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A complete set of coherent-state wave packets has been constructed for an electron in a uni-
form magnetic field. These states are nonspreading packets of minimum uncertainty that fol-
low the classical motion. Use was made of the ladder operators that generate all the eigen-
states of the Hamiltonian from any one energy eigenstate. The coherent states are the eigen-
states of the two ladder operators that annihilate the zero-angular-momentum ground state.
We have calculated the partition function, exploiting advantages of the coherent-state basis.
The Landau diamagnetism and the de Haas-van Alphen oscillations are contained in the coher-
ent-state framework.

I. INTRODUCTION

Coherent-state wave packets have received re-
newed attention since the recent article of Glau-
ber. ' Much of this attention is due to the recog-

nition of their usefulness as a set of basis states
for the calculation of observable physical quan-
tities. ' In addition, they have been of value in
the theoretical problem of the quantum-mechan-
ical definition of the phase of an oscillator. 3 The
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The energy eigenvalues and eigenvectors of a
charged particle in a magnetic field were first
found by Landau. We shall review the problem in
order to obtain the operators necessary for gen-
erating the coherent states. The notation of Kubo
et al. will be used. Two constants which char-
acterize the problem are Q = eH/gc, the cyclotron
frequency; and l = (I/p, Q) i, the classical radius
of the ground-state Landau orbit.

The Hamiltonian for a free electron in a mag-
netic field, neglecting spin, is

X = w'/2ii, (2. i)

coherent state is a wave packet whose probability
distribution is invariant in time except for a dis-
placive translation which obeys the classical
equations of motion. Louisell has summarized
the physical and mathematical properties of the
coherent states of the linear oscillator.

In this paper we have generated the complete
set of coherent states of a charged particle in a
magnetic field by use of step-ladder operators.
Some of these states were originally found by
Darwin in his examination of the classical action.
In order to obtain all the states, we constructed
ladder operators X, in addition to the ladder oper-
ators m, constructed by Johnson and Lippmann.
Spin was neglected throughout.

As an application, we have used the coherent
states to calculate the magnetization and magnetic
susceptibility of the free-electron gas and have
thus rederived the Landau diamagnetism. The
computation is aided by simplifications that occur
when using the coherent states as a basis.

II. ENERGY EIGENVALUES AND EIGENSTATES

then X, =[(w, w )/2p, ]+-,'h Q . (2. 8)

This is mathematically equivalent to the linear
oscillator Hamiltonian with the number operator
being w. w /2iiSQ. In addition, the angular mo-
mentum operator

Lg=xp, -y P„, (2. 9)

R, ~N, m& = (N+ —,')IQ N, m)

and L, IN, m) =mK~N, m).

(2. 10)

(2. i1)
From the commutation relations of m, with X and
L, ,

[X, w, ]=+aQw,

and [L„w,]=akw„
(2. 12)

(2. ia)

we see the operators w, and m are the raising and
lowering operators, respectively, for energy and
angular momentum simultaneously. Thus

w+~N, m) =(2iikQ) (N+1) ~N+1, m + 1) (2. 14)

and w N, m) =(2ithQ)"'(N)"'iN- I, m-I) .
(2. 15)

Figure 1 demonstrates the properties of m, . In
the array of states ~N, m) the w, operator can
carry us along any one diagonal. It is evident
that to generate all states from any particular
state we must find an operator that will move us
from one diagonal to another. An operator with
this property can be constructed from the orbit
center -coordinate operators

which has integer eigenvalues (in units of I'), com-
mutes with X, . We select energy eigenstates that
are simultaneously eigenstates of L, . Labeling
themiNm), one obtains the eigenvalue equations

where tL is the electron mass,

w=p+eA/c

and H= VxA .
(2 2)

(2. 3)

X=x —(w, /pQ) (2. 16)

We choose the vector potential to be

A=(-sHy, aHx, 0), (2. 4)

which corresponds to a uniform magnetic field
parallel to the z direction. Thus, since the mo-
tion along the g direction is that of a free particle,
it is necessary to solve only the two-dimensional
problem in the xy plane. The appropriate Hamil-
tonian for the transverse motion is

X, = [(p„--,' pQy)s+(p, +-,' p, Qx) ]/2p, . (2. 5)

If we introduce the operators
I o,-z&

X+

X

X+
lo;i& =

12, 0& la ~& Is a&

J i, o&

w, =p„~ ip, + (ia/2l') (x~i y)

which obey the commutation relation

[w, w, ]= 2iiAQ,

(2. 6)

(2. 7)

FIG. l. Energy eigenstates I N, I) for the transverse
motion of an electron in a magnetic field. The energy
eigenvalue is (N+2) AQ and the angular momentum eigen-
value is ml'. The stepping of the ladder operators oper-
ators 7t.+ and X~ is indicated by arrows.
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and Y = y+ (v„/(((0).
The operators

(2. 1V)

X,=X+i F (2. 18)

have the desired properties since they step only
the angular momentum and not the energy, as
shown by the commutation relations

[L,„X,]=+AX,
and [X, X, ]=O.

(2. 1O)

(2. 2o)

In addition, they commute with w, . We can there-
fore show that

X,IN, m) = (/2) f (N -m )
I
N, m + 1)

and X IN, m&=&2f (N-m+1)"'IN, m -».

(3 3)ln, ~&=Z N, m) (N, m n, ~).
We can obtain the expansion coefficients
(N, m!n, $) in terms of the single coefficient
(p, p!n, g & by use of the Hermitian of Eq. (2. 21)
and Eqs. (3. 1) and (3. 2). Hence/

(N, min, $&

(n/i)" (h)
(2f2)N/Q(N()1/2(2f2)(N-™)/2[(N m)(]1/2

x(o, oln, ~&. (s. 4)

of length. Their physical significance and the co-
herence properties will follow.

We construct the coherent state by expanding in
the complete set of energy eigenfunctions; thus

lt is clear that for a given energy (N+2)ttA, m
can take on values N, N —1, . . . , 0, —1, . . . ,
-~, because the application of X, to the state
IN, N) yields zero. All energy eigenstates can
now be generated from the ground state

I 0, 0)
by successive applications of m, and X; thus

From the normalization condition

(n, ( n, $&=1,

we obtain the result

(0 Oln &&
= e~ [-(Inl'+

I & I')/4t']

(s. 5)

IN, m&=[(2!m)" (2fQ)" N! (N —m)!] ~/Q

xX" (/",
I 0, 0). (2. 21)

(t(QQ(x, y) = [1/(v"27)l] e '" "'

This is shown schematically in Fig. 1.
The ground-state zero-angular-momentum wave

function, in coordinate representation, is obtained
from the two conditions

(r X,
l
0, 0& = t —+i —+Q(x+iy) gQQ= 0,

8+ 8$8, 8
(rl((

I
0, 0) = ih ——i —+ -Q (x —iy) $QQ=0 ~

8g 8g 2l
The substitution p, = x+ iy simplifies the solution.
The result is v (t) =e '"'7/ (0),

which follows from the equation of motion

(s. a)

where an arbitrary phase factor has been set
equal to unity.

By an additional use of Eq. (2. 21), the coherent
state can be put in the form

In, &&=e~ -„Q (lnl'+I&I')+, ~'+2tQ Ip, o&

(3. 7)

The time dependence of the coherent state is
obtained by deriving the time dependence of X,
and m in the Heisenberg picture. X, is a constant
of the motion since it commutes with BC. On the
other hand,

= [1/(&2')l] e '"-"' dm /dt = (1/N) [m, X]= -i'm . (s. 9)

Hence

w (t)In)&=e '"'v (0)ln-g&=n e '"'In, (&. (3. 1O)

v ln, g&=(e/i)(n/f')In, g&,

x.ln, &&=(ln, ]&

(s. 1)

(3. 2)

The complex eigenvalues n and g have dimensions

in which the state is normalized to unity over the
xy plane.

III. COHERENT STATES

The coherent states of a harmonic oscillator
have been discussed in detail by Glauber. We
follow his procedures for the problem of an elec-
tron in a magnetic field. We consider the trans-
verse motion only. Let the coherent state

I n, (&
be defined as the simultaneous eigenstate of the
two commuting non-Hermitian operators which
annihilate the ground state:

On transforming to the Schrodinger picture, the
time-dependent coherent state becomes
!n e- (ot

The Schrodinger representation of the coherent
state P &(r) may be obtained in several ways.
One method is to solve Eqs. (3. 1) and (3.2) in
the coordinate representation. Using p, =x+iy, we
obtain the differential equations

(
8 Q

+4)2 P- 4 ( 2)a 40tg (S. 1 la)
p+

~
+4)2 P+ leg =

2)a Snab ~

8p 4/ (S. lib)

Since the solution for n = $ = 0 is e "'- /4', we are
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where f(t) is an undetermined function of time.
We obtain f(t) by requiring that $~ satisfy the
time-dependent Schrodinger equation with n(t)
having the time dependence e '"'. We find f(t)
= [a(t)g/2t ]. Thus, the wave function, normal-
ized to unity, is

&-e=t(2,) /se~ 4,-s (I~I +I(I )
1 1 2 2

1 o, (—
4fs (p. —2&) (p —2o')+2ts (s. is)

led to try simple translations of the variables p,
and p . Thus we find

y, ~ exp [- (p. —2() (p —2n)/4/'] 8/" ', (3.12)
~x ~p„=~y ~p„=—,'I . (3. 17)

IV. DIAMAGNETIC SUSCEPTIBILITY

The coherent-state formulation permits us to
use classical concepts for describing electron
orbits, yet contains all quantum effects. We use
this approach to calculate the partition function.
The Landau diamagnetism is then obtained.

The partition function is given by

z=Tre- "'=Q&o., ], a. I
e "'I-o., (, a.&

2 2
-h 0 /2lakT

monic-oscillator case, these coherent states are
states of minimum uncertainty, i.e. , they satisfy
uncertainty relations

Equation (3.13) can be obtained directly by finding
the coordinate representation of Eq. (3.7). Use
is made of the operator identities

w, m, SA
2pkT 'kT (4. 1)

9 8
exp x+c —=exp x exp e —exp —,'q

~x ~x

8 I

and exp c —f (x) =f (x+c).

The sum on k, gives the usual partition function
for one-dimensional free motion. 'We evaluate Z
for a cylindrical body of length I., radius R, ori-
ented along the magnetic field. Thus we have

The probability density in space is

2= 1
~ll ~Lr

where Z„= (I /@) (»g&&)"'

(4. 2)

(4. s)

where o. =nt+ins, $ =$+i$s, and c/t, ns, 5q, and

(2 are all real. Thus the coherent wave packet
has the form of the ground state, but is displaced
in space to a moving center. The mean coordi-
nates are

r(t)=Re[~+a(o)e '"'], -

y (t) = 1m [) —o. (O) e '"'
] .

Thus the centroid of the packet follows a classical
orbit of radius

I c/I around a center at ($ t, $s).
The shape of the packet is independent of time.
The motion is depicted in Fig. 2. The use of the
X operator enables us to place the center any-
where. These same techniques may be used to
find the coherent states for crossed electric and
magnetic fields, and for the harmonic oscillator
in a magnetic field. These cases are discussed

, in Appendixes A and B.
The coherent states form a complete basis.

Following Glauber, we find that the closure re-
lation may be expressed as

(1/4' l ) f I
n, $ ) (n, $ I

d n d $ = 1, (s. 16)

where d n =dntdna; d $ =d$,d$s. As in the har-

The transverse part may be simplified through
the properties of the coherent states. We use the
boson-operator identity

xafa ( x 1)n tn n

fn=0
(4. 4)

where a and at satisfy [a, at]= 1, to evaluate Eq.
(4. 1). Thus the factor

l

I
/

/

FIG. 2. Motion of the coherent sts.te I n, $). The
shaded region represents the Gaussian packet which fol-
lows the classical motion of cyclotron frequency Q.
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exp

( -"""-p)
2l 2

(4. 5)

The quantum effects arose through the noncom-
mutability of m, and m . This led to a distribution
of orbit radii of the same form that Bloch first
derived for the amplitude distribution of a har-
monic oscillator in thermal equilibrium.

and g

f A d o'
e I

o' (l -solar)x) p 4 exp —
p

—e

(4. 6)

To perform the integration over P and a, we ex-
clude all coherent states with [ n +P ( &R, i.e. ,
we sum over all orbits lying within the cylinder.
The limitation on the terms to be included in the
sum over coherent states is equivalent to the cut-
off of energy eigenstates used by Landau. How-
ever, since R»l, for our application, and the ex-
ponential falls off rapidly with ) n), we can safely
extend the n integration to infinity. The results
are

e- Fi 0/2&T R CO

z =', ~ 2~ (Id Z " »f~fdl~f
0 ~0

x exp — I 1-' hn/uT
2l2

APPENDIX A: CROSSED ELECTRIC AND MAGNETIC
FIELDS

In crossed electric and magnetic fields the Ham-
iltonian is augmented by a term

V=e E r=e(E„x+E~y) = pe (E,p +E p, ),

where E,=E„+iE, . The Heisenberg equations of
motion for the operators m and X, now become

dm /dt= —(i/0) [v, $C, +V]= —i Av eE-
and dX, /dt = —(i/h) [X., V) = —ieE, /pA.

The solutions are

v (t) =e '"'v (O) -eE /iQ,

X, (t) =X, (O) —(ieE, /~Q)t.

Thus the coherent state ~np $p) at t=0 will have
evolved at time t to the state

;«eE ieE.
o'oe —

Ap &o—

(2vpkT) ~ gQ 1
h 4& sinh(hA/2kT)

The magnetization M is obtained from the free
energy F by

F =-nkT lng

~F net Qp $ g Q
and M = ——= ———coth

BH pc 50 2

(4. 9)

(4. 10)

The susceptibility X, per electron, in the high-
temperature limit is the correct Landau diamag-
netism

The location of the centroid at time t is given by

ieE, ;g, eE
x(t) =Re $p — ' t+cto e

pA pA

(
s eZ. . ;~, eZ

0 g Ape g2 ~

This motion is the cycloidal path followed by a
classical electron in crossed fields. The coher-
ent state has the same charge distribution as be-
fore, but follows this new path.

1 ~M 1 eA

n ~H 3 2@p kT
(4. it)

APPENDIX 8: ELECTRON IN A UNIFORM MAGNETIC
FIELD AND A HARMONIC POTENTIAL

Once the partition function is known for the non-
degenerate case, the free energy for the free-
electron gas with Fermi statistics may be found
directly, as shown by %ilson. This is because
the density of states is given by the inverse La-
place transform of the partition function. ' Hence
all quantum effects, including the de Haas —van
Alphen effect, are contained in the coherent-state
treatment.

In Appendix B we obtain Z for an oscillator in a
magnetic field. ~~ In this case there is no need for
a cutoff at radius R. In the limit of small spring
constant we obtain the same M and y as obtained
above.

In this section the coherent state enabled us to
use classical concepts of orbit center and radius.

The energy eigenvalues and eigenfunctions for
this problem were originally found by Fock.
The Hamiltonian $C, is

X, = [(p„--2 gQ y)'+ (p, +-,' p, Ax)']/2g + —,
'

p, (o', (xp+ y').

If we make the substitution

Q'=(A +4 (o ) io

we then obtain

1+ +21Lt ~ X+ 1, +
2f 2P,

(Sl)
where 0' is substituted for 0 in the definitions of
l, X„and m, . The energy eigenstates of Eq.
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(Bl) are the same as before, but the eigenvalues
are not ((N+-,')5 n' -mh [-,'(n' -n)]}. The coher-
ent states are also the same as before except
that both n and $ will depend on time. Thus

a(t) =n(o) exp(-i [-,'(n'+n)]it},

g(t) =g(o) exp f-t [-,'(n' -n)]t}.
The wave packet will therefore follow the class-
ical motion.

To calculate Z~ in this case, one may take all
the limits of integration from 0 to ~. The parti-

tion function is then

a(n' n-) . a(n'+n) -'

4 yZ'

For (dp«0 Z~ becomes

2hco' AA

uT 0 2ur

Except for a proportionality constant, this
equation is the same as Eq. (4. 8) and therefore
leads to the same magnetization and susceptibility.

'R. J. Glauber, Phys. Rev. 131, 2766 (1963).
W. Louisell, Radiation and Noise in Quantum Elec-

tronics (McGraw-Hill, New York, 1964).
3P. Carruthers and M. N. Nieto, Rev. Mod. Phys.

40, 411 {1968).
4After the completion of this manuscript, it came to

the attention of the authors that coherent states of the
same type have been constructed by I. A. Malkin and V.
I. Man'ko, Zh. Eksperim. i Teor. Fiz. 55, 1014 (1968)
tSoviet Phys. JETP 28, 527 (1969)j.

5G. C. Darwin, Proc. Roy. Soc. (London) 117, 258
(1928).

6M. H. Johnson and B. A. Iippmann, Phys. Rev. 76,
828 (1949).

L. D. Landau, Z. Physik 64, 629 (1930).
R. Kubo, S. J. Miyake, and N. Hashitsume, Solid

State Phys. 17, 269 (1965).
A. H. Wilson, The Theory of Metals (Cambridge U.

P. , Cambridge, England, 1953), pp. 160—172.
C. Kittel, Elementary Statistical Physics {Wiley,

New York, 1958), p. 56.
V. Fock, Z. Physik 47, 446 (1928).

' F. Bloch, Z. Physik 74, 295 (1932).

PHYSICAL RE VIEW B VOLUME 1, NUMBER 12 15 JUNE 1970

Spin-Polarized Energy Bands in Eu Chalcogenides by the
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Spin-polarized energy bands in the Eu chalcogenides have been obtained by the augmented-
plane-wave (APW) method. The 4f band positions are extremely sensitive to the exchange
potential used. A reduced exchange parameter of 4 for the magnetic Eu ' ions has produced
proper energy gaps and relative f band positions for EuO, EuS, and KuSe. We have obtained
the f (t) bandwidth as about 0.5 eV and the up- and down-spin f band separation as about 6
eV. We have also obtained anion p bandwidths of about 2 eV which are almost constant for
the Eu chalcogenides. The calculated density of states agrees qualitatively with photoemis-
sion data, except for the experimental density of states of the 4f (t) band which has a large
bandwidth of about 1.5 eV. The probable causes of this discrepancy are multiple scattering
of the 4f electrons with phonons and electrons, or recombinations with Fu+ ions. The ob-
served absorption-edge red shifts are due to the spin-polarized exchange splitting AEe„ot' the
lowest conduction band X3. Estimated BE„values are 0.4-0.5 eV for Gd metal and Ku ch;d. —

cogenides. The f (f) bands in Eu and Gd metals are expected to be located within, '3 eV below
the Fermi level. The high-energy reflectivity data, effective masses, possible conductio~
mechanism, and APW charge analysis have been discussed.

I. INTRODUCTION

Recently an increasing number of authors have
studied the Eu chalcogenides, both experimentally

and theoretically. Eu chalcogenides have a si.mplt..;
NaC1 structure and are magnetic semicondu». .t» ). ~.
Despite extensive studies of the rare-e'i. rt!~ - ". .


