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A calculation of the ionized-impurity-limited mobility of a I'8 conduction band is performed,
using a random-phase-approximation dielectric function and taking into account the effects of
band nonparabolicity and p-like character of the wave function on the scattering calculation.
The results are compared with measured mobilities of Sb-doped n-Sn. It is shown that, as-
suming singly ionized donor impurities. , the calculated results are grossly larger than the ex-
perimental values. The results are somewhat better for doubly ionized impurities. It is
pointed out that the results of a calculation using a concentration-independent dielectric con-
stant are in excellent agreement with experiment over the whole range of accessible concen-
tration. These results indicate that, if the impurities are singly ionized Sb, the random-
phase approximation considerably overestimates the interband polarization.

I. INTRODUCTION

a-Sn is the allotrope of tin with the diamond
crystal structure. Its electron band structure is
similar to that of other diamond structure mem-
bers of column IV, except that the s&/2-like I'6
level is depressed so as to lie between the p3/2-
like I'8 level and the p&/&-like I"7 level. ' Part of
the fourfold-degenerate I'8 band then becomes a
conduction band and part a valence band. The
closest lying band extremum, I.6, lies slightly
above I'8, and thus the material becomes a per-
fect semimetal with a symmetry-induced degen-
eracy of the valence-band maximum and conduc-
tion-band minimum. For this reason, it has been
the subject of considerable interest as a candidate
for an excitonic phase transition.

However, Liu and Brust, using the random-
phase approximation, showed that, because the
degeneracy of the band edges is symmetry induced,
the static dielectric function c(q) diverges like
q as q-0. The presence of impurity carriers
is sufficient to remove this divergence through
Thomas-Fermi screening, leaving a finite inter-
band part which is strongly dependent on impurity
carrier concentration. Liu and Tosatti3 calculated
the concentration-dependent dielectric function in
the random-phase approximation and showed that

the resulting ionized-impurity-limited mobilities
were in excellent agreement with the anomalously
large values ' observed in degenerate n-type
samples.

Liu and Tosatti, in their scattering calculation,
treated the conduction electrons as s-like with a
parabolic dispersion relation. However, n -Sn
conduction electrons are p-like, and there are
considerable differences between the scattering
cross sections of s- and p-like electrons. Differ-
ential scattering cross sections for large-angle
scattering of p-like electrons are much smaller
than those for s-like electrons. This is especial-
ly important in a mobility calculation because the
Boltzmann equation heavily weights large -angle
scattering. In addition, the n -Sn conduction-band
dispersion relation is quite nonparabolic, the ef-
fective mass at the Fermi surface changing by
30% in the concentration range considered by Liu
and Tosatti. Since the density of states enters
the mobility calculation squared, the nonparabol-
icity is quite important. A calculation was per-
formed which showed that excellent agreement
could be obtained with the observed mobilities,
using a concentration-independent background di-
electric constant and taking into account the p-like
character of the wave function and the nonparabol-
icity of the conduction-bapd dispersion relation.
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It was estimated7 that if one also included the in-
terband polarization, as calculated with the ran-
dom-phase approximation, the results would be
roughly four times as large as the measured mo-
bilities '5 at low concentrations.

In this paper, we will perform such a calcula-
tion. In Sec. II, the dielectric function for the
nonparabolic band structure will be examined in
the random-phase approximation. In Sec. III, ex-
pressions for the mobility will be derived, and in
Sec. IV these will be compared with experiment.

The band-theory framework of this calculation
is the Kane three-band model, in which the shape
of the band is determined by the k p interaction
of 16, I'8, and I'7. The parameters of the theory
are Z~ (I'8 —I'8 splitting), p, (the zone-center cy-
clotron mass ratio), and b, (the I";,i spin-orbit
splitting). These have been measured for n-Sn
by Groves et a/. The notation is the same as
Kane's, except that our E is the negative of his.
The only other quantity needed for the calculation
is the background dielectric constant &0, which
has been measured by Lindquist and Ewald. '

II. DIELECTRIC FUNCTION

The random -phase -approximation expression '
for the static dielectric function e(q) is

4'~ ~ ~(k, n)e '~'~[k+q, n') [3
&(q =1-

n, n', l7 E k+4, n' Z'I, n

&&(N„, g „.-Ng „)

N-„„ is the probability that the state
~ k, n) is occu-

pied. This may be separated as follows:

4vzintnn e Pmo ~F( )
6 2
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where p, is the effective-mass ratio, k~ is the
Fermi momentum, and K is the average radius of
the first Brillouin zone. The second term in the
bracket is very small, and the function F (q), which
is independent of the characteristics of the materi-
al, is well approximated by

F (q) = —', [1 —a'(q/k~)']

with a' = $~. In deriving the expression (6), they
made use of the parabolic dispersion relation.

One can directly evaluate 4m@""' for the nonpar-
abolic band structure by numerical integration of
(1). The results are very cumbersome and yield
no simple universal function like F(q) for the q de-
pendence. Equation (6) would be very attractive
for use in the scattering calculation because of its
simple analytical form, but at first glance it would
appear to be quite inaccurate because the parabolic
dispersion relation used in its derivation differs
markedly from that of the nonparabolic model.
However, the matrix element of the nonparabolic
model

(M('= {i,c(e *"(k+q, ~&
' (8)

also differs from the Liu-Brust matrix element
because the p-like component of the conduction-
band wave function decreases as one moves away
from the zone center. Using k p theory one can
show, if one ignores the mixing of other bands into
the I"8 valence band (which is quite reasonable
since its effective mass is very high), that the
correct matrix element is given by

c(q) = 4vn'"""+c,(q),
4vo. ""=krp/q

e g(q) = 4t& + e 0 ~

(2)

(3)

(4)

(M('=-', [(b, +m2c„)q (M„(
where b„= (v 3 )

' ($„+1)/N

4m@ ' "is the contribution from the conduction
band, the ordinary Thomas-Fermi screening.
cz(q) is the interband contribution, which is itself
separated into two parts. 4m'""' is the contribu-
tion from the overlap of the I'8 conduction-band
wave function on the I'8 valence-band wave function,
and &0 is the contribution from all other bands.

Liu and Tosatti have evaluated 4m@""' for non-
zero impurity carrier concentrations, using the
matrix element obtained by Liu and Brust,

IM»('= l&»cle "'Ik+q ~) I'

q sin 8
4 k +q +2kqcos8

where 8 is the angle between k and q. They obtain
the expression

..=q(-:)(&,+ 1) (l 6&. + 1)/N,., =[&,(&, + I)(«,.1) (-:6&.+ 1)]"'/N . (»)
Here N is the square root of the sum of squares
of the numerators of (10), (ll), and (12), $n =E~,/
Z~ and 5 =E~/b, , where Z~ is the I"8 —I'8 splitting
and ~ is the I'2&. spin-orbit splitting. Thus, if
one wishes to compare the contribution from a
region of k space to a""' in the degenerate limit
for the parabolic and nonparabolic models, the
quantity to be examined is ,'(b, + v 2 c,) —/(

[ Zn(N )P/ En(P)], where P and NP indicate par-
abolic and nonparabolic, respectively.

This quantity is displayed in Fig. 1 as a function
of k /3v . The numbers on the abscissa are then
the electron densities if the Fermi sphere lies at
k. As can be seen, the two effects, decrease of
p-like component of the wave function and flatten-
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FIG. 1. Ratio of the contribu-
tion to the interband polarization
from a region of k space lying k
from the zone center for the non-
parabolic band structure to that
for the parabolic band structure
as a function of k /3w .
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ing of the dispersion relation, nearly cancel, and
the contributions to o.""'are within a few percent
of one another for the two models, even at crystal
momenta corresponding to 10' electrons/cm .
Since most of the contribution comes from the re-
gion just outside the Fermi surface, at low con-
centrations, where interband polarization is espe-
cially important, Eq. (6) will be practically ex-
act. Even at high concentrations the error should
not be more than S%, and this is insignificant
since 4m@'"'" always appears added to the much
larger (at high concentration) background dielec-
tric constant as. Thus, Eg. (6) will be used to
evaluate the interband polarization throughout the
scattering calculation, with p, regarded as the
zone -center cyclotron mass ratio.

III. MOBILITY

(1 -x)
[Ax +Bx+C]

x-, &l x
y g' J cell

4e'(2Z, )"' atm, ) "'
~,(o) it~, (o)

x z'~' +g- ——d&

E

(i6)

(i6)

(16)

We proceed with the scattering calculation in
the same manner as in Ref. 6, except that we em-
ploy the bare Coulomb potential and the interband
polarization of Eg. (6). The collision term of the
Boltzmann equation for this scattering mechanism
in the presence of an external electric field is, in
the first Born approximation,

where X = [)(g+ l)(6& +1)/(-,'6& +1)']'~'

x [($ + 1)(6$ + 1) + $ (6i + 1) + 6$ (g + 1)

—&$ (h + 1)(65 + 1)/(65 + -')], (14)

~ =[Z,e'/2v" ' ',"e(O)](i m, /2E, n')" '
and c(E) is defined by

f(k) =fc(E) kc(E) cosn-

(2o)

In these expressions n is the angle between k and
the electric field, x is the cosine of the angle be-
tween k and k', X„-„ is the cell-periodic part of the
conduction-band wave function, f(k) is the per-
turbed distribution function, fc(Z) is the unper-
turbed distribution function, N, is the number per
cm of ionized impurities, Z, e is their charge, $z
=Zz/Z, and p is the zone-center effective-mass
ratio. The function X(f) is proportional to the den-
sity of states per unit energy. In the degenerate
limit, this Boltzmann equation yields the conduc-
tivity
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v, = 2a'(b'+c'),

m2=4 b + M2b c+c
(25)

(25)

where n, is the number of electrons per cms.

Using k p theory, the overlap integral involv-
ing the cell-periodic parts of the wave function in
Eq. (15) can be evaluated. One finds

2
-' S~ i,~ x,*-,x;,.d'~)'= Z .,~', (»)

where mo=s4+-,' b~ —M2 b'c + 2b c

(A +a+c)(A -a+c) (B'-4AC)'i'

1 ( B
(a'-4Ac)"' j

B= (1-P)(1 e)/(1 P)(1-@)i,
P =[ B+-(B' -4AC)'i']/2A

q=[ -a —(B'-4Ac)"']/2A,
s = (A+ a+ c)/(A —B+c) i.

(3o)

(31)

(32)

(33)

(34)

and a, b, and c are defined by Eqs. (10)-(12).
%ith this result, one can evaluate the integral over
the cosine of the scattering angle of Eq. (15) and
determine 4 . The result is

The values of $z to be used in evaluating 4 and A.

are found by the solution of the secular equation '
3M'I!4'+ (4 +!))4'+ () —

4$)4p, mo~g

C(k)= Q v,.(~,)q,.(k), (27)

where

i=o

1 2(2A -B) 2A+B
(B'-4AC) A B+C (B'-4A-C)"' ) '

(28)

1 /'2(a- 2c) (a + 2c)
(B' —4AC)()A-B+C (B' —4AC)'l' ) '

(29)

2(A +a) ( (B —2AC —2C )
A(a'-4Ac) i&{A+B+c)(A -a+c)

with kz = (3van, ) i . We note that $z is the largest
root of this equation. The Hall mobility p, „is then
computed from the product RHa, where R& is the
Hall constant.

IV. RESULTS

Hinkley and Ewald state that the donor impuri-
ties in the samples of Ref. 4 are probably antimo-
ny. No information is stated about the impuri-
ties in the samples of Ref. 5. One would expect
the antimony donors to be singly charged, so we
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FIG. 2. Mobilities of degen-
erate n-type Q.-sn calculated for
singly ionized donor impurities
as a function of conduction-
electron concentration. The solid
curve is calculated using a con-
centration-independent dielectric
constant and the dashed line a con-
centration-dependent dielectric
function calculated in the random-
phase approximation. The experi-
mental points are from Ref. 4
(dots) and Ref. 5 (crosses).
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will assume a Z; of 1. The results of this calcula-
tion are shown in Fig. 2. The mobilities calculat-
ed using the random-phase-approximation dielec-
tric function are grossly larger than the experi-
mental values ' at low electron concentrations,
where interband polarization is important, and

larger than the experimental values at all concen-
trations. Also shown in this figure are the results
of the calculation of Ref. 7 which used a concen-
tration-independent background dielectric constant

&0, while still including the effects of p-like wave
function and band nonparabolicity. These results
are in very good agreement with the experimental
mobilities ' over the range of concentration avail-
able.

Although it is difficult to imagine doubly charged
antimony donors in a-Sn, Fig. 3 shows the results
of the random-phase -approximation mobility cal-
culation for Z,- = 2. The agreement with experi-
ment ' is somewhat better than for Z; = 1, but the
results are still too high at low concentrations and
are now too low at high concentrations. The con-
centration-independent dielectric constant curve
is for Z ~ = 1.

The large concentration dependence of the di-
electric function in n-Sn is a consequence, by way
of the random-phase approximation, of the fact
that the conduction-valence band degeneracy is
symmetry induced. This peculiarity of the band
structure is well established. " Thus, if the do-
nor impurities in the available samples are singly
ionized, then these results indicate that the ran-
dom-phase approximation, as the principal phys-
ical approximation of the dielectric function cal-
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FIG. 3. Mobilities of degenerate n-type e-Sn calcu-
lated for doubly ionized donor impurities in the random-
phase approximation (dashed curve) and singly ionized
donor impurities using a concentration-independent
dielectric constant (solid curve). Experimental points
are from Ref. 4 (dots) and Ref. 5 (triangles).
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culation, considerably overestimates the interband
polarization. Further experimental information
on the charge states of the impurities and the mo-
bility itself would be extremely important.
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