

(e) The density of states may be favorable to-
ward the formation of antiferromagnetic order,
but the addition of spin polarization to the present
calculation is not likely to result in a semicon-
ducting band structure for NiS.
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APPENDIX

Presented here are symmetrized combinations
of atomic orbitals for the NiAs structure for s,
p, and d functions on nickel sites and s and p func-
tions on arsenic. sites. Subscripts 1 and 2 refer
to nickel sites vf and v» 3 and 4 refer to arsenic
(sulfur in NiS) sites 73 and 74. Symmetrized func-
tions were obtained using projection operators
and matrix elements of irreducible representa-
tions given in Ref. 26. To simplify these lists,
the following notations are used in addition to the
subscripts: x2 means x2 -y2 and Z2 means 3z2
—x; xyl means (xy)1, etc. The first column be-
low is the dimension of the irreducible represen-
tation which is labeled in the second column, fol-
lowed by the symmetrized combinations of orbit-
als. The factor 2 is exp(-ink, ). For multidi-
mensional representations, functions which trans-
form like different rows are separated by com-
mas, or indicated by + signs. The order of rows
is the same for different s, p, or d groups sepa-
rated by semicolons. In some cases it may be
possible to choose real basis functions instead of
the complex ones listed here.

2
1 1 S1+S2, S3+S~ Z1+zp,

1 I'2 Z1+ z2,' z3+ z4,

1 r, Sf -S„z,-z4, zf -z', ,

1 I"4 S3 -S4, zf —z2,

2 I'3 x3 x4+2 b3 y4); xyl+xy2+2(x, +x2);

yzl -yz, + z (xz, -xz,),
xl —x2+ z(y 1 -y2),

xyl xy +z(xl x2) yzl+yz2+z(xzl+xz2)

2 I'3 x3+x4+z(y3+y4)i xl+x2+z(yl+y2)

1 K 1 S1 +Sp,' S3+S4 z 1 + zp
2 2

1 K2 Sf —Sp,' z3 —Z4,' z 1
—z2,2 2

1 K3 S3 S4,' zf -zp,

1 K4 zf+z2y z3+z4p

2 Z3 xl+x2+z(y, +y2); x3+zy3

Xy 1+Xy27 Z(X1+X2) i yZ1 —yZ29 (XZ1 —XZ2) i

2 K3 Xyl —Xy2T ( zXX12) i yZ1+yZ2+1(XZ1+XZp) i

1 ~f Sf+as„zf+nz„2 2

1 42 S f QS2 $3 QS4 z f Qz2 z3 Qz4,'

Zf —QZ2~
2 2

2 ~3 Xl —QXZTz(yl —Qy2)i X3 —QX4Tz(y3 —y4)'

xy 1+Qxy25 z(xl+ Qx2)i

yzl —Qyz2% z(xz 1
—Qxz2) i

2 ~3 x, +QX2+z(yl+Qy2); X3+QX4+z(y3+Qy4);

Xyl —QXy26 z(X1 —QXp);2 2 ~

yz, + Qyz, + z(xz, +Qxz2)i

2 A 1 Sf+ zS2, S3+ sS4, zf+ zz2, Z3+ zz4, z1+ sz2,

4 A3 xl+y2kz(x2-yl), xl-y2kz(x2+yl)i

X3+y4+Z( 4 y3)i X3 y4+Z( 4+y4)i

Xyl X273(Xy2+Xl)i Xyl+X273(xy2 —Xl)i

yzl xz2+z(yz2+xzl)i yzl+xz2+36z2 xzl)i

2 Hf Sf+$2' 1 S2y 3& 4y Z1 Z2p zf+z2y
2 2 2 2Z1+ Z2& Z1 Z2&

+2 Xl+X2+Z(yl+y2)i X3 Zyzi X4 Zy4i

y1+ Xy2+3( 2+ Xl)i yZ1+ yZ2+Z(XZ2+ XZl)i

1 Pf Sf + nS2, S3+nS4,' zf + nz2, Z3+ tz4,'

2 2
Zf +QZ2q

1 P2 Sf -aS2,' S3 -nS4,'

2 2
Z1 +Z2 Z3 +Z4 Z 1 +Z2

2 P3 Xf 2$ 1 p Xp 1$2g X3 2/3 p X4 —Z$4q X/ 1 +ZXf ~

x3 2+zx2 y pz 1 sxz 1 p gz2 zxz2p

1 Zf Sf+S2, S3 j S4p

Xf+X2y X3y X4y zf Zpy Xf+X2y

2 2Xz 1 Xzpy z 1+Z2y

~2 3 1 3 2y Z1+Z2x X3 1 X3 2r Xzf+3 Z2&

~3 1 2y 1 2t Z3~ 4t Xf X2t zf Z2~
2 2 ~ 2 2

1 Z4 311+32i 3 3i 34y x3 1+%2i3 zf 3Z2~

1 M 1 Sf +S2,' S3+S4y X3 X4y

2 2 ~ ~ 2 2
Xf X2y Xz 1 XZ2y Z 1+Z2p

1 Mp x3+x4 j xpf —xg2p gzf+gz2~

1 Mp 83 S4p Xf +X2 z Zf —Z2r

1 M3 S1 S2y z3 Z4y xf x2y xzf+xz2y z 1 Z2p
+ ~ ~ 2 2 ~ ~ 2 2

1 M3 g f +$2~ $3+$4)

M4 ~3 X4t xxf+x3 2P 3zf 3 Z2P

Xf Xp j Zf+Z2p Z3+Z4p

1 T1) Tf Sf +S2,' S3+S4~ X3 X4s 3 3+3 4r X1+X2s
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2 2
XZ1 XZ2y Z1+ Z2 p

~27T2 S1 S2r y1 y2~ Z3 Z4~

2 2. 2 2X1+X2 i XZ1+ XZ2 i Z1 Z2 &

T3r~3 Xi X2y Z1+Z2t Z3+Z4y

xy1-xy2,' yz1+yz2,

4~ 4 3 4~. 1+ 2i 3+ 4~ y3 y4i 1 2x

xy1+xy2r' yz1 yz2~

I R1 S1+S2,' S3~ S4,
2 2.

X1+X2y X3 j X4 j Z1 Z2s X1+X2x

2 2
1 XZ2 7 Z1+ Z2

1 R2 y1-y2~ Xy1 —Xy2~ yZ1+yZ2

R3 1 2P x1 X2P y1+y2i
2 2 ~Z1+Z2t Z3x Z4t X1 X2s

2 2
XZ1+XZ2x Z1

1 R4 y3~ y4i xy1+xy2i

2 L1 S1+S2,' S3 p S4,' X1+ X2

X3px4yZ]+Z2$Z3pZ4P
2 2. . 2 2

X],+ X2x XZ], + XZ2x Z1+ Z2 p

i 2 y1+ y2P y3 p y4i Xy1+ Xy2 1 yZ1+ yZ2P

1 U, S,+QS2,' S3+QS4,'

QX2y X3 QX4y Z1+QZ2y

2 2 ~ ~ 2 2
Z3 + Q Z4 y X1+QX2 y XZ1 QXZ2 & Z1+ QZ2 &

1 U2 S1-QS2,' S3 —QS4,'

X1 + QX2 7 X3 + QX4 7 Z 1 QZ2 7

Z3 QZ4& Xy1 ~ ™Xy2&XZ1+ QXZ2 y Z1 QZ2&
2 2

1 U3 y1+Qy2~ y3+Qy47 Xy1 Qxy2x yZ1+QyZ2,

1 U4 y1 Qy27 y3 —Qy4 j Xy1+Qxy2y yZ1 —QyZ2 ~
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