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The simplest Kondo problem is treated exactly in the ferromagnetic case, and given exact
bounds for the relevant physical properties in the antiferromagnetic case, by use of a scaling
technique on an asymptotically exact expression for the ground-state properties given earlier.
The theory also solves the n=2 case of the one-dimensional Ising problem. The ferromagnetic
case has a finite spin, while the antiferromagnetic case has no truly singular 7—0 properties

(e.g., it has finite ).

I. INTRODUCTION

A previous paper! showed that the simplest
Kondo problem is equivalent to a certain class of
problems in the classical statistical mechanics of
one-dimensional systems. One limit of the prob-
lem of the Anderson model of a magnetic impurity
also leads to the same classical problem.? This
problem was stated in Ref. 1 as the statistical
mechanics of a set of alternating hard rods on a
line interacting via logarithmic (“two-dimensional
Coulomb”) potentials:
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Here JC is the Hamiltonian of the Kondo system:
3=K.E. +2J,(S,s_+S.8,) +J,8,5,, (2)

S being the local spin (S=%) and s the spin of the
free electrons at the local site. 7 is a cutoff of
order 1/Ep, and

€=86/m - 86%/n1*~2J,1, (3)

where § is the scattering phase shift of antiferro-
magnetic sign caused by the J,s,S, term. [0) is
the unperturbed ground state of 3G =K. E. +JS,s,.
Since we depend so completely here on the re-
sult Eq. (1) of Ref. 1, let us outline the argument
of that paper and try to clarify the meaning of Eq.

1

(1). In that paper we go to the Feynman space-
time formalism (actually space-imaginary time

= temperature) and, since the Kondo problem of
the magnetic impurity treats only a single-point
impurity, the question reduces to a sum over paths
in only the one (“time”) dimension. In addition,
the perturbation [which we take as the J, term of
Eq. (2)] has the effect of flipping the local spin at
each application, so that the problem reduces to
calculating the amplitude for a succession of spin
flips at times By, B,, . .. and the sum over histories
is just the sum over all possible numbers and po-
sitons of flips. Thus, formally we can write a
ground-state average such as Eq. (1) as a grand
partition function of an effective one-dimensional
gas of spin flips. The one difficult step of Ref.

(1) is that of showing that the effective interaction
in this one-dimensional gas is a simple logarithmic
pair interaction, and it is only at long enough dis-
tances B; - B; that the proof we used is precise.
Fortunately, the classic Kondo problem has been
defined as the calculation of the limiting behavior
for small J, in which case the gas of spin flips be-
comes increasingly rarified and the behavior for
large distances must be controlling; as we shall
see, this statement has a precise meaning in the
context of the present paper. This corresponds to
the fact that the Kondo effect has always been as-
sumed to involve only electrons near the Fermi
surface. But because of the singular nature at
small B, ~ B, of the asymptotic expression valid
for large B; - B,;, at several stages of the problem
the behavior for small §; - 8; must be handled in
some way such as to avoid ultraviolet divergences;
and cutoffs of various shapes [of which Eq. (1) is
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an example| must be introduced. It is easy to see
that such a cutoff must be present physically; en-
ergy bands are not infinitely wide, and J’s involve
form factors of physical wave functions. In the
derivation of Eq. (1), the “origin-to-origin unper-
turbed Green’s function”

Go(8)=(0| Ty(0)' ()| 0) ,

where § is the normalized wave function coupled
to the local spin, enters. G, behaves like 7/# at
large times, where 7 is the density of states
~1/Ep, and has an easily computed cutoff at short
times for any given ¢ and band structure. Of Eq.
(1) we know only that the relevant 7 is closely re-
lated to the cutoff in G,, a relationship which may
be computed precisely only in certain limiting
cases.

Let us also remark that only a slight modifica-
tion of Eq. (1) gives the finite-temperature par-
tition function of the Kondo problem, which will be
the subject of a later paper. Essentially, one re-
places In[(B; - B;)/7] by

In{(8/277) sin [(8; - B;)/ 2781} ,
where B=1/T.3

One important thing to note is that a transform-
ation S, - -S,, S,~ -S,,S,~ +S, leaves the dynamics
of the spin unchanged (it is simply a proper rota-
tion of the coordinate system) so that the sign of J, is
irrelevant. The signofdJ,, and thus of €, deter-
mines whether the coupling is ferromagnetic or
antiferromagnetic. As we have it, €>0 is anti-
ferromagnetic. Thus by varying € with J, fixed
(i.e., varying the effective “temperature” of the
statistical problem) we can go continuously from
ferromagnetic to antiferromagnetic coupling.
Manifestly, the quantity (1) is a function only of
three parameters, B/7, J,7, and €~ 2J,7. As
B~= we expect Z=¢"", and F7is now a function
only of J,7 and €. We may think of these two pa-
rameters as the exponential of the chemical po-
tential for spin flips, and as the effective temper-
ature of the classical problem (which is to be
carefully distinguished from the real temperature
B!, which is the inverse of the “volume” and goes
to zero as the length of the line increases to «).
The quantity F is the negative of the ground-state
energy relative to that of 3¢y; in the one-dimen-
sional problem, however, it plays the role of a

“pressure, ” conjugate to the “volume” 8. All f—-=

problems may be plotted on a diagram [Fig. 1(a)]
on which two lines, radiating from € =0 to left and
right, represent the manifold of physical (isotrop-
ic) Kondo problems of ferromagnetic and antifer-
romagnetic sign.

It is commonly believed that the ferromagnetic

Kondo system has a mean spin moment at absolute
zero, while the antiferromagnetic one does not.

It is easy to see that the possession of a spin mo-
ment at 0 corresponds to a long-range order of the
classical system in which + and — charges are all
associated in pairs pointing in one direction, either
left or right. This type of order is clearer if we
partially integrate the interaction twice and write
Eq. (1) as an integral over all possible paths of a
function S,(8):
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FIG. 1. Space of possible Ising models and Kondo
Hamiltonians. The Kondo Hamiltonians are character-
ized by J,7 and J,7, the former being roughly propor-
tional to €, the horizontal axis, and the latter being the
vertical axis. (a) Relationships among various cases.
The coefficient of long-range forces in the corresponding
Ising model is 2 — € = V},/ Tyg4n and of short-range forces
(const X Vi + Vi) / Trggng=1In(1/J,7). Isotropic Kondo
models are on the lines € =+ 2J,7 as J—0. The soluble
Toulouse limit is e=1. (b) Exact scaling curves for
small J. Scaling is unidirectional in the direction of the
arrows. The Ising transition is at the line FM Kondo.
(c) Approximate scaling curves for strong interactions
according to “upper limit” of Fig. 5. “Best guess”
would be almost indistinguishably lower.
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Here S,(B) is a function of the form of Fig. 2; it
takes on only the values +% and jumps (with either
a minimum jump time or a form factor of order 7)
between these two values at will. Then the long-
range order which implies magnetization is the
long-range order of S,(8’). This last expression
is, in turn, essentially equivalent to an Ising mod-
el with a long-range ferromagnetic interaction
with form 1/(; —7)? and strength (1 - ¢/2), and a
short-range ferromagnetic interaction In(1/J,7)
+const,

It may be best to make a pedagogic point about
the meaning of the asymptotic validity of (1) on
this Ising-model version of the problem. It is
recognized universally, for sound but not general-
ly explicitly stated reasons, that the qualitative
behavior, at least, of such Ising models is en-
tirely controlled by the long-range forces. The
basic reason is that short-range forces cannot
lead to long-range order, or even to short-range
order decaying more slowly than exponentially.
Thus, the nature of all long-range singularities
(corresponding to low-temperature or low-fre-
quency singularities in the Kondo effect) is en-
tirely determined by the long-range interaction,
for which the asymptotic theory that we use is

accurate.
Incidentally, a theorem of Griffith* shows that

the correlations cannot be weaker than the long-
range forces themselves in the Ising model, thus,
than 1/B%. We shall show that this is indeed the
correlation behavior in the antiferromagnetic case,
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FIG. 2. Corresponding one-dimensional statistical
models. (a) Path integral of S,(8), (b) Ising model, (c)
charged rod model. Corresponding configurations as
a function of 8 are shown.

since we derive also an upper limit to the correla-
tions in that case.

Dyson has been unable to determine whether or
not this Ising model has a phase transition.® One
purpose of this paper is to show that it does [ac-
tually on the original model (1)] and that at least
for small J, this does indeed occur at the ferro-
magnetic-antiferromagnetic boundary point € =0.
We also throw considerable further light on the
Kondo problem (though, unfortunately, without
achieving a completely exact solution of the in-
teresting antiferromagnetic case) by showing
that there is a rigorous scaling technique which
reduces the two-dimensional manifold of Fig. 1
to a one-dimensional one. In particular, we can
map the entire ferromagnetic line on the point at
the origin (¢ =0), thus solving the ferromagnetic
case really exactly and showing that it has finite
magnetization. All cases to the left of the ferro-
magnetic ones can be mapped on the J, =0 line,
and thus are soluble and ordered.

The same scaling laws map all antiferromagnet-
ic cases onto each other, the scale factor being
the Kondo temperature. Unfortunately, the direc-
tion is in the sense of increasing J,7, which car-
ries one eventually into the region where the scal-
ing equations are form-factor dependent numer-
ically. Nonetheless, the meaning of the Kondo
temperature, the fact that the state is unpolarized,
and the connection with perturbation theory are all
clear. Inequalities can be found which show that
the renormalization procedure is qualitatively
valid up to €=1. Thus, since all cases with €=1
are exactly soluble (a remark due independently to
Toulouse®), we can give a solution with parameters
correct to logarithmic accuracy. We believe this
solution to be at least qualitatively right; in par-
ticular, it gives correlation functions which in-
dicate nonsingular properties at absolute zero, in
contradiction to most previous theories. ”

II. SCALING THEORY OF THE COULOMB GAS MODEL

The technique we use is a “renormalization” of
the cutoff parameter 7, which leads to a set of
scaling laws connecting a given problem to ones
with different parameter values. We show that all
pairs of flips closer than 7, >7 can be eliminated,
leaving a problem of precisely the same form but
with modified parameters J, r; and €(7,), and a
modified F:

zZ'J,T,€)=2"J. 7y, €)expAF, B . (5)
These scaling laws are exact for small J,7 and €,
and are subject to precise inequalities in any case.

First we observe that if J,7 is small enough,

there will be few spin flips +or —: Our “Coulomb
gas” of spin flips is a rarified one. On the other
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hand, in the presence of the strong In(8; - Bj) in-
teraction, those which are present will tend to
appear as close pairs. Clusters of more than two
will not form with high probability because the +
and - members of a pair attract and repel a third
flip with equal intensity:

—In(B; + AB = B;) +1n(B; - B;) = - [AB/(B; - B,)] -

Thus, pairs attract singles with a weak 1/x po-
tential, which cannot overwhelm the large (- InJ,)
extra energy required to make a group of three.
Thus, close pairs of flips form reasonably self-
contained systems whose behavior is mostly de-
termined by the internal force between the pair.
It is easy to calculate that the mean distance be-
tween pairs is

1 . 18z’ _ 9E, (6)

I, B 8m  9In(3d)}]
where we note (see Ref. 1) that Z’ as defined in
Eq. (1) is a constant times e*¢, and E, is the
ground-state energy relative to (01310). Second-
order perturbation theory gives an estimate for
E, adequate for our purposes:

E,~3d271, Io~27/(J, 7). )

We can also estimate that the separation of spin
flips tends to be of the order

)?"’T/E’ (8)

although the actual mean value is dependent on the
precise treatment of long-range forces and is not
well defined. In any case for € and J, 7 small

,>»>X>71. (9)

The physical picture we have is of many close
pairs of flips which change the mean magnetization
slightly, interspersed between pairs of isolated
flips which are real reversals of M over a larger
timescale. This suggests that we might consider
the isolated flips as operating in a medium where
the close pairs merely modify the mean magnet-
ization (see Fig. 3). It is this idea which we now
give a rigorous form.

Consider only “close pairs, ” so close that their
separation is between the limits 7<8,;,,—-8; <T+dT.
If d7 is infinitesimal, such a pair occurs very
rarely, so we may completely neglect the possi-
bility of two successive close pairs occurring.
Then we can rewrite the integrals in Eq. (1) as
follows:

e 5T gy B apy [T g [ ap,
0 0 0 0

Bg-T-dT

=j;)35-'r-d'rdﬂ4fo st

-T-dT Bz-‘r—d‘r

ds, [ ds;

0

B
3
X f (all “free”)
0
-T-dT 64-1‘—(!1‘

B
+ fo a4, fo dps

B=T Bo=T
x [* ap, [ ’ dp, (1, 2 paired)
0 By-T-dT
Bs-'r-d'r By-T
[0 S g
0 0
Bg-T Bo=T=dT
x [ ? g, [ ? dp, (2,3 paired)
Bs—‘r—d'r 0
oo, (10)

and between any pair of free flips (such as 4 and
1 in the second version above) there may be only
one close pair; two only occur ~ (d7)*=0.

We rearrange the sum (10) in a familiar way:
We group together all terms with 2» free §’s, be-
tween each pair of which there may be either zero
or one close pair with separation ~7. Consider
one particular pair of free f’s, B; and B;, ;.

We now have

Z=Z>f3- . .f08i+2"r'd7dﬁi+1foﬂi+ l'T'deBi
n

<+ (3J,)%" exp[~ Vo(Ban® * *Biv1, Bi )]
L2 (Bi+1 ¢ (B'=T ’” —
XIII{1+4J*fBi+2‘r dﬁ fB’-r-d'rdﬁ exp[ v
X(B'= Ben, B = Ban-1"+,B" = Bar++, 8 =B}
(11)
The B" integral just multiplies by a factor dt.

Now let us examine V(B', B'") which expresses the
dependence of the amplitude on B’ and B":

V) Bur"ﬁ”) Bi,»z—ﬁ')(ﬁus“ﬁn)”_
exp(- V) [<ﬁi+1"3' iv2-B"J\Biss—8

X(B'—B, (B"—B,-.1>... e
B" =By J\B =Bi-1

We have 8’ - 8''=7, so this may be written

FIG. 3. Visualization of the renormalization process:
We replace S,(8) by a long-term average including the
effect of all spin-flip pairs closer together than 7.
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T T
exp(- V)= [(“B,-u—ﬂ)(“ﬁ"—ﬁi)
T -1 T -1 2-¢€
* (“an—li') <“B"—ﬁi-1> ]

(12)

and our basic approximation is simply to write the
integral of this over the permitted range of 8’ as
(we denote the integral by an average ) to save
writing)

~ 1 1
(exp(- v>-1>-(z—s>r<ﬁm_ﬁ, g

_ 1 1
Biz=B" B"=Bi-1
Let us make some comments about this approxi-
mation, which is much better than it looks. (1)
It obviously correctly reproduces the dependence
on all@’s far from 7. (2) The alternating series
are rapidly converging as is the product in Eq.
(12). (3) For small € even 7/(8; —B’) is of order
€ and thus small. (4) All intervals between B’s
are >7 so that exp(- V) <4 and that occurs only
with very low probability. In the Appendix, we
consider the validity of the approximations in
great detail and show that Eq. (12) is exact in a
certain asymptotic sense, and that rigorous limits
may be set on the behavior.
Inserting Eq. (13) in Eq. (10), we get

+> . (13)

Z=Ef08 ce f:“z _T-drdﬁin “ o+ (37" exp(= V)
n

X H[ 1 “(%Jt)z.d‘r{(ﬁ%rl _B{ _37')
i

<--orlZe )] 0

Since d7 is infinitesimal, we may exponentiate the
JZdt terms. The factor involving B;,, - B; gives
us

Z=exp[(3J.)?Bd7)Z | (15)

where Z is formally the same as in Eq. (1) ex-
cept for modifications of the amplitudes. Calcu-
lating these modifications, we distinguish two re-
gions. First, there is the region of small J,7 and
€, where B;,; - B; is in general ~[;> 7, and we
neglect corrections of order 7/AB. Then we have
very simply

B~ Ba=PBie;
BB ™ B =B,

(16)

with each interval {—¢+1 contributing two terms,
one for each end; counting in the ones for n—-n=+1
we get four in all. Then we neglect 7 relative to

the interval and get

AND HAMANN 1
Z=E(§J’=)2nnfo‘3m”-hhdﬁm

Xexp{(2 —€)nlnT + [2 ~€ —J27d7(2 - €)]

X2 (= 1)/ In(B; - B)}. ¢4

Clearly, Z is of the appropriate form of a modified
Z with a new interaction € - €= € +de

de=(2-€)drdr=(2 - €) (J,7)2d(InT). (18)

Although apparently J, is unmodified, we know
that, in fact, there will be fewer flips per unit 8
in Z than in Z. The cutoff has been altered, while
the dimensional coefficient 7'2 ~7 in the ampli-
tude is unchanged. In order to reduce Z to the
form of Z in Eq. (1), we must change

~

J7— I F=d,7([(r+d7)/T]? (19)
and then it may be verified that

z=2[p/7, 3.7, €] . (20)
Equation (19) may be written in differential form:

d(J,r)=3€(J,7)d(InT) . (21)

Equations (15), (18), and (21) are the basic scal-
ing laws which solve the problem in the small €,

J, case.
Let us add a few more words about the validity

of Egs. (15), (18), and (21). It may appear at
first that the use of d7 infinitesimal may make the
computation sensitive to the region near the cut-
off. Note, however that in the basic laws, Egs.
(18) and (21), the infinitesimal is d(In7) multiplied
by (J,7)?. Thus, so long as the latter is even
reasonably small, rather large jumps in In7, and
thus large factors in 7, can be considered to be
infinitesimal. (This was, in fact, the route by
which we arrived originally at these equations. )
Thus the first few steps for any true Kondo prob-
lem (defined as small J7) are cutoff independent.
After the first step, the cutoff is an artifact of the
method and may be chosen at will as in the Appen-
dix. Note also that the small factors need only be
J .7 in all equations; finite € is still treated as
accurately as desired. Thus the scaling laws are
exact throughout the lower region of Fig. 1.

Note that Eqs. (21) and (18) are compatible in
the isotropic case J,=J,,€= 2J,722J,7, and
where € and J,7 are small. Thus € and J,T scale
together, and, as should not be entirely unex-
pected, the isotropic case remains isotropic at
every time scale. For anisotropic cases,

de/dJ,m)24d,7/€, €%-4J%7%=const. (22)

The scaling lines are a set of hyperbolas with the
isotropic cases as asymptotes [see Fig. 1(b)]. All
ferromagnetic cases below the isotropic one scale
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onto the case J,7=0, which is manifestly ordered,
thus locating the transition line at the ferromag-
netic case [or above, but we shall argue that all
antiferromagnetic cases are disordered and that

the two scale into each other according to Fig. l(b)].

Before going on to further results let us discuss
the regime where € and J,7 are no longer neglig-
ible compared to 1. It turns out that for many
reasons it is not possible to follow the renormal-
ization in complete detail when it reaches this re-
gion (as it obviously shall for the antiferromag-
netic cases from Fig. 1). It is not, in fact, even
very necessary to do so. What is necessary is to
show that there is no tendency for the renormal-
ization process to stop short of e=1, the case
where an exact solution exists as we shall see.
To alter the actual parameters by numerical con-
stants which are not exponentially large is physi-
cally almost irrelevant. Thus the essential thing
is to bound the corrections de/dT and dJ,7/dT
above (below) some finite numbers. This pro-
gram is carried out in the Appendix.

III. RESULTS: FERROMAGNETIC CASE

The simple limiting equations (15), (18), (22)
suffice to solve the ferromagnetic weak-coupling
case. We start at an isotropic case 7=T7, €=¢,,
J.T=%€,< 1, Equation (18) gives us

4de/e%(2- €)=d(ln7) ,

and neglecting € relative to 2,

In(t/79)=2/|€| - 2/€, . (23)
At the same time Eq. (21) gives
In(7/7g)=1/J, T=2/€4=1/d, T=1/J,T)y . (24)

Thus the renormalization takes place toward the
origin; events on an ever larger time scale oc-
cur according to ever weaker interactions. Equa-
tion (24) says that the number of flips farther
apart than 7 decreases logarithmically with 7;
this means an extremely slow decay of fluctua-
tions, but in the end the state is polarized.

We expand on the nature of our solution: At a
stage at which we have eliminated all pairs closer
together than 7>> 7y, the remaining pairs occur at
a mean separation of order I~ 7/€?(1)~ 7In¥(1/7,)
and have a length ~ 7/€~ 7In(7/7,). Thus averag-
ing over lengths of order 71n%7/7,) we would see
a mean polarization of order

e(r) > 2 o~ 2
In(r/7o) 1In(l/7o)-2Inln(l/7y) °

We have supposed it permissible to rotate in the
complex time plane and to interpret this as the
qualitative behavior of the time spin-spin corre-
lation function.

F =E, can be obtained using Eq. (15) with (24).

dr 0 dJ,.7)
-E =F=if° sr2iloy (7 dY.T)
€ * ) * T2 4>/(:I'-r)0 d

sl weel-2) o

This expression has the interesting property that
while it is very nonanalytic at J7=0, it has a per-
fectly innocent-seeming asymptotic series at that
point which agrees term by term with perturba-
tion theory; as Kondo® has noted, perturbation
theory gives no logarithmically singular terms in
the series for the energy (relative to E, of course):

Eo==[(3d.)%7) [1- 2,79+ 6(J,T9%+*+]. (26)

Equation (26) is, as we shall see, also the correct
asymptotic series in the antiferromagnetic case
with appropriate sign changes, but does not in that
case represent the answer adequately: A Stokes
phenomenon has intervened. The situation here

is almost a classic case of the dangers of relying
on perturbation-theory methods and of the compli-
cated analytic behavior which may underly the
simple and well-known fact that perturbation series
are usually asymptotic.

IV. RESULTS: ANTIFERROMAGNETIC CASE AND
TOULOUSE LIMIT

As already noted, the antiferromagnetic (AF) case
cannot quite be settled in the same conclusive way.
In the ferromagnetic case, as we scale 7 -,
€-0, and J,~ 0. All our expressions become
more and more accurate and we have a full and
exact solution so long as we start from small val-
ues of these parameters. In the AF case, ¢ and
J, increase starting from any values, no matter
how small, and there is no case for which we can-
not eventually find a timescale for which e~1, In
fact, this is the fundamental expression of the
Kondo phenomenon: Solving ..3s. (18) and (21)
approximately by neglecting € relative to 2, we
have €2 - (2J,7)? = const =0 for the isotropic case,
and

2/€q~ 2/€(1)=1n(7/7y) . (27)
Defining 7, as the point where €=1, we have
2/€q~2=1n(,/7,)
or e¥r/70) =e’/eo, -

the familiar expression for 1/7T,, T, being the
Kondo temperature. Thus the meaning of the
Kondo temperature is merely that it is the scale

of “time” =temperature atwhich the system behaves
as though it were strongly coupled. Incidentally,
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the fact that our equations are exact as J, 7— 0 and
give a vertical slope at all points except € =0 on
that line shows that the scaling curve cannot reen-
ter the horizontal axis.

Why is €=1 important? Because it is equivalent
to a trivially soluble problem.® Consider the
Hamiltonian

301 =2 €y + Vi gl cp+elcd) =500+ V. (29)

Here n,, and c,, ¢} are Fermi operatorsfor free
spinless electrons, while c,‘; is the same for a lo-
cal resonant state. This can be solved completely
in well-known fashion (it is the “Lee model”) as
we shall do shortly. On the other hand, it is also
possible to calculate the quantity

(0le~#1[0) =(0e - #oT exp(~ [ [vag) |0)

=2V [ RdBon [#dBon- 1" [ ?dﬁlc(ﬁl--'ﬁ(zsn).)
0

Here G is easily shown to be
G=det;;Go(Bzi—B2s1) , (31)

where G, is the free-particle Green’s function,
and since we may assume a cutoff form for G,

G (B)=1/8B, B> (32)

this determinant can be evaluated as a Cauchy de-
terminant, giving

(0le~ #*1|0)
=Y yen -4 5 1 Bim B
_Z")Vzt ffffexp((—l)”{?}.zjln iT j)
=Z'(B/T,2V.T, €=1). (33)

(We need not specialize to Eq. (32); Mushkelishvili
methods® give us the form (33) for any reasonable
Go- )

The ground-state energy of Eq. (29), which is
the Hamiltonian of a resonance of width A=V27 at
the Fermi surface, is easily calculated to be

E,r=V27 In(VZ7?+ cutoff-dependent terms

2 V2 7In(V2 1) - (1/7) cot= 1 (1/V272)
- VirtIn(1+ViHl/2, (34)

the latter for the simple assumption of a constant
density of states, Gy=(7/B)(1—e~#/"), which is
quite close enough to our assumption of the Appen-
dix.

The S,— S, correlation function of the real Kondo
system with € =1 obviously corresponds to the »,
—n,4 correlation function of Eq. (29). This corre-
lation function is just

Gi@)=~(a/t) .
A 1/1% correlation function corresponds to
x(T=0)=(1/T) [}/ 7 5,(0)S,(¢)dt = tinite

Our scheme, then, is to scale by means of the
basic equations (15), (18), (21) (or their more ac-
curate counterparts from the Appendix)

dF=[(2-¢€)/(2-¢€))](3J,)dT , (35)
de=[(2-€)?/(2-€))]IE72(dT/T) (36)
dInW2 ¥ =€ dt/7) . (37

These equations must be solved starting from their
weak- coupling asymptotes |Eq. (27)]. Once inte-
grated up to €=1, at which we obtain J, 7=0. 783,
we obtain the total ground-state energy by adding
the Toulouse result Eq. (34)

em=1 2—5) J. 7\ %dr < J Ty
E’"I (2—50 (T) Feperlr 747,
o (38)

Both the upper limit and the Toulouse term give
results of the order of T,, while the lower limit
term is the series |Eq. (26)]. Further numerical
results will be given in succeeding communica-
tions.

In what sense is this a complete solution of the
antiferromagnetic problem? We believe it is so
in a very real sense, just as Fermi liquid theory
solves most problems of pure metals even without
giving precise numerical parameters. We estab-
lish the scaling factor to logarithmic accuracy
only, but what is important is to prove that it
exists: that all magnetic impurities at some scale
behave just like ordinary ones.

V. CONCLUSION

In conclusion let us, for one thing, make some
remarks about experimental comparisons. The
most interesting question on the Kondo effect!’ has
been from the start whether it did or did not fit in-
to the structure of usual Fermi gas theory: In
particular, does a true infrared singularity occur
as in the x-ray problem, ® or does the Kondo im-
purity obey phase-space arguments as 7'— 0 and
give no energy dependences more singular than
E? (or T?), and is x(T=0) finite? The result we
find is that the usual antiferromagnetic case in
fact does fit after the time scale has been revised
to 7., i.e., that it behaves like a true bound sin-
glet as was conjectured originally by Nagaoka. "
Thus, experimental results giving singular be-
havior are, after all, as suggested by Star, !
probably interaction effects. This is a satisfac-
tory situation from the point of view of many-body
theory but a highly unsatisfactory one from the
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experimentalists’ side.

The ferromagnetic case, on the other hand, ex-
hibits strange enough behavior to satisfy the most
particular, with finite S, zero effective J, and
logarithmic correlation functions.

The one-dimensional Ising model with# =2 is
solved en route and Thouless’s conjecture!? that a
finite magnetization jump occurs at T, is verified.
Nagle and Bonner!® have, by means of numerical
extrapolations, calculated an approximate transi-
tion temperature for this case with no additional
nearest-neighbor force (i.e., J,7~1) which is
consistent with Fig. 1(c). Nagle and Bonner’s
estimate of the critical exponent $ of 0 is consis-
tent with our finite jump of M, also.

But perhaps the most interesting implications
of this work are purely theoretical: First, itrep-
resents a soluble case of a true many-body prob-
lem where one can gain insight into the reality be-
hind approximations of many different kinds; and
second, it may throw a very great deal of light
onto the formal theory of scaling laws in statisti-
cal mechanics.
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APPENDIX: SOFT CUTOFFS — AN APPROXIMATE
THEORY AND EXACT LIMITS IN THE STRONG-
COUPLING CASE

The “sharp” cutoffs we have used in the bulk of
the paper are a strictly artificial representation
of the actual physics. The physical effect in any
reasonable band structure of bringing two flips
together is not to reduce the amplitude to zero
but to cancel out the effects of the two flips leaving
unit amplitude. (This is just a statement about the
algebra of the spin operators at equal times.) Thus,
in the initial problem, the cutoff at 7should essen-
tially be to unitamplitude: For [7/(B; - B,) [P~ ¢, we
should substitute some function such as is shown in
Fig. 4(c). For definiteness we pick the simplified
“flat-top” cutoff also shown in Fig. 4(b).

¢ft(ﬁ)=1’
=(T/B)2-576>T .

B<T

(A1)

The quantity Z ' we wish to evaluate, then, now has
integrals covering the full region, but whenever
any two arguments 8;, B; come closer than 7 we
replace the [(8; - 8,)/7] factor by unity:

Z'=Z 30" 5 dByn " dBon- 1 +++ [, 2+ By
n
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=i+l

Xeee foazdﬁlx ‘I;Ij [o(B; - B8] b
(A2)

Now the process of scaling the cutoff 7 may be
carried out by making a small change in ¢:

o=9'+do, (A3)
where for the flat-top function we choose to use

@'=1=(2-€)dt/7, B<T+dT

=(1/B)%"°, B>T+dT
do=(2-¢€)dt/T, B<T+dT (A4)
=0, B>T+dT .

[In general, of course, we are simply scaling the

parameter in ¢. The sharp cutoff function used in
the text can be considered from this point of view,
see Fig. 4(a). ]

Now we insert (A3) into (A2) and rearrange in
just the same way, keeping all the terms in which

(a) "SHARP"

(b)FLAT-TOP

(C) REALISTIC

|
|
|
|
|
H
T

FIG. 4. Cutoff functions. (a) The sharp cutoff ¢,
used in the main text and the change in ¢ on a modifica-
tion of the cutoff by dr, (b) the flat-top cutoff used in the
Appendix and the corresponding rescaling, (c) a pc;ssible
realistic cutoff function.
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UPPER LIMIT

EXACT ASYMPTOTE

a¥

,/ __ “RCTUAL d¥
-

i

.
/BEST GUESS
.

1 1 1 J
o T 2T 3r 4r

FIG. 5. Changes d¥ in the cutoff function upon mod-
ification of T to T +dt (arbitrary scale; we have chosen
€ =1 for illustration). Dotted curve matches exact low-f8
behavior and exact asymptote; upper limit is a self-
reproducing approximation for dy which is definitely
above the exact curve; and best guess is an approximate
self-reproducing estimate.

¢’ appears 2n times as the new 2xth term, and
in this new term d¢ may either enter between any
pair of B’s, B,; and By;,1, or not. The cutoff
properties are now such that it is not impossible,
but simply negligibly rare, that 8,; and 8;;,, are
closer together than 7, and certainly even rarer
that B,; _, and B,;, , are also within 7 of B;, or
Bs;, respectively. Thus without fear of appre-
ciable error and noting that the error is always
in the direction of ovevestimating correlations,
we expand the dependence on distant f’s as in the
text, and focus on a particular pair B,; and By;, 4
of interest:

A R fﬂz”zdsszﬂz“‘dsm

X[ ¢’ (Bg; 1 —Ba;) A +dv(Bs; .1 —B2i))] , (A5)

where di is the function which results from having
a pair of flips p’, B’’ with a factor de(B” -B’)
between B; ,; and B;;. We can establish three
facts about the function di:

dy(B)>0
dzbs(%*—) 47 g (€ €>, B~0
dp~dF X B —de1nf —dy + O(1/B), B—~<o.
(A6c)

We sketch the behavior of dy in Fig. 5, according
to the calculation we shall do shortly, and also
the behavior of diy which corresponds to the ap-
proximations we shall use: (1) We keep only the
first three terms of the asymptotic series, cor-
responding to the three scaling laws we have al-

(A6a)
(A6b)

ready introduced, of F, €, andJ,7; and (2) we go
on to the next stage with the same ¢’(B,; .1 — B2;)/
7, i.e., we get dp=const+dF B inside 7 and
= (A6c) outside. It is obvious that this can be
made a lower limit for di, and thus a state which
has strongev correlation, by setting dy=0. This
should be a fair estimate as well. Thus we do
not falsify any long-range low-frequency singular
behavior by Griffith’s inequalities. A limit in the
other direction is shown in Fig. 5; numerical cal-
culations show that the two are indistinguishable,
in fact.

Next we establish (A6). Equation (A6a) is ob-
vious. Let us, for the other two, write out d¢ in
Eq. (A5):

a®)= (3 )’ S aer [ ap

x PB-B)de(B"-B ) ()
@B-B)e (")

(A7)

For (A6b) we note that when B <7 all functions ex-
cept d¢ are unity and the integrals give simply the
total area 182

To establish the asymptotic behavior it suffices
to go to B> 7 in Eq. (A7). We then write

J* 2dT )y 8 0
w~(3) 2 e-af]

S ()

*.Tor0

The “1” gives

(3J)4d7/7)(2 = lT(B~ 7)+ 372] . (a8)

The second term contains, first, the expansion
which is valid throughout the interior of the interval,

BT y:
< (2_ G)J' B“ dﬁ'

'rorB"

1 1
<(z- @™ ) (25 37)0(3)
which may be evaluated by assuming 7 always
small relative to B’s:

=—(—‘Zzi>7'd'r(2

ef (B -7/2
5 x2 In - ) . (A9)
Finally, we have contributions from the ends of
the interval which are again of order 1/8. Ne-
glecting all 1/8 contributions we get, adding (A8)
and (A9),
dp~ 2=e)J,/2F ar[B- (2-€)r In(B/7)~7/2] .
(A10)
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We have therefore the new set of scaling laws,
setting (1+dy)~ e“’, and carrying out the argument
as in the main text:

dF=(3Jd)2 dr(2-¢€),
de=32-¢€)JdPr dr ,
dInW?) =~ 3J. 027 dr

(A11)
(A12)

+rescaling correction as in text (“best”)

=0+rescaling (“upper limit”), (A13)

We use this latter estimate in the text because it
is simpler.
One feature of these laws which is a bit surpris-

ing is the extra factor of 2 -¢€ in all of them. This
comes from the fact that the area of ¢, and ¢,
differs by a factor (2-¢€), so that d¢ must be
larger by this factor in order eventually to annihi-
late ¢,,. Second-order perturbation theory gives
the total area of ¢(= [GZ dt) as the appropriate
energy correction, Thus 7 in terms of band pa-
rameters is different in (A11)-(A13) by a factor
2-¢€ from that in Eq. (15). Since we choose to
renormalize self-consistently with ¢,, throughout,
this is irrelevant but all of Eqs. (A11)-(A13) should
be divided by (2 - €,) for comparison with the sharp
equations (15), (18), and (21).
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