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The first part of this paper deals with the je11ium model of a metal surface. The theory of
the inhomogeneous electron gas, with local exchange and correlation energies, is used. Self-
consistent electron density distributions are obtained. The surface energy is found to be neg-
ative for high densities (r~ —2.5). In the second part, two corrections to the surface energy
are calculated which arise when the positive background model is replaced by a pseudopotential
model of the ions. One correction is a cleavage energy of a classical neutralized lattice, the
other an interaction energy of the pseudopotentials with the electrons. Both of these correc-
tions are essential at higher densities (r, —4). The resulting surface energy is in semiquan-
titative agreement with surface-tension measurements for eight simple metals (Li, Na, K,
Rb, Cs, Mg, Zn, Al), typical errors being about 25%. For Pb there is a serious disagree-
ment.

I. INTRODUCrION

The electron theory of metals has always been
primarily concerned with properties of the metal
interior. These bulk properties are, of course,
of great fundamental interest, and, fortunately for
the theorist, the translational invariance prevail-
ing inside the metal introduces important elements
of simplicity into calculations. In the last 10-15
years there has been excellent progress in the treat-
ments of both electron-ion and electron-electron
interactions, so that bulk theories are now capable
of giving quantitatively accurate descriptions of
wide classes of metals. ' 3

Theories of metal surfaces have, relatively
speaking, lagged far behind. This has been due
primarily to the great additional difficulties pro-
duced by the rapid decrease of electron density
near the surface and by the loss of translational
symmetry. After an early work by Frenkel, there
was an important paper by Bardeen' who performed
an approximately self -consistent calculation for
Na. During the following three decades, there were
very few theoretical attempts on the metal surface
problem. Quite recently, a new general formula-
tion of electron theory, expressly devised to deal
with systems of inhomogeneous electron density,
was put forward by Hohenberg, Kohn, and Sham. 7'8

This formulation has been used in several new in-
vestigations of the electronic structure of metal
surfaces. Bennett and Duke and Smith have per-
formed approximately self-consistent calculations,
using this theory, for a popular model of the metal
surface in which the ions are replaced by a uni-
form semi-infinite positive charge density. A
fully self -consistent calculation along the same
lines has been reported briefly by one of the pres-
ent authors. These studies give, for the work
function, good qualitative agreement with experi-

ment over a wide range of densities. The calcu-
lated surface energy, however, while in fair
agreement with experiment at low electron den-
sities, fails completely —to the point of giving the
wrong sign —for higher-density metals such as Al.

The present paper is aimed particularly at the
problem of the surface energy. In Sec. II, we
describe a fully self-consistent calculation for the
uniform background (or jellium) model of a metal
surface, using the theory of Refs. V and 8. Nu-
merical results for density distributions (including
Friedel oscillations), potentials, and surface en-
ergies are presented for the full range of metallic
densities. '3

However, as already remarked, the uniform
background model is totally inadequate for de-
scribing the surface energy of high-density metals.
In Sec. III, we supplement this model by first-or-
der pseudopotential calculations (using the zero-
order density distributions of the uniform back-
ground model) and by the addition of the appropri-
ate electrostatic lattice energies. The resulting
surface energies are found to be in rather good
agreement with experiment over the entire range
of metallic densities.

In a subsequent paper we shall describe the ef-
fects of the ionic lattice on the work function, par-
ticularly on the anisotropies associated with dif-
ferent crystal faces.

II. UNIFORM POSITIUE BACKGROUND MODEL

A. Mathematical Formulation

We address ourselves to the problem of deter-
mining the surface electronic structure in the
model of a metal in which the positive charges are
replaced by a uniform charge background of den-
sity
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n. (r)=n, x&0

=0, x&0. (2. 1)
where v„,[n; r ]=- 5E„.[n]

6n r (2. 4)

+r, [n]+E„,[n] . (2. 2)

Here the functional T, [n] is the kinetic energy of a
noninteracting electron system of density distri-
bution n(r), and the functional E„,[n] represents
the exchange and correlation energy (Hartree theo-
ry corresponds to setting E„,= 0). One the—n defines
an effective potential

v,«[n; r] =v(r)+ ), dr'+v„, [n; r], (2. 3)
r')

] r -r'}
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For orientation, we remark that a Thomas-Fermi
calculation"' leads to an electron density distri-
bution which decreases smoothly from its interior
value n to zero, over a distance of the order of the
Thomas-Fermi screening length [see Fig. 1(a)].
However, for quantitative purposes, such a calcu-
lation is quite inadequate. It leads to a vanishing
work function and negative surface energies, and

does not exhibit the important Friedel oscillations
of the electron density near the surface.

The analysis presented here uses the self-con-
sistent equations of Kohn and Sham. These are
based on the general theory of the inhomogenous
electron gas, which includes exchange and corre-
lation effects. Vfe review these equations here
briefly.

It is shown in Refs. 7 and 8 that the total elec-
tronic ground-state energy of a many-electron
system in an external potential v(r) can be written
in the following form':

Z.[n] fu(r)n=)r)dr+-,', drdr'n(r) n (r')

Assuming that the form of E„,[n] and hence of

v, «[n; r] is known, the solution of the following
self-consistency problem gives the exact density
distribution of the system of N interacting elec-
trons:

(--,' V'+v„, [n; rD t], =e, ((, ,

n(r)= Q l((,.(r) ',
(2. 5a)

(2. 5b)

where the g; are the N lowest-lying orthonormal
solutions of (2. 5a). The energy E„[n] of the sys-
tem is given by (2. 2), with

T, [n] =Q &; —fv,«[n; r]n(r)dr .
i=1

(2. 5)

It is convenient at this point to state a number of
facts [E(ls. (2. 7)-(2. 12)] which are strictly cor-
rect for the present model [Eq. (2. 1)], including
all many-body effects. Some of these statements
are illustrated in Fig. 1.

The electrostatic potential energy difference of
an electron between x = +~ and x = —~, the so-
called electrostatic dipole barrier, which we de-
note by ~y, is given by

gy=— 4)(y oo) q( ao)

=4m f dx f dx'[n(x') -n, (x')]

=4~ f"„x[~(x)-~, (x)] dx. (2. 7)

The chemical potential p, of this system, de-
fined, as usual, as the ground-state energy differ-
ence of the N+ 1 and N electron systems (with the
background charge fixed at Nle( ) is given by

]] = y(-")+F, (2. sa)

where p, is the intrinsic chemical potential of the
infinite system (relative to the electrostatic po-
tential in this system). ' From its definition, ]],

is given by
5E„, n

g =-,' kJ, + "' = —,'k~+ p (n), (2. 8b)
n=H

where k~ is the Fermi momentum of a degenerate
electron gas of density n and p (n) is the ex-
change and correlation part of the chemical po-
tential of an infinite uniform electron gas of den-
sity rs. If the exchange and correlation energy per
particle of such a gas is denoted by c„,(n), then
from the definition of E„,[n],

(b)
d

(n) =
d
—(«„,(n) ) (2. 8c)

FIG. 1. Schematic representation of (a) density dis-
tributions and (b) various energies relevant to the metal
surface probIem.

The work function, defined as the minimum en-
ergy necessary to eject an electron, is'~
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c = y (+~) —p, = a(p —g . (2. 9)

In the interior of the metal, v,«approaches a
constant value [see (2. 3), (2. 4), and (2. 8c) ]:

v„,- q(-~)+g (n) . (2. 10)

Hence the eigenfunctions of (2. 5a) can be labeled
by the quantum numbers k, k„, k„with the fol-
lowing meaning:

t, , ,„,,=q, (x) e~[f (k, y+k, x)],
where, for x--~,

q, (x) = sin[kx —y(k)] .

(2. 11a)

(2. 11b)

(2. 13)

then by (2. 8), cp(-~)+ p (n) = ——,
' k+2, and (2. 12a)

becomes

=~(k +k~+k, -k~) (2. 12b)

In order now to make practical use of the theory
embodied in Eqs. (2. 2)-(2. 6), some approximate
form of the exchange and correlation energy func-
tional is required. For a system with very slowly
varying density, we have

E„,[n] = f e (n(r))n(r)dr, (2. 14)

with errors proportional to the squares of the
density gradients. Following Refs. 8 and 18, we

shall use this form for the present problem, even
though in the surface region of a typical metal the
density varies quite rapidly. A "control" calcula-
tion, to be described below, and the fact that the
final results are in rather good agreement with

experiment suggest that the errors introduced by
approximation (2. 14) are not too serious. This
question is discussed again later on in the present
section, and in the concluding remarks.

For c„,(n), the exchange and correlation energy
per particle of a uniform electron gas, we use the
approximation due to signer. ' In atomic units, it
ls

0.458 0.44
r, (n) r, (n) + V. 8

where r, (n) is defined by

(4v/3) [r,(n)]'= 1/n .

(2. 15a)

(2. 15b)

Other more recently suggested forms of the cor-

Here y(k) is the phase shift which is uniquely de-
termined by the conditions that y(0) = 0 and that
y(k) be continuous. The eigenvalues of (2. 5a) are
then [from (2. 10)]

&q, ~„q, = p(- ~) + p „,(n) + —,
'

(k +k„+k, ) . (2. 12a)

If for convenience we choose the zero of energy
so that

where g~ has the asymptotic form (2. lib). v,« is
given by

v,«[n; x] = 4 [n] —4v J dx ' J', dx"

x[n(x' ') -n, (x' ')]+ p, (n(x) ), (2. 16b)

with C[n]=by[n] —p .
The density is in turn given by

n(x) =~ (k„-k )[g,(x)]'dk .
77 p

(2. 16c)

(2. 16d)

The numerical solution of these equations requires
careful treatment of quantum oscillations which
are present in the density and potential (see Appen-
dix A1). Details concerning the method of solution
are given in Appendix B.

8. Density Distributions and Potentials

The self-consistent system of Eqs. (2. 16) was

solved for the bulk metallic density range x,
=2 —6' at intervals of 0. 5. The degree of self-
consistency achieved in n(x) varied from 0.08%

(for r, = 2) to 0. 7% (for r, = 6) of the asymptotic
density n.

Table I gives n(x} for r, =2, 3, . . . 6, and Fig.
2 displays n(x) for r, =2 and 5. It will be observed
that for the low mean density corresponding to

y, =5, there are sizeable Friedel oscillations, in-
cluding an overshoot of n by 12%. On the other
hand, at the high mean density corresponding to

z, =2, the density distribution begins to resemble
the monotonically decreasing form of the Thomas-
Fermi theory (cf. discussion in Appendix A2).

Figure 3 shows the electrostatic potential ener-

gy cp(x) and the effective potential v, «[n; x] for
x, = 5. It will be noticed that the electrostatic
barrier b, y = y (~) —q (-~) is very small, but
that in the vicinity of the surface, y(x} exhibits
substantial oscillation. The corresponding oscil-
lation in v,« is considerably smaller. This can
be explained by the fact that, for large negative
x, the oscillatory terms of y and of the exchange
part of p, „, cancel exactly (Appendix A). Both y
and v,«are given in Table I for integral x, values
from 2 to 6.

Approximation (2. 14) for E„,[n] is based on the

assumption of a nearly uniform gas. It leads to
an effective exchange and correlation potential

relation energy give, within a few percent, the
same results.

%'e can now rewrite the self-consistency problem
(2. 5) in a form specific to the present problem:

--,„.".„[,; x] q, (x)=-. (k -k, ) C,(x),1 d 1

(2. 16a)
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v„, which vanishes exponentially as x- ~, where-
as one would expect that the correct v„, would be-
have like the classical image potential, " i. e. ,

v Lmage 1/4x '

To assess the quantitative importance of this fail-
ure of our approximation, we have carried out the
following control calculations. Up to the point x,
where v,« =0, we used the form previously em-

ployed for v,«. However, for x& x„v,f f was
taken to have the image form C —1/4x, with 4
computed from (2. 16c) and (2. 7). The problem
was then solved, for x, = 2. 5 and 5, requiring self-
consistency of n(x). Fortunately, the densities in
these calculations were found to differ from those
previously obtained by no more than l. 2% of n for
r, =5, and no more than 0. 8% for x, =2. 5. It thus
appears that our use of the form (2. 16b) for v,«
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Here the first two terms represent, as before,
kinetic, exchange, and correlation contributions to
the electronic energy [see Eq. (2. 2)]. The last
term E„is the total classical electrostatic en-
ergy of all positive and negative charge densities:

1 (n(r) —n, (r) ) (n(r') —n, (r') )
es ~I

~ y [n; r] (n(r }—n, (r))dr,
where y, the total electrostatic potential energy
of an electron, is given by

I

- I.O
I

-0.5 0
DISTANCE (FERMI WAVELENGTHS)

0.5 I.O

also in the region outside of the metal surface,
where it is not correct, does not introduce seri-
ous errors into the density distributions. In ad-
dition, we shall see in Sec. II C that the correla-
tion contribution to the surface energy is a rela-
tively small fraction of the experimental value,
and thus, in discussing surface energies, errors
due to an inadequate treatment of correlation ef-
fects should not be important.

C. Surface Energies

The surface energy 0 of a crystal is the energy
required, per unit area of new surface formed,
to split the crystal in two along a plane. The
total energy of the crystal, split or unsplit, can
be written as a sum of three terms

E = T,[n) +E„,[n] +E„[n] (2. 18)

O. l—

FIG. 2. Self-consistent charge density near metal
surface for ~s=2 and ~s=5 (uniform positive background
model).

Corresponding to (2. 18), the surface energy of
the uniform background model may be written as
a sum of three terms

Vgf 'Pl~X —V ff S~ - Ã g dX.
(2. 22)

The other two terms are, in the present model,

o,.= f„[e„,(n(x)) —e „,(n)] n(x)dx (2. 28)

and o„= 2 f„y[n; x] (n(x}—n, (x} ) dx. (2. 24}

Table II lists the magnitudes of O„and its three
components for different values of r, . First, we
observe that the kinetic-energy contribution o,
is negative, reflecting the fact that in the split
crystal, the electron density is more spread out.
Second, we note that over the entire density range
v„,»0„, showing that Thomas-Fermi or Hartree
calculations are completely useless for quantita-

+u +s++xc ++es

For o, we can take over the analysis presented by
Huntington, ' which gives

~Ay (a, =,
I

— y(k)) (kI -k') -@de
2m . p (4

—0.05—

E

0

UJ

FERMI LEVEL

TABLE II. The surface energy o„and its components
in the uniform background model. o„=o„+o,; o„=o,+o„
+o~. Units are ergs/cm2.

rs

-0.05—

—I.O -0.5 0
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FIG. 3. Effective one-electron potential ve~~, arith
electrostatic part p, near metal surface (positive back-
ground model; vs=5).
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IOOO-
Al

introduced by the approximate treatment of corre-
lations are not significant.

III. ION LATTICE MODEL

A. Theory

500-
CV

E

h

0

LU

LU
CD

Ch

-500-

-IOOO—

ZA
Li

0 Na

K Rb Cs

/
/

/
/

/

EXPER IMENT
I
I

I

t (fcc llij
I
I

I

I

1

I

I

I I I

2 3 4 5 6

PSEUDOPOTENTI AL
' THEORY

UNIFORM POS ITIVE

BACKGROUND MODEL

fs

FIG. 4. Comparison of theoretical values of the sur-
face energy with zero-temperature extrapolations of ex-
perirnental results for liquid-metal surface tensions
(open circles). Dashed curve gives the surface energy
for the positive background model. Vertical lines give
theoretical values corrected for the presence of the lat-
tice: The lower end point gives the value appropriate to
an fcc lattice, the upper end point that appropriate to a
bcc lattice. In both cases, the surface plane is taken to
be that lattice plane which is most densely packed. For
the alkali metals of lower density, the lines are con-
tracted almost to points.

tive purposes. Finally, we note that, particularly
at higher densities, there are large cancellations
between positive and negative terms, making the
final results rather sensitive to small errors in
the individual terms. Over the range x, =3-5,
covering the alkali metals Li, Na, K, for which
Smith' gives calculated surface energies, our re-
sults exceed his by about 50%.

In Fig. 4, the calculated surface energies are
compared with linear extrapolations to zero tem-
perature of measured liquid-metal surface ten-
sions. The agreement between theory and experi-
ment is fair for the lower-density alkali metals,
but for higher-density metals the measured surface
tensions increase rapidly with density, while the
calculated surface energies decrease towards large
negative values. This basic shortcoming of the
uniform background model, which all previous cal-
culations have also encountered, will be corrected
in the following section by going over to a model in
which the positive ions are more realistically
treated. The correlation contribution to the calcu-
lated o (Table II} is never more than about 15/0 of
the experimental value, indicating that errors in o

v„(r)= 0,
Z

C

where Z is the ionic charge and w, is a cutoff ra-
dius which has been determined for each metal to
give a good description of the bulk properties.
This is equivalent to representing each ion by an
effective charge distribution n„, (r) which gives
rise to the potential (3.1).

Since in the present model, the electron densi-
ties n(x) of the uniform background case are em-
ployed, the intrinsic electronic energies Qn] and
E„,[n] are the same as before. The difference of
the surface energies in the two models,

(3. 1)

(3. 2)

is therefore entirely due to the differences in elec-
trostatic interaction energies of all positive and

n n

STEP I

STEP 2

+d -)d-$d

FIG. 5. Two steps for calculating the electrostatic
contributions to the surface energy 0..

In the present section, we shall calculate the sur-
face energy on the basis of a model in which the
ions, situated on the sites of a regular half-lat-
tice, ' are represented by appropriate pseudopoten-
tials. Such a model is known to be quantitatively
successful for simple bulk metals in which the con-
duction band has s-p character and is adequately
separated from d-like states.

For these metals, the difference between the
total pseudopotential and the potential due to the
uniform charge background is small. Therefore,
taking advantage of the stationary property' of ex-
pression (2. 2} for E„[n], we shall calculate all
energies in the present model using the electronic
density distributions n(x) of the uniform background
model. In this way, we avoid the much more diffi-
cult problem of solving truly 3-dimensional Schro-
dinger equations.

%e adopt here the local ion pseudopotential pro-
posed by Ashcroft, which has the form
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Lattice
type

Cleavage planes
(100)

TABLE III. Cleavage energy constants e.~

(110)

where o„ is the surface energy in the uniform
background model and 5o+ and 5o» are given by
Eqs. (3. 3) and (3.4).

fcc
bcc

0.003 25
0.032 06

0.014 34
0.03100

0.044 07
0.005 63

B. Computations and Comparison with Experiment

We would like to thank M. Rao for his help with the
computations of 0..

o' = vg + $o'q
g + 5o'ys (3. 5}

negative charges [including the effective ionic
charges n„,(r}] .

We recall the definition of surface energy as the
energy required, per unit area of new surface
formed, to split the crystal in two. For each of
the two models, we calculate the electrostatic con-
tribution to the surface energy in two steps (see
Fig. 5):

SteP 1. We divide the crystal in two, holding the
electron density uniform up to the nominal metal
boundary in each half. The contribution to 5o from
this step is a classical cleavage energy which will
be denoted by 5o„.

SteP 2. Next we change, in both models, the
electron density from its step-function form to its
actual form n(x). The contribution from this step
to 5o will be called 5o„.

Step 1 requires no energy in the uniform back-
ground model. In the ion lattice model we may, in
calculating the energy required for this step, re-
place the pseudopotentials by point-charge poten-
tials. ' A dimensional argument shows that, for
a given lattice type and a given cleavage plane

5o'
y

= QZFl

where n is a dimensionless constant. The compu-
tation of this constant is described in Appendix C.
The results for the body-centered and face-cen-
tered cubic lattices with cleavage planes perpen-
dicular to the [100], [111], and [110] directions
are given in Table III.

Step 2, as inspection of Fig. 5 shows, contrib-
utes the following term to 5o'.

5o,.= J „5v(x}[n(x)-n.(x)] dx . (3.4)

Here 5v(x) is the average, over the y-z plane, of
the sum of the ionic pseudopotentials of the half-
lattice, minus the potential due to the semi-infinite
uniform charge background. The algebraic expres-
sion for 5v(x) is derived in Appendix D. The two

factors entering the integrand in (3.4} are plotted

in Fig. 6.
The total surface energy in the present model is

then given by

Ql—
Sv (x)'

———Sv(x) with re=0
~ """n(x) - n

0.2

0

lK
LLJ

UJ Pi

~ ~ ~ ~ ~ ~ ~~ ~ ~
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/
/

/
/
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Q
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FIG. 6. Factors in the integrand giving 40.~ t.Eq.
(3.4)]. The case of potassium is shown here. In the
absence of pseudopotential cancellation, 6v(x) is the
function represented by the deeply cusped dashed line
(the lattice planes are at the cusps). The presence of
substantial oscillations in n(x) —n, (x) has in general an
important effect on the value of 60~.

Since there are practically no data available for
the surface energies of simple metals in the solid
phase, we have computed values of o which would

be most appropriate for comparison with mea-
surements of the surface tensions of liquid met-
als. In the absence of a satisfactory theory for
the ionic configurations of liquid-metal surfaces,
we have calculated o for such ordered lattice struc-
tures and cleavage planes as, in our view, re-
sembled most closely a liquid surface. Experi-
mental evidence for local order in the liquid state,
similar to that in the solid state, provides some
justification for this approach.

The coordination numbers, in the liquid state,
of the metals considered lie between the coordina-
tion numbers of the bcc and fcc lattices, which are
8 and 12, respectively. Therefore, calculations
were carried out for both of these two lattice
types. The faces selected were those most dense-
ly packed, (111)for fcc and (110) for bcc. Such
a choice has been considered reasonably repre-
sentative of a liquid surface by various authors,
and we have verified by sample calculations that
it was indeed these faces which had the lowest en-
ergies and hence would be expected to appear on

the surface.
We have calculated surface energies for the 8

metals listed in Table IV. These include all of
those considered in the bulk pseudopotential calcu-



4562 N. D. LANG AND W. KOHN

TABLE IV. Surface energies in the ion lattice model for eight simple metals. The table gives total surface energy 0
and its component parts (cr =0„+50'~+50',~) for the lattice structures and surface planes indicated. Units are ergs/cm .
Also included are r~ values, and values for the pseudopotential radius ~~ (Ref. 3).

Metal

Al
Zn

Mg
Ll
Na
K
Rb
Cs

s

2.07
2.30
2.65
3.28
3.99
4.96
5.23
5.63

'c

1.12
1.27
1.39
1.06
1.67
2.14
2.61
2.93

—730
—130

110
210
160
100

85
70

1050
370
300
110

35
25
20
20

fcc (111)

408
197
130

19
10

8
7

bcc (110)

708
342
226
61
33
17
15
12

fcc (111)

730
440
540
360
210
140
110
100

bcc (110)

1030
580
640
380
230
140
120
100

Rounded values.

lations of Ashcroft and Langreth, with the excep-
tion of Pb to which we shall return later. The
calculations were carried out for mean densities
n appropriate to the solid, using the values for the
pseudopotential radius x„given in Ref. 3.

Since for given n, the lattice-plane spacings of
the densest bcc and fcc faces are within 3%%uo of one
another, a difference which has been neglected,
5o„, shown in column 5 of Table IV, is the same
for the two types of faces. On the other hand, the
classical cleavage energies, 50„, shown in
columns 6 —9, differ rather considerably. This
difference is reflected in the total surface ener-
gies cr listed in columns 8 and 9.

We note that both 50„and 50„are positive and
become quite large for the higher-density metals.
Together they more than compensate for the neg-
ative values of 0„.

Our final results are plotted in Fig. 4, where
they are denoted "pseudopotential theory. " The
results for fcc (111)and bcc (110) faces are
joined by vertical lines. These lines may be re-
garded as a rough measure of the uncertainties
introduced into our estimates for liquid-metal
surface tensions by our present very incomplete
knowledge of the ionic configurations near a liquid
surface. The same figure shows also the results
of the uniform model and experimentally mea-
sured surface tensions. ' It should be mentioned
that particularly for Zn, there are still consider-
able discrepancies among the data obtained by
different workers. '

We note that passing from the uniform to the
ion lattice model leads to relatively small changes
for the low-density alkali metals Cs, Rb, and K,
with an indication of slightly improved agreement
with experiment. On the other hand for the den-
ser metals Na, Li, Mg, Zn, and Al, the differ-
ences between the two models become progres-
sively greater, and while the uniform model
eventually fails completely, the ion lattice model
follows the experimental trends quite well, a

typical error for these metals being about 25%.~'

We omitted the case of Pb from the above consider-
ations. For this metal the measured surface ten-
sion extrapolates to 620 ergs/cm at zero temper-
ature, while our calculations gave a mean value of
of 1400 ergs/cm . We have no real explanation
of this large discrepancy at this time. It may be
noted, however, that Ashcroft and Langreth, ' in
their pseudopotential calculations of bulk energies,
also found rather less satisfactox y agreement for
Pb than for the other metals. We also remark
that, unlike the other metals considered, Pb is
tetravalent, and that furthermore, it has by far
the highest atomic number.

In all the above described calculations the ion
half-lattice was undistorted. In Appendix E, we

show that allowing the surface plane of ions to
relax to a position of lower energy has a negligi-
ble effect on the calculated surface energies.

IV. CONCLUDING REMARKS

This paper reports the results of calculations
of the electron density distributions and surface
energies of simple metals. Many-body effects
are taken approximately into account by the use
of local effective exchange and correlation ener-
gies [Eq. (2. 14)]. The interactions of electrons
and ions are represented by pseudopotentials
taken from theories of bulk metals. All electro-
static energies, including an important classical
cleavage energy, are included.

The results are compared with experimental
data on surface tensions of eight liquid metals,
Li, Na, K, Rb, Cs, Mg, Zn, and Al, whose sur-
face electron densities vary by a factor of 20 and
whose surface energies range from 80 to 1000
ergs/cm~. For this entire set of metals, we find
good semiquantitative agreement, typical errors
being about 25/o. In the case of the lower-density
alkalis the agreement is especially close. For a
ninth metal, Pb, the theoretical surface energy is
too high by a factor of about 2.
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In spite of the unexplained failure for Pb, we
believe that we have come a substantial step
closer to a quantitative theory of the electronic
structure of metal surfaces.

Effects which we have presumed. to be small but
which need to be further examined include second-
order pseudopotential terms and contributions to
the surface energy from changes of the zero point
lattice vibrations. '

More fundamental remaining questions concern
the use of local exchange and correlation ener-
gies; the use of pseudopotentials, designed for
bulk metals, in the surface region; and the simu-
lation of a liquid-metal surface by an appropriate
face of a solid metal.

It is hoped that additional good experimental
data for both liquid and solid metals will become
available to allow a wider test of the theory and
perhaps to suggest necessary modifications.
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APPENDIX A: FRIEDEL OSCILLATIONS

1.General Forms: Importance in Numerical Calculations

Substitution of the sine-wave form of g~(x) into
Eq. (2. 16d) yields the well-known result

( )
3r cos2(kyx —yp) 1

( )nx n 1+ —
( )g

+0 —s, Al

where l' =1 and y~ =y (kz). Use of this form for
n(x) in Eq. (2. 16b) then gives

1v„,[n; x] - „——, k2~

g
(

.

)
3) c ns2o(k~ xygp) 1'

( )
(2k~ x)' + x'

with p,
'

(n) the derivative with respect to density
of the correlation part of p, „,(n). The oscillatory
terms in the electrostatic and exchange potentials,
it is found, cancel each other exactly in the
asymptotic region. The solution (~(x) of Eq.
(2. 16a) for the potential of Eq. (A2), in turn, also
exhibits a correction of 0(x ):

q, (x) - sin [kx-y(k)]

, (n) sin[ , (k+2k~) x —y (k) —2yz]
16m x k+k~

sin [(k —2k+ ) x —y(k) + 2yz ]] 1
k —kg )+0 —

~ . A3

Taking proper account of these 0(x ) correc-
tions was found to be important in the actual cal-
culation. The computations implied by Eqs.
(2. 16) are carried into the metal to a point x „,
at which 4 and the wave-function renormalization
constant are presumably chosen so that v,«[n;
x,„]= —-', kz and g, (x) matches a pure sine wave
of unit amplitude. In order that these choices
represent an adequate approximation to the
x,„-—~ limit, however, the 0(x } terms must
first be separated out from the computed values
of v,«[n; x] and („(x}. Making I x,„ l so large
that these terms become unimportant leads to
numerical instabilities.

2. Amplitude

The condition that the Friedel oscillations in
n(x) be self-consistent in the asymptotic region
leads to the requirement that the l' of Eq. (Al)
be given by the relation

L = [1+k~ p. ,' (n)/(2m')]

This result is obtained by substituting the form
given for (~(x) in Eq. (A3) into Eq. (2. 16d). The
parameter g is found to increase from 1.004 at
x, =2 to 1.07 at y, =6 (using Wigner's formula'~
for e „,to obtain p, ,'). The fact that the oscilla-
tions in the x, =2 curve of Fig. 2 are so much
smaller than those at r, = 5 is clearly not ac-
counted for by this small variation in f . The
reason for the difference is rather as follows.

From Eq. (3. 16) of Ref. 36, it is seen that quan-
tum density oscillations of the type analyzed here
are reduced in general by inverse powers of the
integral

x= k~ J"'dt ( 2v„,fn; f]—] '~'

(which tends toward Ixl as x- -~). Here xo is the

turning point (v,«[n; xo] = p, = 0). If v, « is taken to
exhibit simple exponential decay toward —&k& to
the left of xo, with decay length ~, then x =

~
x —x& ~

~

for large lxl, with x&= &ln2+xo.
In the present calculation, xo (equal to 1.4 at w,

= 6 and 2. 4 at x, = 2) and the characteristic length
~ over which v,«varies, increase slowly as r, de-
creases. This means that in terms of the wave-
length of the Friedel oscillations (v/kz), xz, the
effective origin of x, rapidly moves further and
further to the right as x, decreases. This implies,
in turn, that the first oscillations to appear to the
left of x = 0 become smaller and smaller relative
to n as n increases.

APPENDIX 8: SELF-CONSISTENCY PROCEDURE

The set of equations (2. 16) in the order (c), (b),
(a), (d) [with, n replaced by n, in (a), (b),-(c) and by
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n, (x) + Q a,u, (x) = n ~(x) + Q a,

x ~ u, (x') dx' -=n(x),
.- 5E[n„x]

On, x' (Bl)

projected onto a set of M orthogonal functions.
The u, were taken to be the derivatives (so as to
preserve charge neutrality) of the first M har
monic oscillator functions, with width and center
chosen so as to localize them in the surface re-
gion, and Eq. (B1) was projected onto the oscilla-
tor functions themselves The in.tegral f"„(5E/
5n&) u, (x') dx' was found by computation of the ex-
pression V '(E[n, +Au, ; x] —nm(x) ) with Xu, (x)«n.
Evaluating n(x)=—E[n; x] (which is the function ac-
tually given in Table I) provided a direct check
on the self-consistency of I. The procedure de-
scribed here could be used repeatedly, but it
proved unnecessary to do so (with M = 8).

It will, of course, be recognized that the as-
ymptotic phase and amplitude of the Friedel oscil-
lations in n(x) are not affected by the addition of
functions localized in the surface region [the u, (x)].
This is not important, however, because these

n2 in (d)] may be taken to define a functional E that
transforms one electron density into another:

n, (x) =E[n„x] .
The self-consistent solution to Eqs. (2. 16)is then
n(x) =E[n; x]. The trial densityno(x) employed infind-
ing this solution consisted of an exponential decay-
ing toward n in a Thomas-Fermi length inside the
metal, matched to a linear combination of two ex-
ponentials with adjustable decay lengths outside.
A Gaussian (with its parameters adjustable) was
added to simulate roughly the first large peak of
the expected density oscillations, and the neutrality
condition f [no(x) -n, (x)]dx=0 was imposed.

Straight iteration was found not to be a conver-
gent solution procedure, and so an analog of the
Newton-Raphson method, based on the use of the
linear response function 5E/5n, was employed.
An np(x) was chosen and n, (x) =E[no; x] evaluated
A neutralizing charge distribution was added to ny

in the surface region, in order that dv, «[n~; x]/
dx l „vanish, since the fact that no obeys the
neutrality condition does not guarantee that n, will
obey it also. The function n2(x) =E[n„' x] was then
computed.

The trial density no was readjusted until n, and

nq were close to one another, implying that each
was near the true solution. n, was then corrected
by the addition of a linear combination of functions

,a,u, (x) with the a, determined by the self-con-
sistency condition

properties of n(x) are already close to those of the
true self-consistent solution. The phase difference
between the oscillations in n(x) and n(x) was in fact
found never to be more than 5' (this reflects an
accurate choice of trial density), and the oscilla, -
tion amplitude for n(x) [corresponding to f = 1 in
Appendix A, since these oscillations are identical
to those in n, (x)) is constrained for theoretical rea-
sons to be quite close to the correct value [i.e. ,
the self-consistent f is close to unity (see Appen-
dix A)].

APPENDIX C: EVALUATION OF THE TERM
50q) IN THE SURFACE ENERGY

It is useful for the following discussion to intro-
duce the abbreviation Z(S, S') to refer to the inter-
action energy of S and S' per unit area normal to
the x-direction, where the symbols S and S' may
be replaced by "+"(denoting a rigid, uniform,
positive or negative background) or "lat" (denoting
the lattice). Z(S, S) is a self-energy. The charge
distributions S and S' will be taken to occupy the
half-space x& 0, unless the subscript "inf" is af-
fixed to E, to indicate that they fill all of space
[(i.e. , that they refer to the uncleaved crystal)
cf. Fig. 5]. The classical cleavage energy 5o„
is then

5o'„=Z(lat, lat)+Z(-, lat)+Z(-, -)
——'[Z„,(lat, lat) +Z„,(-, lat) +Z „,(-, -)].

The electron distribution of step 1 in Fig. 5 is
considered to interact with the lattice via a pure
Coulomb potential, rather than via a pseudopo-
tential. This distinction affects the value of 50„
only in the case in which the cleavage plane pass-
es through an ion core (r, & —,'d), which does not
occur in the present calculations.

Simple considerations of electrostatics lead to
the result

5o„=Z(lat, lat)+ —,
' Z(-, lat)

——,'[Z„, (lat, lat)+ —'Z„,(-, lat)]. (C1)

In evaluating this expression it is convenient to
let Ay„, (v) represent the Coulomb potential at
lattice site v due to all the ions of the semi-infi-
nite lattice, minus that due to the ions of the infi-
nite (uncleaved) lattice. Here the semi-infinite
lattice is taken to be in the left half-space (x & 0),
as is site v, which implies that hy„t(v) is simply
the negative of the Coulomb potential at p due to a
semi-infinite lattice in the eight half-space. It
is convenient in addition to introduce the symbol
4y (v) to represent the corresponding difference
of potentials due to semi-infinite (x & 0) and infi-
nite negative backgrounds. This difference is then
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the negative of the potential at p due to such a
semi-infinite background in the right half-space.

With by(v)=- by, „(v)+by (v), Eq. (Cl) implies
that

6o„= ,'ZL--2Z by(v) (L-~).
vK]

(C2)

The symbol g„1~, stands for a summation over all
lattice sites v of the semi-infinite (x & 0) lattice
which are in a volume bounded by the planes
y =a,'L, z—=+2'L. The actual calculation of by(v)
will employ a technique for computing lattice
sums discussed by Misra3~ and by van der Hoff
and Benson, and will follow in outline the treat-
ment of the Coulomb problem for the infinite lat-
tice given by Coldwell-Horsfall and Maradudin.

For simplicity of exposition, the analysis pre-
sented here will be confined to the case of a sim-
ple cubic lattice of lattice constant a, cleaved
along the (100) plane. The lattice planes are num-
bered by integers k, increasing from left to
right, with k & 0 designating planes in the left half-
space and k & 0 designating those in the right half-
space. Since all of the sites in a given lattice
plane are equivalent, the label p used above may
be replaced by the index k.

The two contributions to bp(k), for k &0, may
be written

The integration range in E1l. (C5a) is then divided
into two segments at t = y, allowing b,y, «(k) to be
written as

bp1 1(k) = bpI 1(k)+bpI 1(k),
2

with b y,",,'(k) =, Q Q t
aV'11/ 2 g p

(Ce)

&& exp[ —(j 2+m2+n2) (t+e)]dt (C7a)

and bpI21(k)= —p ZF(p, m, n, y),
y mn

(C7b)

where I'(x, y, z, y)=erfc[y(x'+y +z )' ]
x(x +y +z)

of Jacobis imaginary transformation for 8 func-
tions may be employed to put Eq. (C7a) into the
form

g oo

bp,',",(k) =—P Z G(j, m, n, y)
f=-0 mn

The separation parameter y is chosen later to
achieve equally rapid rates of convergence for all
of the series involved in b,y(k). The special case

00 ~/2
-n 0 ~ -n ff /t

tn= -~ n= -ce

with g extending over all integers, and

g
bp (k) = — di1 gZ

0 -a-i/a

( )
Z g g exp[—(j'+m'+n')e]

(C3)
mn

where

+ g f (t-e) / t e''dt, (C8)a f=n 8

G(x, y, z, y) =(y +z )
'/ (exp[211x(y2+z2)'/2]

x erfc[2y '(y'+z')'/'+yx]

X
exp[x +y +z )e]

(x2+y2+z2) 1/2 (c4) +exp[ —211x(y2+z2)'/ ]
&& erfc[2y '(y'+z')'/2-yx]]

The exponential convergence factor, with & 0, is
introduced for convenience in treating singular
terms; & will be dropped at any point in the analy-
sis at which its omission does not give rise to a
divergence.

The use of Euler's representation of the I' func-
tion,

gx - 1 - Qt gtu" r(x) 0

permits writing these expressions in the form

by1«(k)= g Q Q )I t "'
f~ 0 mn

and where the prime on the summation sign signi-
fies omission of the m=m=0 term.

The Coulomb singularities (for z-0) in the first
two terms of the sum

by(k) = by (k) + b,y,",,'(k) + byI2«1(k)

then cancel in the following way:

gg11
by (k)+ g (t e) '/'t -'e ' 'dt

a f =-a "6

F(j, y)+2 e ' erfc(je' )
z"
a

f =-0

z
by (k)=— dx

-0 -f/P & 6

&&exp[-(j +m +n2) (t+e)]dt, (C5a) - f+ S/2

- f -X/a
erfc (tc'~ )dt
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+-,'ga(i, m, n, y)+a(i, y) .

The choice y = m leads to equally rapid conver-
gence for all terms. %ith 50„=nZn, numerical
computation shows that n = -0.00395[(100) face of
simple cubic lattice]. (Results for fcc and bcc
lattices are positive. )

The same procedure is employed for other lat-
tice types and other crystal faces. The somewhat
more generalized case

00 1/2 ~
Z e '"'" ' = — Q e " ' ' cos 2mnct

of Jacobi's transformation must be employed in
these treatments.

APPENDIX D: ALGEBRAIC EXPRESSION FOR ~v (x)

Let v~,"'(r) be the pseudopotential at position r
due to the ion at lattice site v (which is at position
r„). Further, let p, (x) be the potential at x due to
a semi-infinite uniform positive background filling
the half-space x & 0. Then

5v(x) -=( Q v~,"'(r)) —p.(x)
v(x&0)

where the angular brackets denote an average over
y and z directions, and where g„&„&» denotes a sum-
mation over all sites of the semi-infinite lattice in
the x&0 half-space. It is convenient to write

5v(x) = 5v, (x) + 5v, (x), (D2)

where 5v, (x)=( Q (-Z~r —r„~ '))- p. (x) (D3a)
v(@&0)

and 5v, (x) = Z &v,", (r) + Z~ r - r,
~

') .
v(x&0 )

(D3b)

The indicated average over y and z directions in
Eq. (D3a) means that the charges at positions r„
can be regarded as smeared out uniformly over
each lattice plane. The evaluation of 5v, (x) is then
a simple one-dimensional electrostatic problem,
whose result is shown as a dashed line in Fig. 6.
For —d ~x~0 (cf. Fig. 5),

5v (x)= —2wn[x+d8(-x --,' d)]' . (D4)

Use of Ashcroft's form for the pseudopotential
[Eq. (3. 1)] implies that

1/2 - 1 -(y~) ~
Here H(x, y) = 2' erfc (yx) —2m'~ 2y ' e '""'

Note that this cancellation simply reflects the fact
that a plane of ions j together with a slab of the
negative charge distribution extending a distance
~a on either side of the plane is neutral.

It is then easily seen that

5o„=--,'ZnZ l QF(i, m, n, y)
l= 1 mn

v,',"'(r)+Z~r- r„~
'

=Z(r-r„( 'e-(r, ~r-r-„() . (D5)

For purposes of the present work, attention was
focused on Al, in which the lattice terms 6o„and
6o„are large. " The first plane of ions at the
(111)face of the semi-infinite (x& 0}fcc structure
was allowed to shift its position from x= ——,'d to
x = ( —2+ X)d—= x~ (cf. Fig. 5), changing the surface
energy by an amount 40. It is convenient to write

40= 4o„+60„
with the two terms corresponding to steps 1 and 2

of Fig. 5. Zero point motion of the ions will be
neglected in computing these two contributions.

It may be seen using the analysis of Appendix D
that &o„=R(A.)-R(0), with

ft(y) = 4vdn f"c"c(x, x)[n(—x) - n]dx

+ 21rdm f"~'"~ (x,+ rg —x)[n(x) —n]dx . (El}

The pseudopotential cores are assumed here al-
ways to be to the left of the point x= 0 (i.e. , x~

+r, & 0).
For the (111)face of the fcc lattice, use of tech-

niques similar to those of Appendix C (with y-~
for simplicity) leads to the result 4o„=S(A) —S(0),
with

6 t
S(~)=2''~'d'+ V2Zng g P (m'+-.'n')-"'

l=0 g=1 mn

x cos(2mvb, ) cos(2nmc, )

xexp[-2w(/6)(l+a~(A))(m + ~n )
' ], (E2)

where the prime on g„„indicates omission of the
term m =n= 0 and that on g„ indicates omission of
the terms g = 1, 2 when l = 0. Here a~(&) = a„+—,'X,

1 2 ~with a1=a&=0, a3=a4 3p and a5=a6 3 j bpn, 1=0,
bzn= —,", and c2n= m+6, c2n+, = m. The first term
in (E2) gives the energy change due to movement
of the first lattice plane in the potential of the
slab of negative charge between x= —d and x=0,
and the second term gives the effect of the re-
mainder of the crystal (which is neutral).

Kith the standard assumption of pseudopotentia].
theory that the cores (the spherical regions of ra-
dius r, about each ion) are nonoverlapping, and
under the condition M& r„5vz(x}is easily seen to
be a periodic function also, that tends to cancel
5v, (x). For —d ~x ~ 0,

5v~(x) = 2vdn(r, — x+ —,'d
~
) e(r, — x+ M~ ) . (D6)

APPENDIX E: EQUILIBRIUM POSITION OF THE FIRST
LATTICE PLANE —EFFECT ON SURFACE ENERGY
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Minimization of 40 with respect to X showed the
equilibrium interplanar distance at the surface to
be only 0. 5/0 larger than that of the bulk, with a

reduction of o by just 2/0. These results may be
contrasted with those of Benson's analogous cal-
culation for alkali halides.
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A calculation of the ionized-impurity-limited mobility of a I'8 conduction band is performed,
using a random-phase-approximation dielectric function and taking into account the effects of
band nonparabolicity and p-like character of the wave function on the scattering calculation.
The results are compared with measured mobilities of Sb-doped n-Sn. It is shown that, as-
suming singly ionized donor impurities. , the calculated results are grossly larger than the ex-
perimental values. The results are somewhat better for doubly ionized impurities. It is
pointed out that the results of a calculation using a concentration-independent dielectric con-
stant are in excellent agreement with experiment over the whole range of accessible concen-
tration. These results indicate that, if the impurities are singly ionized Sb, the random-
phase approximation considerably overestimates the interband polarization.

I. INTRODUCTION

a-Sn is the allotrope of tin with the diamond
crystal structure. Its electron band structure is
similar to that of other diamond structure mem-
bers of column IV, except that the s&/2-like I'6
level is depressed so as to lie between the p3/2-
like I'8 level and the p&/&-like I"7 level. ' Part of
the fourfold-degenerate I'8 band then becomes a
conduction band and part a valence band. The
closest lying band extremum, I.6, lies slightly
above I'8, and thus the material becomes a per-
fect semimetal with a symmetry-induced degen-
eracy of the valence-band maximum and conduc-
tion-band minimum. For this reason, it has been
the subject of considerable interest as a candidate
for an excitonic phase transition.

However, Liu and Brust, using the random-
phase approximation, showed that, because the
degeneracy of the band edges is symmetry induced,
the static dielectric function c(q) diverges like
q as q-0. The presence of impurity carriers
is sufficient to remove this divergence through
Thomas-Fermi screening, leaving a finite inter-
band part which is strongly dependent on impurity
carrier concentration. Liu and Tosatti3 calculated
the concentration-dependent dielectric function in
the random-phase approximation and showed that

the resulting ionized-impurity-limited mobilities
were in excellent agreement with the anomalously
large values ' observed in degenerate n-type
samples.

Liu and Tosatti, in their scattering calculation,
treated the conduction electrons as s-like with a
parabolic dispersion relation. However, n -Sn
conduction electrons are p-like, and there are
considerable differences between the scattering
cross sections of s- and p-like electrons. Differ-
ential scattering cross sections for large-angle
scattering of p-like electrons are much smaller
than those for s-like electrons. This is especial-
ly important in a mobility calculation because the
Boltzmann equation heavily weights large -angle
scattering. In addition, the n -Sn conduction-band
dispersion relation is quite nonparabolic, the ef-
fective mass at the Fermi surface changing by
30% in the concentration range considered by Liu
and Tosatti. Since the density of states enters
the mobility calculation squared, the nonparabol-
icity is quite important. A calculation was per-
formed which showed that excellent agreement
could be obtained with the observed mobilities,
using a concentration-independent background di-
electric constant and taking into account the p-like
character of the wave function and the nonparabol-
icity of the conduction-bapd dispersion relation.


