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A theory of nuclear spin-lattice relaxation by unstable, overdamped quasi-spin-waves —or
critical polarization fluctuations —in order-disorder ferroelectrics is developed. If relaxa-
tion due to competing processes is not too fast, such an unstable mode will dominate the mag-
netic dipolar or electric quadrupolar relaxation rate not only right at the Curie point, but

also in its neighborhood. In such a case, the temperature dependence of T& is given by

Tf & (T—T~ I", where 0.5 —n —2, depending on the details of the interaction between the ferro-
electric dipoles and the Brillouin-zone size. The theory is applied to the case of ferroelec-
tric dicalcium strontium propionate. This crystal exhibits an anomalous dip in T& on ap-
proaching Tcwhich we believe is due to magnetic dipolar coupling to an overdamped, unstable
quasi-spin-wave mode.

INTRODUCTION

The nature of the elementary excitations' in
"order- disorder"-type ferroelectric crystals—
which can be described as quasi-spin-waves~-
has recently attracted a great deal of attention,
but the experimental evidence is still rather
scarce. It has been suggested ' that nuclear spin-
lattice relaxation might represent a useful new

method to study elementary excitations and lattice
instabilities in this type of system, and that the
information obtained would be complementary to
that from dielectric, ultrasonic, Raman, and neu-
tron-scattering data. The reasoning goes as fol-
lows: The nuclear magnetic spin-lattice relaxa-
tion time T, of a nonequilibrium system is a mac-
roscopic transport coefficient which is related to
the statistical fluctuations in the equilibrium en-
semble. The natural fluctuations, which occur in
a system in equilibrium, are on the other hand re-
lated by the fluctuation-dissipation theorem to the
imaginary part of the generalized dielectric sus-
ceptibility. In crystals undergoing ferroelectric
phase transitions, the dominant contribution to the
dissipative part of the susceptibility arises from
that mode whose frequency approaches zero at the
phase transition, while the frequencies of the
other lattice modes stay comparatively high. If
relaxation due to competing processes is not too
fast, such an unstable ferroelectric mode will
dominate the nuclear spin-lattice relaxation rate

T, not only right at the Curie point but also in

its neighborhood.
Though nuclear- magnetic- resonance techniques

have been widely used for the study of ferroelec-
tric phase transitions, relatively little attention
has been paid so far to the study of quasi-spin-
waves or polarization fluctuations and unstable
modes by T& measurements. It has been only in

a few cases that critical polarization fluctuations
were reported to dominate electric quadrupoles
spin-lattice relaxation and in only one case4 was
it suggested that magnetic dipolar spin-phonon

coupling to a ferroelectric mode is the rate deter-
mining relaxation mechanism.

In this paper, we wish to present a theory of
spin-lattice relaxation by ferroelectric quasi-spin-
waves for the case of large damping. The case of
small damping will be treated in a subsequent
paper. Further, we would like to report the ob-
servation of an anomalous decrease in the proton
spin-lattice relaxation time on approaching the
ferroelectric Curie point (7& = 8. 5 'C) in dicalcium
strontium propionate, Ca&Sr(CHSCHqCOI )8 (hence-
forth designated DSP), which we believe is due to
magnetic dipolar coupling to an overdamped tem-
perature-dependent "ferroelectric" mode.

EXPERIMENTAL RESULTS

Single crystals of DSP were grown from water
solutions of Ca&Sr(CHICH&CO&)6 following Matthias

4456



SPIN-LATTICE RELAXATION BY QUASI-SPIN-WAVES 4457

and Remeika. In agreement with the data of other
investigators, the paraelectric space group was
found to be D4 or D4 and the lattice constants a
= 12. 53 A and & = 17.26 A. The ferroelectric space
group is C4 or C4, and the unit cell dimensions
are a=12. 48 A and c=17.13 A. The crystal is
polarized along the c direction. The ferroelectric
transition at 8. 5'C seems to be a second-order
one.

The proton spin-lattice relaxation time T& was
measured by the 90'-90' pulse method from
—170 to+90'C at 9, 15, and 23 MHz. The experi-
mental data are yresented in Fig. 1. From 90'C
down to room temperature, T& slowly decreases
with decreasing temperature. The activation en-

ergy deduced from the curve of logT, versus 1/T
is about 0. 1 eV. In the vicinity of the Curie point,
a new relaxation mechanism becomes rate deter-
mining, resulting in an anomalous diy in the pro-
ton T,. The shape of the dip does not depend on

the Larmor frequency within the 9- 23-MHz
range. At still lower temperatures, the same
mechanism which dominated T& above room tem-
perature takes over again. T, slowly decreases
with decreasing temperature until a broad mini-
mum at about —173'C is reached. The depth of
the minimum agrees with the value exyected for
hindered rotation of CH3 groups. As the correla-
tion times deduced from the T, minimum nearly
exactly coincide with the lifetime of the' CH3 pro-
tons at a given site, obtained from quasielastic
neutron-scattering data, 9 one may safely ascribe
this motion to hindered rotation of the- CH3 group
around its C3 axis. The activation energy for CHS

rotation does not significantly change at the Curie

point demonstrating that- CH3 rotation plays no

role at the ferroelectric transition.
The T& data thus show that both at high and at

low temperatures, —CH3 rotation dominates the
relaxation process, but that in the vicinity of the
Curie point a new reorientational mechanism be-
comes rate determining.

Though the crystal structure of DSP has not yet
been completely solved, it seems to be clear that
polarization reversal in this crystal is accompa-
nied by a reorientation of two out of the six CH,
CH2CO2 groups. The twofold symmetry about the

C,~b,»~-C axes in the paraelectric phase further
suggests that above T& the proyionate groups are
flipping between two equilibrium positions. The
low value of the room-temperature proton second
moment (M& =4. 5 6 ) of powdered DSP supports
this model. This M2 value cannot be explained by
—CH3 rotation alone —which would yield about
10 0 —and requires the existence of additional
molecular motion which must be associated with
the whole propionate group. The correlated fluc-
tuations of these CHSCHBCO& dipoles may well
form a kind of "quasi-spin"-wave dipolar ferro-
electric mode, ' the critical slowing down of
which may be responsible for the observed dielec-
tric dispersion as well as the anomalous behav-
ior of the proton T& in the vicinity of T&.

THEORY OF NUCLEAR SPIN RELAXATION BY OVER-

DAMPED QUASI-SPIN-%EAVE MODES

I et us calculate the anomalous relaxation rate
T, ' due to the critical slowing down-of an over-
damped quasi-spin-wave mode, which modulates
the interaction Hami1. tonian
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FIG. &. Temperature dependence of the proton spin-lattice relaxation time in powdered DSP.
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X= Xg+XI ~ (2)

where X, is small compared to the Zeeman term
X,= —ySI ' Ho. The spin-lattice relaxation rate
will depend on the spectral density of the auto-
correlation function of the matrix elements of XI
with respect to the eigenstates of K, :

G(t) =&( I~, (0) I~)(t I~~(t)
I )& .

If only one species of magnetic nuclei is present,
we get in the spin temperature approximation

1/T& ——a9 If I(I+ 1) (2/N') [J' '((dz)+ J' '(2(()a)], (4)

where N is the total number of spins in the sam-
ple. The spectral densities J& '

(&0) which are
defined as

J'"((d,) = Q f'" &F",,'(0) F,".,', (t)& e(""dt (6)
f& j, f'& j'

can be —in the case of molecular crystals such
as DSP —conveniently divided into an intramo-
lecular and an intermolecular part:

e & e', g- g'
~ ss (o)F ~ ss (t)&

+ Z (Em& ~, aa'(0)E&&~, ss'(t)) ~

e,e', 8& I3'

(6)

Here p represents the index of the molecular
group, whereas a stands for the index of the nu-
clei within such a group. The brackets stand for
the ensemble average. The first term in Eq. (6)
thus represents a sum of the intramolecular and
the second term a sum of the intermolecular con-
tributions. This division makes sense if the dis-
tances between the nuclei within a group are much
smaller than the distances between different
groups.

We shall treat the case of a quasi-spin-wave
with S = 2 where the molecular group flips between
two equilibrium positions, -1 or 2-, correspond-
ing to S~= & or S~= —&. The variation of E&; withgf
time is in such a case determined by the time

+2
E&k)g(k)

f&g n=-2

In the following, we shall assume that X& stands
for magnetic dipole-dipole interactions, but the
extension to the case of electric quadrupole inter-
actions is straightforward, and the predicted tem-
perature dependence of Tj is the same. Here
A' ' are operators acting on spin variables,
whereas the "lattice" functions I" ' ' are assumed
to be implicit functions of time through their de-
pendence on the eigenvectors of the quasi-spin-
wave (or polarization) mode.

The total Hamiltonian of our problem is

for

', as'(t) = 4 [1+ps «)l [1+ps. (t)] F as. (1, 1)

+ ~ I.1+pa(t)l [1 pa (t-)]F,as (1, 2)

+ ~ [1- ps (t)] [1+ps «)] E ~ a a (2, 1)
+-. [1—p, (t)] [1-p, , (t)]F... „,(2, 2),

where p = (((/lt). I and 1 refers to the right and 2 to
the wrong equilibrium site. Introducing the Fou-
rier components of pz

(6)

where N is the number of molecular groups, we
can express Z' '((ak) in terms of the spectral den-
sities of the Fourier components of the polariza-
tion fluctuations. In the random-phase approxi-
mation, we obtain

Z (F;, (0)F;;(t) &
= const + —,

'
f&j

&& Xi I t) F„as. I
—Q(p(q, o)p(- q, t)&

+ — Z, [P...„,g —(p(q, o)p(- q, t)&

+R . as,p —cosq (ra- ra, )(p(q, 0)p(-q, t)&

+ S,aa, Q —
a (p(q, 0)p (- q, t))
1

g g. N

)&(p(q', 0)p(-q', t)& (1+e""~'&as-aa')] . (9)

Here we have

~ as I' = IF,aa(1, 1)-F,ss(2, 2)I', (10a)

P .as. —-2[F . ss. (1, 1) + E~ ss (2, 2)

+ 2F, . s s. (1, 2) —2F„.s s. (1, 1)F, . a s. (2, 2)

—2F„., ss(1, 2)E .ss (2, 1)],
, „,= 2[E,a,, (1, 1) + E ~~ „a,(2, 2)

(10b)

—2E ~ s s. (1, 2) —2E;ss ~ (1, 1)E „.s s.(2 2)

+2F ~ ss. (1, 2)F .ss, (2, 1)],

, as, = [F,as, (1, 1)+E ~, a a, (2, 2)

(10c)

+ 2E, s s, (1, 2) +2F, s s, (1, 1)F, a s, (2, 2)

variation of the component p, of the group electric
dipole moment along the ferroelectric axis:

F...„,(t)-. [1+P,(t)] F... „.(1, 1)

+a [1—p, (t)]F, . „(2,2)
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Using the fluctua. ion-dissipation theorem, we
can relate the spectral densities of the Fourier
components of the polarization fluctuations to the
imaginary part of the wave-number-dependent
generalized dielectric susceptibility X (q, &d).

In the classical limit kT» hv, we obtain

J"'(&co)=A(kT/o)o)Qo y (q, o)„), (12)

where

0. & Q. F8=8'

~~a' 88' ( i 1)Fua!'88' (ll 2}

—4F ~ o o. (2, 2}F o o. (1, 2)

+2FN ., oo (1, 2)F~ ~ oo. (2, 1)], (lod)

with pa p'.
If the division of the interactions into an intra-

and an intergroup part is well justified —as is the
case in DSP —the terms with P, R, and S are neg-
ligibly small as compared to the

~

6F
~

term in
Eq. (9). In such a, case, we get from (5)

with Tc(q) = J(q)/k and Tc=Z(q =0)/k. Here vo is
the correlation time for the flipping motion of a
noninteracting dipolar group and the factor T/
[T—Tc(q)] represents the critical slowing down of
the quasi-spin-wave fluctuations with wave vector
q due to the interaction

J(q) =Q J&&e'o'

between the dipolar groups in the system.
A rough estimate of the sum occurring in Eq.

(12) can be obtained by using

T,(q) = T,(1 —nq')

(where for nearest-neighbor interactions n=~d '
with d being the nearest-neighbor distance between
the dipolar groups} and by replacing the summa-
tion over a11 q values within the first Brillouin
zone by an integration over a sphere:

2 X "(q, &0) =(V/2)&') J ™"q'dqX "(&o,q), (16)

g(a)( )
V Q

~

gF &)!) ~o
4N !M ((M', o=oi (Mg(, go~, 7P

where q =(6o'/V)'~o. For the spectral density
of the fluctuations of the lattice part of Hamiltonian
(1) due to the ferroelectric quasi-spin-wave mode,
one thus finds

with eo= 1/4v in cgs units. The dominant contri-
bution to the dissipative part of the susceptibility
arises from the mode whose frequency approaches
zero at the phase transition. In view of the appar-
ent overdamping of this quasi-spin-wave mode in
many order-disorder ferroelectrics, we do not
attempt to fit. y (q, &d) to a damped harmonic os-
cillator function, but rather use the Kubo expres-
sion" for an Ising model:

X (&, q ) = PC/ [1—P J'(q) +i &c7']

x I(T!Tc! nq~! &!)To)go,

where, for T & T~,

I =(T/Tc)o [T /(T- Tc)])~o I'. (u„, a),
whereas, for T & T&,

[T/2(Tc —T)]'
[T/2(Tc —T) —1]"'

with K(u, a) =
1+u' '+a' '

Here

(19)

(20)

(21)

(22a)

X "(&d, q) = X(q, 0) 1&0&o/[I+ (&d~;)']] (14)

where for T & Tc

r, = ~o T/IT Tc(q)]—
X (q, 0) = PC T/[T —Tc(q)],

(15a)

(15b)

and for T & Tc

~o= 'ro[1+2T (q)/T 3T (q)/Tc]- (16a)

where P=(k T) ' and C=N)&o/(eoV) The dissip.a-
tive part of the generalized dynamic susceptibility
is then" obtained as

u„= [Tc/(T- Tc)]'"n'"q for T &Tc (22b)

u„= [T/2(Tc —T) —1] n q„

whereas a = &dvoT/(T- Tc)

and a = &dvo T/2(Tc- T)

for T & Tc, (22c)

for T & Tc (22d)

for T & Tc (22e)

3', (u„, 0) = —', [arctan u —u„/(1+ uo)] . (23)

The general expression for St (u, a) is rather
lengthy and is given in Appendix A. For a-0
(or, what is the same, &d7'o « I), however, this ex-
pression becomes rather simple:

and

y(q, 0)= P C[1+2T (q)/T-3T (q)/Tc] ', (16b)
To get a rough estimate of the temperature de-

pendence of T& in the vicinity of the Curie point,
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we can now treat two limiting cases u -~ and u
-0. For o. q ~, we haves/s

I= sa[ Tcl(T Tc)]~/s for T )Tc (24a)

(24b)and I= sa[Tc/2(Tc —T)] S for T (Tc.
For n'~q -0, on the other hand, we

get

and

I= ,'(c/' q—)[Tcl(T Tc)], T )Tc

I= &ac/"'q )'[T/2(Tc - T)]', T 'Tc

(25a)

(25b)

Let us now apply these results to polycrystalline
DSP where the flipping of two out of the six
CH3CH&CO, groups in the unit cell gradually freezes
in on approaching T& from above.

For the case of a polycrystalline sample

, I &F.. .ss I' = v ~ &I ~-, ss I'&-
& e&a, a=a e& e'

=-,'(IdF...(CH, )l'&„+vZ ( ~F...(CH, )l')„,
(27)

where the symbol ( &„designates an isotropic pow-
der average over all possible orientations of the
propionate groups with respect to the direction of
the external magnetic field.

Since only two out of the six proyionate groups
are involved in the quasi-spin-wave mode and thus
undergo the critical slowing down, one has

In the first of these two limiting cases, we thus ob-
tain for the temperature dependence of T, near the
Curie point

T
I

1/s ~1/s (25a)

whereas in the second case we get a result which
was already obtained in a previous paper:

T, ~ (T- Tc)', c/"'q„- O .
It should be stressed that very close to the

Curie point we shall always be in the limit u -~
so that T, will be proportional to (T —T& I" if
the Kubo expression for X(q, ~) is still valid.

APPLICATION TO DSP

Z (I~F."~(CH, ) I')« = (1/r' c)axssi pn, (33)

(I &F"'(CHs) I'&« = (1/rca ) x~sin'p, (34)

if the flipping axis is perpendicular to the C3 axis,
and

(35)(1/Tg s) g' = 4 (1/Tg ) rca /rca ~

If the proton-proton distances in the -CH2 and
-CH3 groups are about equal, we get from Eq.
(29a) a simple expression for the ferroelectric
quasi-spin-wave flipping mode contribution (T~),
to the proton spin-lattice relaxation time in DSP:

(T,). = 3. 5(T,'"s). , (35)

where according to Eqs. (4) and (19)

with z ~ being the distance between the nuclei n
and n' and with 8 ' designating the angle between
the internuclear vector and the direction of the ex-
ternal magnetic field, which is a function of time
because of the flipping of the molecular group be-
tween the two equilibrium positions. As shown in
Appendix B, we obtain for the case that the flipping
axis is perpendicular to the H-H direction in the
CHz group

&I ~Fess l'&.,=(1/rca ) "r»n'P (31)

&l~c'a
I

&«=(1/rca )xr» nP (32)

where x&H, is the proton-proton distance in the
CHs group and where P is the "flipping angle'* of
the molecular axis which is determined by the dis-
tance between the two equilibrium sites.

In contrast to the -CH~ group case the intra-
group magnetic dipolar interactions of the -CH,
group protons are already partially averaged out
because of hindered rotation around the C3 axis.
The flipping motion thus modulates only the re-
sidual part of the dipolar interactions. Assuming
that the flipping motion of the propionate group and
the -CH3 group rotation are not correlated, we
obtain for the flipping contribution to the -CH,
spin-lattice relaxation rate (Appendix B)

and (Tj )„=x(2/5T, "s+ 3/5T, "s)„,

T, '= (T, '), + (T,')„,
where (T,'), = x(2/5T, "s+3/5T~ "s),

(29)

(29a)

(29b)

9
I, Tcas

V 5 sin P I(T, Tc, c/'/ q„)rs . (37)
CHp

with the index a standing for the anomalous "pure
flipping" contribution and n for the normal contri-
bution to T&'. It is well known that

The dielectric correlation time v'0 in DSP is
known —from dielectric dispersion data (Fig. 2)
—to behave like

F",'. = sin8 ~ cos8 ~ exp(ip, .)r '
~ (3Oa)

vs -- v, exp(+E/IsT), (39)

and F'~'.= sin 8 ~ exp(2ig .)r (30b) where E = 0. 25 eV and v~ = 5 x 10 ~s sec, so that
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20

3 101Hz~- 50MHz

this asymmetry AE = 2 ~ 10 ' eV is small com-
pared to kT and its effect on (T,), can therefore be
neglected.

If one, on the other hand, interprets the T,
anomaly as a normal BPP minimum, which oc-
curs when the correlation time for the thermally
activated molecular motion is of the order of the
inverse Larmor frequency, one obtains an impos-
sibly short value for r 0 ( = 10 sec) and too large
an activation energy E,= 1.3 eV. Another defi-
ciency of this interpretation is that it cannot ex-
plain the frequency independence of the T& anomaly.

The above results thus seem to show that the T&

anomaly at T& in DSP is indeed the result of mag-
netic dipolar spin-quasi-spin-wave coupling to a
ferroelectric "flipping" mode, and that the theory
presented in this paper is not a too unreasonable
approximation.
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APPENDIX A

vo(T = T&) = 2. 3 x 10 "sec justifying the approxi-
mation Ri To«1. From the unit cell dimensions
we get q =0.28 A 'and nq ~=0.25 for nearest-
neighbor coupling. The temperature dependence
of the anomalous contribution to the relaxation rate
is now fixed, and the above model can be checked
by comparing the observed and predicted relaxa-
tion rates due to the freezing in of the quasi-spin-
wave mode.

The experimental relaxation rate due to the
critical "flipping" is obtained by subtracting the
"normal" relaxation rate from the observed total
relaxation rate. Since the rotational minimum is
far away from the region where the anomalous
flipping contribution is observable, this separation
can be done in a unique way. The resulting tem-
perature dependence of (Ts), is presentedin Fig. 3.

Taking the rcs distance as 1.8 A and matching
the experimental and theoretical T,-versus-T

'"2

curves at one temperature, we get for the flipping
angle the rather reasonable value P= 38'. From
the room-temperature value of the proton second
moment, on the other hand, we obtain P=40' (Ap-
pendix B). What is even more satisfactory is the
excellent agreement between the observed and
theoretical temperature dependences of the "anom-
alous" spin-lattice relaxation time in the para-
electric as well as in the ferroelectric phase
(Fig. 3).

It should be stressed that though the two equilib-
rium sites are not anymore equivalent below T„

We wish to evaluate the integral [Ecl. (22)]
um u du

(urn~a)= ~ s s 4&1+u ) +a

in its general form. Using

(Al)

X(u, a) =
""m u du

(1+u +sa )(1+u —sa )~0

40-
CasSr(CHs C0s C00)s, vs= 15, 2 Mc/s

o powder—theory

30-

20-

10-

0
-6 -4

I s

4X10 ~

T-Tc
Tc

FIG. 3. Comparison of the theoretical (solid line)
and experimental (circles) temperature dependences o'.

the "anomalous" proton spin-lattice relaxation time in
DSP near Tc.
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z'
ll flipping ax is zllHo

4p

we get

X (u, a) = —,(Q [(t+ a')"'+ i]]'"

(1+a')"'+u' + 2u $-,'[(I+a')'" —I]]'"
(1+a')"'+ u™—2u „(-,' [(1+a')"' —1]]'"

(a)

—2{-'[(I-')'" I]]'"
(2 [(1+a')"'+ 1]j'"u„x arctan

(
4, »&1+a j -u

This reduces in the limit a-0 to Eq. (23).

APPENDIX B

(A3)
z'IIC rotation axis

Flipping axis

Let us now sketch the derivation of Eqs. (31)-
(34) as well as of the theoretical expression for
the proton second moment of powdered DSP at
room temperatur e.

Introducing the Euler angles 8, y, and ])) [see
Fig. 4(a)] —as described in Ref. 12 —one obtains
from (30a) and (30b) for the case of the —CH2

group

(bj

F .(CH, ) = (e' /rc„, )[sin8siny(t)

x [cosy (t) +i cos8 siny (t)]], (Bl)

where 3 is the angle between the direction of the
external magnetic field and the flipping axis, and
where y is time dependent because of flipping be-
tween the two equilibrium sites: y (1)= y, y (2) = y
+ P. Hence,

&F'".=F'".(x, 8, y, ]r)) -F'".(y, 8, y+ p, ]()) (B2)

if the flipping axis is perpendicular to the interpro-
ton vector rcaa in the —CHa group. Inserting (Bl)
into (82), squaring, and performing a powder aver-
age over 8 and y, we get Eq. (31):

(~t)E,' (CH2)~ )„=(1/xcs ) xvsin P . (B3)

Similarly, we have

F' '
(CHa) = (e '"/x )[ccosy(t)+i cos3siny(t)]' .

(B4)
Using the procedure described above, we get

Eq. (32) from (B4) in a straightforward way.
In case of the CH, group because of simultaneous

rotation and flipping, 3 as well as y are time de-
pendent. Using a somewhat different set of Euler
angles as before, where now 3 and ])) are time de-
pendent because of flipping, and ybecause of both
flipping and hindered rotation [see Figs. 4(b) and
4(c)], we get

i&(t)F'".(CHa) =, (sin8(t) siny (t)
+CH3

(c)

FIG. 4. Euler angles 8, cp, and g used for the de-
scription of the —CH2 and —CH3 motion.

and

x[cosy(t)+i cos8(t) siny(t)]] (B5)

2 i&( t )F' '. (CH, ) =
3 [cosy(t)+i cos3(t) siny(t)]
"3 (B6)

Since the fluctuations due to flipping and rota-
tion are not correlated, the autocorrelation func-
tion of &I" 'CH is given by a sum of products of the

3
various autocorrelation functions for flipping and
rotation. The pure flipping contribution is ob-
tained in the limit of an infinitely short rotational
correlation time as
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Q ( ~F.".'.(CH, ) ~'),„=

&&(~ e'"~ sin23, —e "2sin23,
~

')„, (BV)

g (~ ~F.".'.(CH, ) ~

'),„=
eel O'CH3

&&(~e '~'sin 3, —e sin 32~ ),» (Ba)

where the angles 3» 8z, („and P2 are defined in
the Figs. 4(b) and 4(c). Using well-known rela-
tions for the spherical triangles to express ~&, 82,
and (g, —g2) in terms of the flipping angle p, one
obtains, after taking the powder average, Eqs.
(33) and (34).

At room temperature, all propionate groups in
DSP are flipping with a frequency which is large
as compared to the rigid lattice proton linewidth. "
The second moment of such a group is

M, = v(M, (CH, )) +v(M, (CH~)) + n', (BS)

where the symbol () designates an average over
molecular motion. M~(CH, ) and Mz(CH2) stand for
the second moments of the isolated —CH, and —CH2

groups, respectively, and n is the intergroup con-
tribution to the second moment. For the case of
a polycrystalline sample, we have

(M2) =~y~k (I/N)1(I+ I) Z ((E;&'(f)) )„, (B10)
j &k

where F;,' is

E» ——(1 —3 cos e»)r»(O) 2 -3 (B11)

and N stands now for the number of nonequivalent
nuclei in the group under consideration.

Introducing the Euler angles and using for the
"flipping" average

(&'"(f)&=k [I+P]F'"(& ~ ei)
+~~[1 —p]F"'(r, 3, y,), (B12)

we get for the —CH2 group contribution

(M, (CH, ))„„=ry'e'[I(I+ I)/r«]
Xv[1 -~(I -P ) sin P] . (B13)

In case of the —CH, group, in addition to y& the
angles g and 8 are also time dependent. We get

(M2(CH3)) f1 iy+ rot

= (M2(CH~))„, [1 -r(l —p ) sin p] . (B14)
0

Assuming xcH = ~cH = 1.8 A, we get for the rigid
2 3

lattice values of M2(CHz) and Mz(CH3) 10 and 20 G2,
respectively. As (M2(CHS))», = rM2(CH~) = 5 G,
we can fit the experimental data with a flipping
angle of p=40'. The —CH, and —CH, contributions
are then (M,(CH, ))„„=6.3 G' and (M, (CH, )),«, ,&„
=3.2 t", so that M2=4.5 0, if n is negligible.

~Work based in part on work performed under the aus-
pices of the U. S. Atomic Energy Commission.
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