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the domain alignment field.
Cooper' has correctly pointed out that if the

resonances reported by Bagguley and Liesegang
in Tb are directk= 0 spin-wave excitations, the
frozen-lattice model cannot be valid at their
experimental frequency. Marsh and Sievers'
studied far-infrared absorption in Tb and con-
cluded that the frozen-lattice model better ex-
plained their data. Our high-frequency micro-
wave data' provided a definitive test: They
could only be explained on the basis of the frozen-
lattice model. (The free-lattice model could not
even qualitiatively explain the experimental
results. '2) To understand the difference in
behavior between the low-frequency microwave
results of Bagguley and Liesegang and those of
the above-mentioned far-infrared and high-fre-
quency microwave regions, Marsh has proposed

a two-sublattice model. e Brooks7 has also dis-
cussed the possibility of a frequency-dependent
mechanism which might allow the free-lattice
model to be operative at low microwave fre-
quencies. Our earlier high-frequency results, '
together with the low-frequency investigation
presented in this paper, provide a natural and
satisfying resolution of the apparent discrepancy.
Thus the conjectures related to the Tb problem
made by the aforementioned authors '6'7 are no
longer necessary.
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The self-consistent equations derived by Appelbaum and Penn (AP) for a single strongly
correlated impurity site in a narrow conduction band are solved using a rapidly converging
density of states. This rectifies the convergence difficulties AP found when they used a Lor-
entzian density of states. We find that no, the total electron occupation number at the impurity
site, is 0.497, compared to 0.4 found by AP. Results for the resistivity as a function of tern-
perature are also presented.

Recently, Appelbaum and Penn' (AP) have treated
the problem of localized correlations in a narrow
conduction band by means of an equation-of-motion
decoupling scheme. In the process of solving the

resulting self-consistent equation for the local-
correlated-site Green's function, they were
forced to use a Lorentzian density of states

n(~) = (z/. ) i/(~" z')
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H= ~ &]gc]~cJ~+ pU~nq, no,-
%fan 0 0

where c;, creates an electron of spin a at lattice
site i and no, is the number of electrons of spin
o at the correlated or impurity site.

The properties of the system are described by
D', the impurity Green's function, defined as

(2)

D'(&) = «c,.; c,'.».
in the notation of Zubarev. '

The general equation for D'(v) is given in Eq.
(S.21) of AP and accompanying defining relations
and will not be repeated here. It was found that
a density of states of the form

(S)

to describe the energy dispersion in the conduc-
tion band. As discussed by AP, the slow conver-
gence of the Lorentzian density of states intro-
duced unphysical divergences into their self-con-
sistent equations which required the introduction
of an extraneous cutoff energy to which the final
results were sensitive.

It is the purpose of this paper to obtain a solu-
tion of AP's self-consistent equations using a den-
sity of states which does not suffer from these
divergences, and to present numerical results for
the electron occupation number at the correlated
site as well as the resistivity as a function of
temperature. It will be found that AP's qualitative
conclusions remain valid.

It will be assumed that the reader is familiar
with the contents and notation of AP. For conve-
nience, the model Hamiltonian used by AP is
written

—iB,+ 2 vs y, (i Va),

with

il, = if [f(~') --', ][D(~'+i5) -D(~'-i5)] d~', (io)

[D(~'+ i5) -D(~' i5—)]d(o', (ll)[f(~') —z]
(d +i 2

"f((o') ——,
' (D((u'+i5) D((o' —i5)

&u'+i 4 ~
v'+i &2 e' i&-2

In the above, the superscript (a) means

x'((o) =x((o+i5), 5- 0 (iS)

m, (z) = (z —i v 2)B'(z) + Sig, (i v 2)

—(E2/m) (z'+ 2)g (z) —Sip, (z )

vz(z) = (z+i v2)B'*'(z) —Sinai( —i v2)

—(K2/m)(z'+ 2)g(z)+ Sip, (z)

(i4)

(15)

Using (14) and (15), one finds that Eq. (5) and its
complex conjugate take the form

w', +—((u + 2)g' — iij+ —((o + 2)gp + V'&

1T r

Equation (5) along with its complex-conjugate
equation constitutes a coupled set of nonlinear in-
tegral equations which can be transformed into a
Riemann-Hilbert boundary value problem in a way
similar to that applied to Eqs. (5. 1) and (5. 2) of
AP. It is a reasonably straightforward task to
establish that the Riemann-Hilbert problem can be
formulated in terms of the functions

il((o) = v'2 m-'/((o'+ 1) (4)

has the property of rapid convergence plus suffi-
cient analytic simplicity so that a solution of Eq.
(3.21) of AP can be effected. Using (4), Eq. (S.21)
of AP becomes

= —Si(g' -g ) [((o'+ 2)/2m]

x [e —((o + 2)g /2' — i/i422 i]
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2'(u&+ io') = (&cr + 2) [A'((u) —2 K2 Pi((o)]
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and where A'(~) = —,'(1 —iso) —iAO/(& + i ~2)

B'((o)= (uz+ i &2 (a+ iAO/((o+ i v'2 ) ——,
'

(8)

with e'=A' —(1/2 v'2i) [(&o iv'&)B'+ Sip&(i v'2)-]

e-=(e')* .

'Using (14)-(17), one can establish that

g (z)m (z) —(4i/n')g(z)(z + 2)[e'(z)- e (z)]

—(2/m')(z'+ 2)'g'(z) =p(z)

(IS)
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where p(z) is a sixth-order polynomial given by

P(z)= t:z + (Boo+2)z+Po] +6so+2 (20)

with ~o = 4 ImD, —16$q(i E2) (21)

Boo = ——,
' —2 ImDo+ 4 g2 Re& q(i V'2), (22)

and D = d~I co&~
-z

47 +2

Combining (19) with (16) and (17) results in

Intro
—

luau~
= lnH(&u)

(22)

(24)

H((u) = P(z)+(4i/v)((o +2)g (e' e-)+(2/ v)((u' +2) g"
p(z)+ (4i/o)((o'+ 2)(g e' -g'8 )+ (2/m')((u'+ 2)'g'g (26)

lnH( )dx exp
2zi ~ z —co

(26)

where b„are complex constants. An examination
of H(&u) establishes that its index is zero, so that
(26) constitutes the unique solution to (24).

The conversion of (I) into usable form involves
the determination of the b„as well as go, Ao, and
Bo. By expanding both sides of (26) in power of
1/&o to order 1/&o' and equating coefficients, one
obtains a set of three simultaneous nonlinear tran-
scendental equations from which all the unknown

parameters are obtainable.
These equations have been solved by standard

numerical techniques. We find that the total elec-

The solution to the boundary-value problem in (24)
is easily established to be

( )
z +boz +boz +bgz+bo4 3 2

7r2g =
z -i v'2

tron occupation number for both spins at the im-
purity site no= 0.494. This result is in excellent
agreement with our previous estimate in AP that
a more realistic band structure would increase
our original estimate for no, which was 0.4, by
25%.

We have calculated the resistivity by standard
techniques, 4 and this is plotted versus tempera-
ture in Fig. 1. The resistivity changes by one
percent between To=0 and T, =10-'D. If D is
taken as 1eV, Tj -10'K. This is a small change
on the scale we are usually used to thinking of in
connection with the magnetic impurity problem. '
It is, however, a very large change compared to
what we would expect from the usual T/D correc-
tions associated with ordinary impurities. This
behavior can be understood by recognizing that the
coupling of the impurity to the band is comparable
to the bandwidth. We are therefore in the strong-
coupling regime, the result of which is that the

~ o
IO ~

O

FIG. 1. Resistivity due to the
substitutional impurity is plotted ver-
sus temperature, measured in units
of bandwidth.

IO ~
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Kondo effect is drastically reduced.
Very recently, Theumanne has published a study

of the Anderson model which employed an essen-
tially identical decoupling scheme to that used by
AP for the%olff model. Theumann treated the
case where v was infinite and the Anderson mixing
term V was small compared to the deep impurity
level ED. She first specialized to the case of a
very deep impurity level. In this case, she found
behavior quite similar to that found by Bloomfield
and Hamann' for the s-d model, if the results for

the resistivity were expressed in terms of T//Tr,
where T~, the Kondo temperature, was T~

-E / pv2=De ~a~'v /v, where D was the bandwidth, p was
the density of conduction electrons, and V was the
mixing term.

Our result essentially complements Theumann's
by considering the strong-coupling Vfolff -model
case. It also contains the difficulty briefly dis-
cussed by Theumann, that not all the Kondo-like
"leading logarithmic terms" are contained in the
decoupling scheme.
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The magnon-coupled nuclear spin-phonon interaction first proposed by Silverstein is dis-
cussed on the basis of a classical model. In addition to being conceptually quite simple, the
model points out several interesting new features of this coupling mechanism.

The magnon-coupled nuclear spin-phonon inter-
action first proposed by Silverstein' has been ob-
served in at least one antiferromagnet and prob-
ably in several others. 3 5 The purpose of this
paper is to discuss this coupling rnechanisrn from
a point of view different from that of Silverstein.

Following Silverstein' we consider a uniaxial
two-sublattice antiferromagnet in which the nuclear
spin system is coupled to the electronic spins via
an isotropic hyperfine interaction. (A good exam-
ple is the Mn~~ nuclear spin system in MnFz. ) The
Hamiltonian of such a system consists of the fol-
lowing terms:

R —Rp+~+Req+RA+RzM+~+RzN . (1)

The individual terms correspond to the phonon, the
magnon-phonon, the exchange, the magnetic an-
isotropy, the electronic Zeeman, the hyperfine,
and the nuclear Zeeman contributions to the total
Hamiltonian. Silverstein's solution to the problem
involved expressing each term of Eq. (1) in terms

of phonon and spin-wave operators, performing an
average over the intermediate electronic spin sys-
tern, and thus deriving an effective nuclear spin-
phonon interaction, which is then used to calculate
an ultrasonic absorption coefficient. This two-
step process is described as follows: An acoustic
phonon interacts with the electronic spin system
(via RM ) creating a virtual magnon; the magnon is
then coupled to the nuclear spin system and pro-
duces a nuclear spin transition via the hyperfine
interaction X„~. The calculation is clearly re-
stricted to low temperatures (T«T~= Noel tem-
perature) and, because of the average over the
electronic spin states, any time correlation exist-
ing between the electronic and nuclear spins is
lost.

An alternative approach to the problem is to
calculate the elementary excitation spectrum of
the complete system represented by the Hamil-
tonian of Eq. (1). Since the average over the elec-
tronic spin states is then unnecessary, time cor-


