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Anharmonic linewidths and frequency shifts have been calculated as a function of tempera-
ture for Al, employing an effective interionic interaction derived from a model pseudopoten-
tial. Calculations have been carried out along principal symmetry directions at 80 and 300
K and comparison is made with the experimental data of Stedman and ¹ilsson and with the re-
cent calculations of Hogberg and Sandstrbm. The structure of the one-phonon spectral func-
tion at 300 K for selected longitudinal phonons is examined in detail and discussed. The pres-
ence of a significant asymmetry in the one-phonon peak for the (0.8, 0, 0) longitudinal mode
is pointed out.

I. INTRODUCTION

It is certainly one of the more gratifying aspects
of the pseudopotential theory of metals that the
low-temperature lattice vibrational spectra of the
simple metals can be adequately described within
the context of this theory and in the harmonic ap-
proximation. ' In addition, the theory has been
successful in describing first-order anharmonic *

properties, such as the thermal-expansion coeffi-
cient and the third-order elastic constants. Un-
til the recent calculations of Hogberg and Sand-
strom (HS)' on Al and Buyers and Cowley" on K,
however, none of the model potential approaches
had been applied to the calculation of second-order
anharmonic properties in the simple metals, al-
though it is clear that such calculations would pro-
vide a further test of the validity of these models.
It is intuitively appealing to attempt to adopt in its
entirety the effective two-body interaction poten-
tial which has its genesis in the neutral pseudo-
atom concept' of the metal, to proceed to calcu-
late third- and fourth-order derivatives of this po-
tential, and hence to employ standard anharmonic
perturbation theory to calculate those properties
which are of interest. This, in principle, would

be a well-defined straightforward procedure were
it not for one difficulty. As is well known, in cal-
culating the effective ion-electron-ion contribution
to the energy of the crystal, one can proceed with
an expansion in powers of the atomic displace-
ments with a subsequent utilization of perturbation
theory to the appropriate order in these displace-
ments. It is immediately clear, then, that a rig-

orous treatment of anharmonic effects should in-
clude terms of third and higher order in the elec-
tron-phonon interaction, whereas the effective in-
terionic potential derived from the neutral pseudo-
atom picture is correct only to second order in
this interaction. This point has been discussedin
detail by Buyers and Cowley, "who emphasize the
difficulty of including these additional terms in
any quantitative anharmonic calculations.

There is an alternative approach, however,
which allows one to circumvent this difficulty. If
the perturbation is taken to be the pseudopotential,
rather than the atomic displacements, then the to-
tal energy of the conduction electrons may be cal-
culated to second order in the pseudopotential for
arbitrary positions of the atoms. ' Then the effec-
tive interionic potential is correct to all ordersin
the atomic displacements, but is correct only to
second order in the pseudopotential. The second-,
third-, and higher-order derivatives of this poten-
tial are all given correctly to leading order in the
pseudopotential, namely, to second order, and
hence the harmonic and anharmonic properties can
be calculated correctly to leading order in the
pseudopotential, This has been the approach in
previous calculations, and it has been shown that
the phonon frequencies are the same as those ob-
tained from the neutral pseudoatom picture.

We begin the discussion in Sec. II with a de-
scription of the model potential employed in the
present calculation on Al. We then proceed im-
mediately to the calculation of frequency shifts
and lifetimes for phonons along the [100],
[110], and [111]symmetry directions at 80 and
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dispersion curves are reproduced in Fig. 1.
For the Harrison modified point-ion model the

bare-pseudopotential form factor may be written

V,(q) = (1/0, )[ —4wze /qo+ P/(I+ q po)o], (1)

where 0, is the volume per atom; P and p are pa-
rameters relating to the ion core. The screened
form factor takes the form

V.(q) = V&(q)/[I+ (&, —1)(1-g,)]
g, = q'/[2(q'+ ]or)]

(2)

pr X K

FIG. 1. Model potential fit to the phonon dispersion
curves of Al at 80 K. Experimental points from the
data of Stedman et al. (Ref. 14) are represented by solid
circles.

300 K. The changes in the lifetimes and frequen-
cies of these phonons with temperature are com-
pared with the experimental results of Stedman
and Nilsson'; reasonably good agreement with ex-
periment is found. Comparison of the present cal-
culated values with the recent calculations of HS'
reveals significant differences and these are dis-
cussed. The final portion of the paper is devoted
to a detailed examination of the structure of the
one-phonon spectral function at 300 K for selected
phonons in regions of large attenuation.

II. MODEL POTENTIAL

In a previous paper, the parameters of a Har-
rison modified point-ion potential were deter-
mined to obtain the best over-all fit to the mea-
sured dispersion curves' for Al at 80 K. The
phonon frequencies and eigenvectors were deter-
mined to within an estimated numerical accuracy
of 0.5% and the average magnitude of deviation of
the calculated curves from the experimental points
was 3%. For ease of reference, the calculated

where E, is the Hartree dielectric function and
(1-g,) is the Hubbard-Sham exchange and corre-
lation correction factor. $ is a parameter to be
determined from the electron-gas compressibili-
ty, and k~ is the magnitude of the Fermi wave
vector. For the fit shown in Fig. 1, the param-
eters entering into the bare-ion form factor have
the values

P = 47.5 Ry ao p = 0.24 ao

The effective interionic interaction consists of
the direct Coulomb interaction between ion cores
plus the indirect ion-electron-ion interaction de-
rived from Vo(q) and the Hartree dielectric func-
tion. This effective interaction between ions has
the form'

2 2 2 2 2

&(q)= — 4„', o Vp(q) ~1,(, '1)(1 ),~

~

V(r) and its first four derivatives were determined
from (3) with a numerical accuracy of -0.1%. Ta-
ble I tabulates the values of V(r) and (C/rCr)" V(r)
(n = 1, 2, . . . , 4) for 12 shells of neighbors in Al.
In addition, V(r) is plotted as a function of the ion
separation in Fig. 2. It can be shown that the di-
rect Coulomb part of V(r) is cancelled for dis-
tances greater than about half the nearest-neigh-

TABLE I. Calculated values of V„=(d/rdr)" V(r) (Ry a/) 0for 12 shells of neighbors. The nearest-neighbor distance
is that appropriate to 80 K.

Shell

1
2
3
4
5
6
7
8
9

10
11
12

Distance (ap)

5.389 50
7.621 90
9.334 89

10.779 00
12.051 29
13.201 52
14.259 28
15.243 81
16.168 50
17.043 10
17.874 95
18.66978

Vp

2.026 xlp 4

—2.086 xlp 3

1.510 xlp~
—7.046 xlp '
—1.6S6xlp 4

1.870 x 10-4
—2.852x 10 '
—1.079 x 10~

5.251 x 10-'
6.884 xlp-'

—3.810 xlp-'
—5.620 x 10-'

—9.764 x 10~
—3.953 xlp '

1.106x lp&
—5.750 x10-'

3.407xlp ~

1.139xlp 6

—1,806xlp &

7.615 xlp~
8.970 x lp-6

-5.697 x 10~
—5.744xlp 6

3.358 xlp 6

V2

9.826 x 10-4

5.916xlp '
—2. 521 xlp-'

4. 815 xlp-6
2.047xlp 6

—3.694 x 10"6
1.147 x 10 '
1.343 x 10-'

—9.322xlp ~

—6.608 x 10 7

5.412xlp ~

4.837 x 10-'

V8

—6.737 x10~
—1.565xlp 6

—2.841 x 10-7

1.412xlp '
—S.OSO xlp

1.839 x 10-'
2.499 x 10-'

—1.639xlp '
—8.185x ].0-8

8.952 X 10
4.706 x 10

—4.430 x 10-8

3.456 xlp 4

—3.464 x lp-6

8.907 x 10-'
—2. 989x lp-'

0=-8

5.891 x 10-8
—3.289 x 10-8
—1.133Xlp 8

1.538 x lp-8

4.474x lp-'
—7.429x 10 9

—3.199x 10 9
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inary parts of the phonon self-energy, respec-
tively. For fixed q, X, the position of the peak in

(4) defines the renormalized phonon frequency a&s.

If 5,, I" are assumed small, we have the approxi-
mate relation

0
L

O 10 15 20 r, a. u.
&B(q &) = &d q) + &»(& &x(q)) (5a)

-2

-3

with the full width at half-maximum given approxi-
mately by

FIG. 2. The effective interionic potential for Al

plotted as a function of ion separation.

W(q, X) = 2I'»(q, (u„(q)) . (5b)

bor separation, so that V(x) is entirely of a
screened nature with the asymptotic behavior
r cosh'. ' The values of the spatial derivatives
of V(r) for eight shells of neighbors in coordinate
space were incorporated into the anharmonic cal-
culation of widths and frequency shifts. At this
point, it should be noted that the present calcula-
tion deals directly with the effective V(x) and its
spatial derivatives in coordinate space, whereas
the calculation of HS employs the Fourier trans-
form of V(x) in reciprocal space. By performing
lattice sums in coordinate space, we treat the
small r —hence, large q —components of V and
its spatial derivatives most accurately. These
large q components are in fact quite important in
the calculation of the anharmonic shifts and widths.
We will return to this point in detail in Sec. IV.

III. ANHARMONIC LINEWIDTHS AND FREQUENCY
SHIFTS

Im G»(q, Q+i0')/[e~" —1]= [e~"-1] '

x Im(2(o~( q)/{[(o„(q)]' —A'

+»,(q)~»(q, Q) -»~x(q)1'»(q Q)]) .

&o~(q) is the bare-phonon frequency in the absence
of anharmonicity and 4, 1 are the real and imag-

(4)

It is well known that the observed cross section
for the scattering of neutrons by a crystal may be
decomposed into a rapidly varying part —the so-
called one-phonon part —and a part which is slow-
ly varying and gives rise to the multiphonon back-
ground. '5 The rapidly varying part, which reso-
nates at the one-phonon frequencies, may be fur-
ther decomposed into two contributions —a "pure"
one-phonon part plus a part representing the in-
terference of the one-phonon and multiphonon pro-
cesses. In the approximation in which one neglects
interference effects, ' the one-phonon contribution
to the scattering Cross section is given in terms
of the one-phonon Green's function G». (q, Q) as"

The exact method of determining the renormalized
phonon frequency may be quite important, espe-
cially if the system is so highly anharmonic that
the approximations (5a)-(5b) are poor. ' In this
case, ~„must be identified with the position of the
true maximum in Im G(Q).

The expressions for b, and I' including cubic and

quartic anharmonic contributions are by now well
enough known so as not to necessitate reproducing
them here. ' The quasiharmonic frequency shift,
arising from the thermal expansion of the crystal,
was included by performing the calculations at the
observed lattice constant. As the basis of the an-
harmonic calculation we employed the phonon fre-
quencies and eigenvectors of Ref. 8, calculated on
a bcc mesh in q space consisting of 8000 points in
the first Brillouin zone. All calculations were
carried out on an IBM 260/91 computer. The
greatest uncertainty in the calculations arises
from the approximations P/x= x/(x + e ) and m6(x)
=e/(x +a ), where e is small but finite. Foreach
q point for which the anharmonic calculation was
carried out, plots of I'(Q), b(Q), and ImG(Q) were
made as a function of A. The criterion used in
choosing the grid size in q space and the magni-
tude of c was the over-all stability of the plots of
b,(q, A), I'(q, Q) as functions of both q and Q when
changes were made in the mesh size and in the
magnitude of e. After considerable experimenta-
tion a value of 0.10x10' rad/sec was chosen for

It is believed that the calculations representa
numerical accuracy of about 5/o.

Before closing this section, it should be pointed
out that there is, in addition to the anharmonic
contribution to the phonon damping, a contribution
arising from the electron-phonon interaction. ' '

Although this contribution may be important at low
temperatures in determining the magnitude of the
phonon linewidth, its contribution to the tempera-
ture dependence is negligible. In what follows we
are primarily interested in the change with tem-
perature of the phonon linewidths. Hence, we are
justified in neglecting this contribution to the pho-
non damping.
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FIG. 3. Increase in phonon linewidth with temperature
[6I' -=I"(300 K) —I'(80 K)] for the symmetry direction
[110]. The experimental points are given by open circles
and the calculated points of the present work are denoted

by solid squares. The ca]culated values of Hogberg and

Sandstrom (Ref. 10) are shown by solid circles.

IV. RESULTS

The real and imaginary parts of the phonon self-
energy b,„(g, Q), I'„(q, Q) were evaluated at the
two temperatures 80 and 300 K for fixed q and as
a function of A. Calculations were carried out
along the symmetry directions [100] and [110]at
wave-number intervals b,q„(a/2v) = 0.1 and along
the symmetry direction [111]for b,q„(a/2v) =0.05.
Full plots were made of I'(Q), 6(Q), and Im G(Q)
as functions of 0 at each q point. Thus, it was
possible to ascertain the magnitude of the differ-
ence between the approximate &„, S' defined in
(5a) and (5b) and the arz, W obtained by locating

0, 1 O. 2 0. 3 0.4 0. 5 0.6 0. 7 0. 8

K (8/2~l-
X

FIG. 5. Decrease in phonon frequencies with temper-
ature [6~ = v(80 K) —cu(300 K)] for the symmetry direc-
tion [110]. Experimental and calculated points are de-
noted as in Fig. 3.

the true maximum of Im G. With only one excep-
tion, which will be discussed below, the approxi-
mations (5a) and (5b) sufficed for the present cal-
culations. Thus, the calculated values plotted in

Figs. 3-6 and quoted in Table II are those appro-
priate to these approximations.

The increase in the phonon ha, lf-width with tem-
perature, 51' —= I'(300 K) —I'(80 K), and the decrease
with temperature of the phonon frequencies, 5e
= urs(80 K) —&oz(300 K), are plotted in Figs. 3 and

4 and 5 and 6, respectively, together with the ex-

perimental data of Stedman and Nilsson. ' The
over-all agreement of the present calculations with
experiment is quite satisfactory, although it is
clear that the large experimental errors preclude
making any definitive statements. Also plotted in

0, 3-
LONGITUDINAL [100] LONG ITUD INAL fill]

LONGITUDINAL [100] LONGITUDINAL [ ill]

0.2-

0.1-

0 3 - TRANSVERSE [100]

0.2-

TRANSVERSE [111]
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0.3

0.2

IIII
TRANSVERSE [100] TRANSVERSE Dlo

0. 1

I I I

0. 2 0. 4 0. 6 0. 8 l. 0 0. 1 0. 2 0. 3 0.4 0. 5
K (a/2+I~

X

0. 1 lklll lI . 'lI lII /I
0.2 0.4 0, 6 0. 8 1.0 0. 1 0.2 0.3 O. 4 0.5

K (a/2nl ~
X

FIG. 4. Same as Fig. 3 but for the symmetry direc-
tions [100] and [111].

FIG. 6. Same as Fig. 5 but for the symmetry direc-
tions [100]and [1].].].
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TABLE II. Calculated and experimental (Ref. 13) values for the changes with temperature of phonon widths and

shifts in Al.

Wave vector Mode

I'(300 K) —I'(80 K)
(10 rad/sec)

Calc Expt

~(300 K)-~(80 K)
(10' rad/sec)

Calc

(0. 1, 0.0, 0.0)

(O. 2, 0.0, 0.0)

(0.3, 0.0, 0.0)

(o.4, o.o, o. o)

(o. s, o.o, o. o)

(o. e, o.o, o.o)

(o.7, o.o, o.o)

(o. 8, o.o, o. o)

(o. 9, o.o, o. o)

{1.0, 0.0, 0.0)

(o.os, o. os, o.os)

(0. 10, 0.10, 0.10)

(o. 1s, o. is, o. is)

(0.20, 0.20, 0.20)

{0.25, 0.25, 0.25)

{0.30, 0.30, 0.30)

(0.35, 0.35, 0.35)

{0.4o, 0.4o, 0.4o)

(o. 4s, o.4s, o.4s)

(o. so, o. so, o. so)

(0.10, 0.10, 0.0)

(0.20, 0.20, 0.0)

(0.30, 0.30, 0.0)

(o.4o, o. 4o, o.o)

(o. so, o. so, o.o)

(o. eo, o. eo, o.o)

(0.70, 0.70, 0.0)

L
T
L
T
L
T
L
T
I
T
L
T
I
T
L
T
L
T

T

L
T
L
T
L
T
L
T
L
T
L
T

T
L
T

T
L
T

L
Ti
T2
L
Ti
T2

Ti
T2
L
Ti
T2
I
Ti
T2
L
Ti
T2
L
Ti
T2

0.020
0.026
0.051
Q. 043
0.057
O. 053
0.040
0.093
0.028
0. 104
0.Q35

0.107
0.083
0.090
0, 239
0.061
0.191
0.048
0.166
0.052

0.033
0.016
0.Q87

0.031
0.139
0.041
O. 135
0.046
0.064
0.049
0.048
0.054
0.092
0.054
0.137
0.053
0. 162
0.056
0.149
0.059

0.049
0.029
0.016
0.135
0.051
0.029
0.089
0.089
0.035
0.073
0.075
0.040
0.131
0.030
0.038
0.139
0.031
0.038
Q. 107
0.093
0.038

0. 90+0.08
0.06+ 0.03
0.03 +0.10
0.07 + 0.04
0.01+0.07
0.11+ 0.05
0.03 +0.07
0.11+Q. 05
0.03 +0.08
0.11+0.05
0. 12 +0.09
0.07+0.06
0.12+0.05
0.09+0.06
0.10 + 0.12
0.04+0.09
0. 10 +0.17
0, 03 +0.12

0.07 +0.08

0.13+0.11
0.01 + 0.01
0.0+0.10

0.02+0.02
0.02 +0.12
0.09 +0.06
0.05 + 0.09
0.07 +0.03
0.09+0.09
0.06 +0.05
0. 18 +0.11
0.05 + 0.12
0. 13~0.15
0.05 + 0.16
0.04+0. 20
0.04 +0.13

See Fig. 3

—0.086
—0.074
—0.099
—0.087
—0.062
—0.082
-0.031
—0.081
—0.096-Q. 057
—0.134
—0.047
—0.155
—0.034
-0.131
—0.033
—0.091
—0.037
—0.083
—0.025

—0.086
—0.054
—0.099
—0.080
—0.077
—0.095
—0.035
—0. 103
—0.089
—0.107
—0.097
-0.111
—0.076
—G. 101
—0.093
-0.089
—0.133
—0.080
—0.160
—0.078

—0.094
-0.081
—0.066
-0.057
—0.085
—0.102
—0.048
—0.094
—0. 108
—0.086
—0.056
—0.103
—0.143
—0.083
—0.092
—0.157
—0.137
—0.091
—0.198
—O. 178
-0.088

—0.04+0.04
—Q. 02 + 0.02
—0.07 +0.04
—0.02+ Q. 02
-0.05 +0.04
—Q. 05 ~ 0.03
—0.06+0.04
—0.08 + 0.02
-0.11~0.04
—Q. 07+ 0.02
—0.10 + 0.05
—0.08+0.02
—0.08+0.06
—0.05+0.02
—0.05 + 0.05
—0.08 + 0.02
—0.02+0.03
—0.08 + 0.03

—0.05+ 0.04

-0.09+0.04
—0.05 + 0.02
—0.05 +0.05
—O. 08+0.03
—0.04+ 0.05
—0.10+0.02
—0.Q3 + 0.04
—0.08+0.02
—0.10 + 0.05
—0.07+0.02
—0.07 +0.06
—0.08+0.04
—0.09+0.05
—0.08+0.04
—0.11+ 0.09
—0.09+0.04

See Fig. 5
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Figs. 3-6 are the calculated values of HS and it
is obvious that significant differences exist be-
tween their results and the results of the present
work. We would now like to discuss this point in
some detail.

The claim was made in Sec. II of this work that
the large wave-vector components of V(x) and its
derivatives are important to the calculation of the
anharmonic shifts and widths; and, further, that
in order to treat these components most accurate-
ly, one should work with V(x) and its derivatives
directly in coordinate space. Now it is true that
for a cubic monatomic lattice a cancellation of
these large wave-vector components occurs for
wave vectors large compared to a typical wave
vector in the first Brillouin zone. However, be-
cause of the slow convergence in reciprocal space,
this cancellation only becomes effective for recip-
rocal-lattice vectors with magnitude much greater
than the Km«chosen by HS, who terminate their
reciprocal-lattice sums after 25 shells, corre-
sponding to (a/2m)K 8. One can easily verify
that the region of reciprocalspace for (a/2v) lK(
& 8 contributes the following amounts to the spatial
derivatives of V(r) at the first-neighbor separa-
tion: 22 /o to V'(x), 10/o to V"(z), 40 /o to V

' "(r),
and 59% to V'"'(x). Only for the initial phonon
wave vector q very near the zone center wi11 these

contributions to h(q), I'(q) from the region of re-
ciprocal space outside a sphere of radius E ~ be
negligible. For q well into the zone, the error in-
curred by neglecting the large wave-vector region
in reciprocal space may be considerable. In con-
trast to this, the present calculation employs lat-
tice sums in coordinate space, terminating said
sums after eight shells of neighbors. This means
that the greatest error in h(q) and I'(q) is in-
curred for small q; more specifically, for (o./2m) I q I

-0.1, a region of little importance in the present
calculation. In summary, then, it is possible that
the discrepancies between the calculated values of
HS and the calculated values of the present work
can be attributed to insufficient convergence in the
HS reciprocal-lattice sums. A further source of
the discrepancy between the two calculations might
be the dependence of the third and fourth deriva-
tives of V(r) on the model potential used to fit the
dispersion curves. Certainly, the extent to which
the anharmonic calculations are model dependent
is a point which deserves attention in the future.

In Figs. 7(a)-7(c), we display plots of Im G(A),
rh, (A), and I'(Q) for selected longitudinal [100] pho-
nons at 300 K in a region of large attenuation.
These figures trace the growth and disappearance
of a prominent asymmetry in the peak of the one-
phonon spectral function for the longitudinal mode
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FIG. 7. (a)-(c) One-phonon spectral function Im (G(Q))
plotted as a function of frequency for selected longitudi-
nal phonons. Also plotted are the real part of the phonon
self-energy 6(Q) and the imaginary part of the self-
energy I (0).
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along [100]. This asymmetry, which is not pres-
ent for q„(a/2m) = 0.7, dramatically appears at
(0.8, 0, 0), then subsequently disappears as one
approaches the zone boundary. For the longitudi-
nal mode (0.8, 0, 0) the difference between the
true renormalized phonon frequency and the ap-
proximation of Eq. (5a) is about 4%. Although
this difference is not particularly significant, the
difference between the true half-width and the ap-
proximate half-width of Eq. (5b) is more dramat-
ic —13%. On the other hand, the experimentally
derived half-width is probably not representative
of the true calculated width, but rather represents
a value appropriate to some average of the calcu-
lated peak displayed in Fig. 7(b) —assuming the
asymmetry is real. The attenuation of the longi-
tudinal mode (0.8, 0, 0) is probably dominated by
the decay process in which the longitudinal phonon
decays into two transverse phonons with wave vec-
tors near the centers of the hexagonal faces of the
Brillouin zone. These hexagonal face centers rep-
resent critical points for the low transverse branch
of the phonon spectrum and so a high density of
final states is expected for the decay process men-
tioned. '

Except for the (0.8, 0, 0) longitudinal mode the
one-phonon spectral function associated with all
other phonons is to a very good approximation
Lorentzian in shape. This has been verified di-
rectly by calculating the shape of the spectral
function for all of the phonons considered in the
present investigation.

V. SUMMARY AND DISCUSSION

In the present work, we have calculated anhar-
monic linewidths and frequency shifts for Al em-
ploying standard anharmonic perturbation theory
in conjunction with an effective interionic inter-

action derived from bare-pseudopotential form .

factors and a metallic screening function. A Har-
rison modified point-ion model was employed for
the bare-ion core form factors, the parameters
of the model being determined by a fit to the pho-
non dispersion curves at 80 K. There is consid-
erable arbitrariness in the choice of model pseu-
dopotentials. However, a comparison between
theory and experiment is not without meaning.
Certainly the large experimental errors preclude
attaching any particular significance to the agree-
ment between any individual experimental value
and theory. However, comparisons of the over-
all trend of the measured values with the over-all
trend of the theoretical values are significant. On
the basis of this criterion we believe that thepres-
ent calculations show better over-all agreement
with experiment than the HS calculation. Further-
more, it is to be noted that the model potential
used in the present calculation employs two pa-
rameters, whereas the HS calculation employs
three.

The considerations outlined in the previous sec-
tions lead us to assess the over-all accuracy of
the present calculations at 5%, a considerable im-
provement over the HS quoted accuracy of 25%.
It can be argued that the present experimental data
do not justify such accuracy. However, since it
is particularly difficult to extract the natural width
of the phonons from the neutron scattering data,
the present investigation should provide a more
accurate guide in future experiments for extract-
ing experimental resolution functions. Of particu-
lar interest is the fact that except for the (0.8, 0, 0)
longitudinal mode —for which a large asymmetry
exists —all other phonons exhibit resonance
shapes which are Lorentzian in character.
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