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A physical interpretation of the eigenvalue equation is used to obtain the frequencies and
spin configurations of ferromagnetic and antiferromagnetic surface modes and to provide a
classification of these modes. A physical understanding of the features of surface modes also
is provided. Since all spins precess at the same frequency in a normal mode, the frequency
can be obtained from the equations of motion of one, or sometimes two or three, spins near
the surface. One class of surface modes is the changed-surface-parameter class, in which
the missing neighbors of a surface spin are compensated for by a changed parameter, such
as an exchange constant, at the surface. Another is the equivalent-layer class, in which the
crystal contains equivalent layers such that the net torque on each spin S on an equivalent
layer exerted by all spins on the surface side of S is zero. Two new types of surface waves
are studied. In the first, the spin precession changes phase as well as amplitude as a func-
tion of the distance from the surface. In the second, a surface layer of spins is antiparallel
to the bulk spins.

1. INTRODUCTION

There have been a, number of recent investiga-
tions of surface waves in magnetic systems. '
In the present paper, a physical interpretation of
the eigenvalue equation is used to obtain the nor-
mal-mode frequencies (eigenvalues) and the spin
configurations (eigenvectors) of ferromagnetic and
antiferromagnetic surface waves. An intuitive un-
derstanding of how the crystal can support the
surface modes and of the physical features of the
modes is afforded by the interpretation, which is
used to classify surface modes and to study two

new types of surface modes. Simple physical ex-
planations of existing results also are afforded by
the method, which is applicable to all presently
known exponentially decaying modes, both acous-
tical and optical.

In a normal mode, all spins precess at the same
frequency, by definition. By r equiring the fre-
quency of a surface spin to be the same as that of
a bulk spin and assuming a form of the solution
for the bulk spins (exponential for surface modes),
the normal-mode frequencies can be obtained. In
particular, a spin on the surface will have fewer
neighbors than a corresponding spin in the bulk,
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and the missing torque on the surface spin result-
ing from the missing neighbors must be compen-
sated for somehow. If some parameter, such as
an exchange constant, anistropy field, etc. , of the
surface spins is different from that of the bulk
spins, the frequency change of a surface spin re-
sulting from the difference between the surface
parameter and the bulk parameter sometimes can
balance the frequency change from the missing
neighbors. Such modes constitute the changed-
surface param-etex class of surface modes.

When the surface parameters are the same as
those of the bulk, a surface mode still can exist
in some cases as follows: Assuming that the bulk
spins in a crystal lie to the right of the surface
plane, the net torque on a surface spin from all
spins to the left is zero since there are no spins
to the left. The spin arrangement sometimes may
be such that the net torque on every spin in the
second layer from all spins in the first layer is
zero also. Similarly, the torque on each spin in
the third layer from all spins in the first two lay-
ers is zero, etc. Thus, it is not necessary to
compensate for the missing neighbors of the sur-
face spin by changing some parameter at the sur-
face, the spins on each layer already being equiv-
alent to those in the surface layer.

Another possibility, which is common in anti-
ferromagnetic crystals, is that the crystal can be
divided into equivalent pairs of layers such that
the torque on every spin in the third layer from
all spins in the first two layers is zero, the torque
on every spin in the fifth layer from all spins in
the first four layers is zero, etc. For more com-
plicated systems, the number of layers in the sets
could be greater than two. All such modes will be
said to be in the equivalent-layer class. Keffer'
independently realized that the torque on the spins
in every other layer of a simple cubic antiferro-
magnet with a (100) surface from the spins to left
was zero for the surface waves of this system.

The first new type of mode, which will be called
the fliP su+ace tyPe, i-s assumed to have a ground
state with the spins in the first layer antiparallel
to the bulk spins, as illustrated schematically in
Fig. 1(a). For the second type, which will be
called the oscillating-decaying type, not only does
the spin precession amplitude decay with distance
away from the surface, but also the precessional
Phase angle changes with the distance from the
surface, as illustrated schematically in Fig. 1(b).

Wallis, Maradudin, Ipatova, and Klochikhin~
suggested that the characteristic required for the
existence of surface modes with near-neighbor
interaction and no change in the surface parameter
probably was that the exchange interaction must
couple spins whose line of centers -is not normal

to the surface. For the exponentially decaying
states in a ferromagnet, this result is a special
case of the equivalent-layer class. The require-
ment of non-normal coupling between the spins on
different layers and the additional requirement
that the wave vector kz= (k„,k,) in the plane of the
surface must be nonzero for near-layer coupling
can be understood as follows: With only normal
bonds, a spin f2 on the second layer is coupled to
only one spin f, on the surface layer; thus the
torque on f~ from all coupled spins on the first
layer (f, in this case) cannot be zero unless f, and

fa are parallel, i. e. , the wave-vector component
4'„along the normal to the surface is zero, and
there is no decay of the amplitude as a function of
the distance from the surface. If there is a non-
normal coupling, fz can be coupled to two or more
surface spins whose vector sum is parallel to f~,
thus allowing a nonzero 4'„. If kg=0, then all spins
in the surface layer are parallel, and each surface
spin is parallel to f~ when this vector sum is par-
allel to fz, again making k„=0.

Elementary examples of the equivalent-layer
and changed-surface-parameter classes of surface
modes are given in Sec. 2 in order to illustrate
the method. The remaining sections are devoted
to the oscillating-decaying and the flip-surface
modes. The crystal will be considered as a semi-
infinite medium, and only nearest-neighbor ex-
change interactions will be considered. The re-

(a)

(c)

Distance from Surface

FIG. 1. Schematic illustrations of (a) the spin con-
figurations in a flip-surface type of surface mode, (b)
the spin configurations in an oscillating-decaying type of
surface mode, and (c) the spins in a surface mode of a
simple cubic antiferromagnetic having a (111) surface
for /=0.
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suits should apply to a sample of finite thickness
for modes whose decay length 1/k„ is short with
respect to the sample thickness. The effects of
dipole-dipole interactions and of imperfect sur-
faces are neglected in the present paper. The
method also may be useful in studying other sur-
face modes, such as elastic and magnetoelastic
ones.

2. CHANGED-SURFACE-PARAMETER AND EQUIVALENT-
LAYER CLASSES

.e «'=1+4 (&J/J) A&, (2. 1)

where s, and s „,are the transverse components
of the spins (8 = S,s+s), and

Consider the changed-surface-parameter sur-
face modes in a simple cubic ferromagnet having
near-neighbor exchange coupling and having a
(100) plane as its surface. ' The exchange con-
stant is assumed to be equal to J for all pairs of
spins except those pairs having both spins in the
surface, for which the exchange constant has the
value J(,. A few spins of a surface wave are il-
lustrated schematically in Fig. 2(a) for the case
of k„40. Figure 2(b) illustrates that the torque
which would be expected on ft from the missing
neighbor f &„ is in the opposite direction from
that of the two neighboring surface spine g„and
8~~. Thus, the value of J„must be less than J in
order to have the torque on g unchanged. There
are no acoustical surface modes for this system
if J„=J

Writing J~, =J- ~J and equating the torque from
—4J to that from the missing spin and using s &„
=e x' s~, where a is the lattice constant, gives

S-lu

/ 415s 5 J

1SS

/
-2S ~3S

Surface

bulk-mode frequency being proportional to k&.
Note that by considering the equation of motion

of the surface spin, the results (2. 1) and (2. 5)
were obtained directly, a simple physical expla-
nation of why J)( must be less than J was afforded,
and an intuitive explanation of how the surface wave
is supported was obtained. The environments of
spine fs, fs, . . . in Fig. 2(a) are the same, and
the difference in the environment of the surface
spin fi (i. e. , the missing neighbor) is compen-
sated for by the changed surface exchange.

The results~ for the optical modes of this sys-
tem can be obtained by the present technique. With

the sign changes appropriate to an optical mode,
(2. 1) becomes

(J,~

—J)/j= g(1+e "«')/A«

The minimum value of J'„/J'=~sin this result cor-
responds to k„=0 and k, =k, = v/a. For this con-
figuration, all five neighbors of a surface spin ft
have s„„=—sz„, and all six neighbors of a bulk
spin S& have s„„=—s &„. Since the four neighbors
of ft which are in the surface layer have exchange
constant J„=~J and the other neighbor has ex-

A„=-1——,
' (cosk„a+ cosk, a) . (2. 2)

The torques can be written simply by using the
method presented in the Appendix.

The results of Filipov for J &J correspond to
growing exponentials. This is intuitively clear
from the simple physical argument given above,
or from (2. 1).

In the long-wavelength limit k&a «1, for j
=&, y, z, Eq. (2. 1) gives

k„a = (AZ/J) (k,a)', (2. 2)

where A& =—k'„+0,. The usual frequency I y IDk,
with an imaginary component ik„of k correspond-
ing to the exponential decay, is

y ID(k2&- ks«) . (2. 4)

Combining (2. 2) and (2. 4) gives

~= )y/Dk', —/y/D[(AZ/Z)a]' ', (2. 5)

and the surface mode has a lower frequency than
that of the bulk mode, the first correction to the

lu -ld

-1x S

Sl + ~S) x Sl

(b)

FIG. 2. (a) Spin configurations are shown for several
spins near the surface for a simple cubic ferromagnetic
with a 0.00) surface. The spin S &~ can be considered
as having been removed in order to form the surface.
(b) S&, S ~~, and the two su+ace spins S&„and S&& to
which S& is coupled and is used in calculating the torques
on 5& are shown.
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Sla+ S2o

the spins on the second layer is not zero even
though the torque on fs from all spins in the sur-
face layer is zero.

~ b=a/+2 g

s„

Slb

p k„a/J2yV

(a) (b)

FIG. 3. (a) The transverse components of several
spins in the first three layers of a simple cubic ferro-
magnetic having a (110) surface are shown. (b) 52 and
the two spins S~a and S~& in the surface layer to which
S2 is coupled and is used in calculating the torque on S2
are shown.

change constant 4, the net exchange constant for
the surface spin is 4(~) &+8= 6&. This value is
the same as that of a bulk spin, thus giving equal
frequencies of the surface and bulk spins, as re-
quired in a normal mode.

Next consider the equivalent-layer-surface
modes in a simple cubic ferromagnet whose sur-
face is a (110) plane. The transverse components
of several spins in the z =0 plane are shown in
Fig. 3(a) for the case of k„40. The only surface
spins to which fs is coupled are f„and S,„. In
order for the torque on fs from f&, and S» to be
zero, ft, +ftb must be parallel to fs. As seen in
Fig. 3(b), this requires

3. FERROMAGNETIC OSCILLATING-
DECAYING MODE

The surface modes for a simple cubic ferro-
magnet having (100) and (110) surfaces have been
reported in the literature. ' We now show that
the surface modes for a (111)surface with no
change in surface parameters have an interesting
new feature which has not been reported previous-
ly. In addition to the usual exponential decay of
the precession amplitude as a function of the dis-
tance from the surface, these surface modes have
a bulk-wave-type phase change from layer to layer
as illustrated schematically in Fig. 1(b). In order
to have the torque on a spin fs in the second layer
from all spins in the first layer be zero, the vec-
tor sum of the three surface spins 5&„which are
coupled to fs must be parallel to f,. The projec-
tions of the positions of these three spins on the
surface plane are shown in Fig. 4(a) and the spins
are shown in perspective in Fig. 4(b) for the case
of k~=0.

The y component of

haft„can

be written from in-
spection of Fig. 4(b) and the corresponding figure
for k„40:

(a)

sa=sg cosky5, (2. 6) kz2d

where b =a/W2, with a the lattice spacing. With
s~=e ~' s„ this gives

e- «'=cosk, ,b . (2. 7)

It is seen from (2. V) or directly from Fig. 3(b)
that there is no surface wave (no e '~' & 1) unless
k, 40. The condi".on k, &0 does not give a surface
wave since the to gue on a spin in the second layer
is not affected by changing k,.

By the method given in the Appendix, the equa-
tion of motion of g, is

-kzd -kzd

—(&o/S 4) s, = 4s, —2st cosk, a —2s s cosk, k .
Eliminating ss by using (2. 6) gives

—(&c/2S J) = 1+sin'(k, a/ M2) —cosk, a (2. 8)

in agreement with the results of Wallis and co-
workers. Note that the torque on F» from all of

(b)

FIG. 4. Positions of S2 and the three surface spins
Sf f y 8[2 and Sj3 to which %q is coupled are shown for a
simple cubic ferromagnetic having a (111) surface in
the (a). The same four spins are shown in (b) for the
case of k„=0.
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3 3

Q 5,„~ g=Z s,„~ g
n= 1 n- 1

=s, [sin2k, d- sin(k, d+ v 3k„d)

+sin(k, d- v 3k~d)]

S1n
—-&S»

n= 1

where

o —= [1+4cosvSk, d(cosv3k, d+cos3k, d)]'i~ .

(3. 4)

(3. 5)

The equation of motion of a spin f, on the surface
is

which can be written as
3

Q f,„~ g =s,(sin2k, d - 2 sink, d cos W3k„d),
n= 1 (3. 1)

where 2 V3d = & 2a and a is the lattice constant.
In all exchange surface waves considered in the

past, the symmetry has been such that the y com-
ponent of the net torque on fz was zero. Thus the
precessional phase angle Q in Fig. 1(b) was zero.
For the present case, the y component is nonzero
(therefore Q 40) unless k„=0 or + v 3k„.

From Fig. 4(b) and the corresponding figure for
k, 40, the x component of gf, „ is

3

Q f,„~ X'=s, [cos2k, d+ cos(k, d+ P3k, d)

+ cos(k, d —43k„d)],.
which can be written as

. 3

Q f,„~ 2 = s, (cos 2k, d + 2 cosk, d cos PSk, d) .
(3. 2)

We have written (3. 2) for a general layer &, rather
than for layer 1, since this result is true for all
layers l by symmetry The .condition for gf,„to
be parallel to f, is

3

s,/s =
I
2 s,„ I

/3s . (3. 3)
n-1

From (3. 1) and (3. 2), the value of

/san,

in (3. 3) is

where the two sums on the right-hand side are
given by (3. 1) and (3. 2) and o' is defined in (3.5).
The value of k„ is given by the expression

Is I/IsiI = IssI/Is~I = ~ =e "-+=7~. (3. 10)

The spin configurations (for the s~ s) are shown in
Fig. 5 for the case of k, d = v/2 and k, = 0, which
gives a nonzero Q.

4. ANTIFERROMAGNETIC OSCILLATING-
DECAYING STATE

in analogy with (3. 3) for the ferromagnetic case.
The equations of motion for a spin on the first la-
yer and one in the second layer are

3
—ws, =(3 ~.)s, —IZs,„I,

n-„1
3 3

—(os2=- (6+(o,)s2+
I
& s&~ I+ I

~ ss~ I ~

(4. 2a)

n- 1n- 1 (4. 2b)

where ur = &o/S Z, &o, = v, /S J, and v, is the anisot-
ropy field expressed in units of frequency.

Using (3. 4) reduces (4. 2) to

3+(d~+Q7 -& &y 0 (4 3)0' —6 —(d, + (0+ 3O' S2

Surface layer
0 I st layer down
~ 2nd layer down

The spin arrangement for the simple cubic anti-
ferromagnet with a (111) surface is similar to that
of the simple cubic ferromagnet of Sec. 3, except
that the spins on the second, fourth, etc. , layers
have negative z components. For the bulk mode
with k=0, s&=- s&,1, where l labels the layers.
For the antiferromagnetic problem the torque on
each spin in the third layer from all spins in the
first two layers must be zero. This gives

3

s, =-.' IZ s,„I (4. 1)

—&&,=3'&~-SJ'Igs~„I . (3. 6)

—|d/S J= (k~~+k2)a2 .
The phase angle Q is given by the relation

3
e'&=~2 g,„.(~+i@),

n- 1

(3. 8)

(3. 0)

Using (3.4) (which is valid with 1 replaced by 2) to
eliminate Igsz„l in (3.6) and using (3. 3) and (3.4)
to eliminate s2 gives the frequency

—&g/S J =~4 [2 —cosa 3k, d(cos/3k~d+ cos3k, d)] .
(3. 7)

For k„d«1 and k,d«1, (3. 7) gives

4 I

l J
FIG. 5. Spins on the first three layers of a simple

cubic ferromagnetic having a (111) surface. In order to
show both the position of the spins and their transverse
components s„, the spins have been rotated through 90'
so that the positions are shown in the y-g plane and the
spins are shown in the x-y plane.
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The secular equation gives the frequency

—~/S J= —,'(3- —,
' o')

+ [4(3—» & ) + (3 —8 o' + ~»)(6+ &»)] (4. 4)

in general, and the ratio of bulk to surface fre-
quencies is not directly related to the ratio of the
numbers of neighbors of a surface spin to that of
a bulk spin.

where the positive sign of the square root was
chosen to give exponentially decaying rather than
increasing waves. The method has reduced this
rather complicated problem to the simple two-spin
problem (4. 3). For k~=k, = 0, (3. 5) gives o = 3,
and (4. 4) gives

—»o/S J'= [(o,(6+ (o,)]'i'=- (6(o.)'i' . (4 5)

The secular equation gives

—&o/S J= + l12+, + e»2 ] = a (12&u,)' ~ (4. 7)

The positive sign in (4. 7) corresponds to a
larger precessional amplitude of f; than of f»,
and the negative sign corresponds to a large pre-
cessional amplitude of f». Both solutions are al-
lowed, and the two are interchanged if the crystal
is turned upside down. Now for the surface wave,
we assumed that the f; spin was on the surface.
In order to have a decaying wave, the precession-
al amplitude of the spin f2 on the second layer
must be less than that of 5, on the surface, thus
explaining the choice of the positive sign on the
right-hand side of (4. 5). The spin configuration
is illustrated schematically in Fig. 1(c) for the
simple case of /=0.

With k&= 0, f2 and f» must be antiparallel in or-
der for there to be no torque on f» from the spins
in the second layer, and this also makes the
torque on 8» from the spins in the third layer ze-
ro. Thus, Sz is effectively coupled only to the
three spins of the first layer rather than to the
six spins of the first and third layers as in the
bulk mode. Replacing the factor of 6 in (4. 6) by
3 gives a factor of 6, rather than 12, in (4. V),
thus explaining the factor of u 2 difference between
the bulk and surfa, ce frequencies. It should be
mentioned that for other spin configurations the
spins on the third layer will exert a torque on Sz,

The approximate equality, which is valid for
e, « I, is a factor of W2 smaller than the k&= 0
bulk-mode result. This result and the physical
reason for having to choose the positive square
root in (4. 4), while both roots are kept in the bulk-
mode problem, can be seen easily as follows:
The frequency of the 0&= 0 bulk mode can be ob-
tained by solving a two-spin problem, just as for
the surface state. The equations of motion of an

up spin ff and a neighboring down spin %3 are

6+47»+(0 6 Sj
() ( )—6 —(6 + &g) + G7 sa

v/S J = 2 coshk„a —2 —4A»,

where A»—= 1 —»(cosk, a+cosk, a) .

(5. 1)

The value of k„a in (5. 1), which is determined by
the value of J, , is found as follows: In order for
the frequency of S2 to be the same as that of S&

for E &2, the torque on S~ from S, must be the
same as if J,'2=& and f, fit into the exponential se-
ries (i. e. , the same as if g, =+S and s&-e""'s2).
Equating these two torques gives

J(e ' —1)s~= lJ, l(s, —s2),
which can be written as

(5. 2)

where ~& =&&~, with q, negative.
The equation of motion of f, gives

/SZ=
I
e»

l
(I -s2/s, ) —4A» . (5. 3)

Equating the right-hand sides of (5. 1) and (5. 3)
and using (5. 2) gives

2( ' ' —1)(1— hk„4A ) .
1 —e -"++8A,

(5. 4)

For given values of I&»l and A», (5. 4) is a cubic
equation for e "'. The root with e ~' = 1 must be
chosen in order to have an exponentially decaying
wave.

For ~q-=g +k& ,=k0, the value of A„is zero, and
(5. 4) reduces to

le, l

=- 2 e' '(1 —coshk„a),

which is easily solved to give

+ (5. 5)

5. FLIP-SURFACE %AVES

In this section, we shall find the surface modes
for a simple cubic ferromagnet whose surface is
(100) plane, with exchange constant J for all near-
neighbor pairs of spins except those having one
spin in the surface and one in the second layer, for
which the exchange constant J', is negative (anti-
ferromagnetic). In the ground state, it is as-
sumed that all spins on the first layer have S,= —S,
and all others have S,=+S, as illustrated schemati-
cally in Fig. 1(a). The spin precession ampli-
tudes s2, 83, ... decay exponentially, starting at
the second layer.

The equation of motion of S& for l & 2 and the
relation sl ~1-e vng's

l give
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e ~'= ~(3+ 8A~)+ 2[(3+ 8A~) —8]' (5. 8)

where the positive sign of the square root was
chosen as usual. In Fig. 6, the curve marked
e, = —1 is a plot of (5. 1) with e ~' given by (5. 8).

For E~=0 the surface layer is decoupled from
the other layers, and the'frequency of this layer
has the same magnitude as that of the bulk mode
with &„=0 (since the near-neighbor spins in ad-
jacent layers are parallel when &„=0). The sign
of u) is positive for the single-sheet surface wave
(S,= —S) and is negative for the k„=0 bulk wave

(S,=+S). The dispersion curve for this single-
layer surface wave for E, = 0 is included in Fig. 6.

where the positive square root has been chosen to
make e'~' &1. With this value of e ~' and with
A„=O, (5. 1) gives

(cr/S J= I" /(1+ &
I "I) for k~ = 0 (5. 8)

For k~&0, another useful form of (5. 4) is

8A, = 2coshk„a —2 ——
~ ', . (5. 7)
le, l(e"&'- 1)

e'&'- 1 + l&~ I

In order to illustrate the dispersion curve, first
consider the case of Is, I = 1, for which (5. 7) gives

2 kga ekga

which can be solved to give

Finally, for le, l »1, (5. 7) gives

e"' =(1+BA )"'Ie,I'"
Using this result in (5. 1) gives

&o/S J= (1+8A„)' '
I &, I

' ' for e, » 1 . (5. 9)
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APPENDIX: EQUATIONS OF MOTION

The equation of motion of a spin f& =S&,2+ s~
coupled to Se by the Hamiltonian K= —J f~ ~ fs is

d 5„/dt= zf, &&-8„, (Al)

A portion of this result (5. 9) is illustrated in Fig.
6 for E~=-25.

Note that there are surface curves which have
values of I~ I which are equal to the value of le I

for a bulk wave, as marked +& and v& in Fig. 6,
for example. None of the previously reported sur-
face waves have shown this type of degeneracy.
The sign of v is positive for the surface waves and

negative for the bulk waves; that is, the spins ro-
tate in different directions for the two types of
waves.

QJ

SJ

IO

where the exchange constant J is positive for fer-
romagnetic interactions and the caret denotes a
unit vector. For circular precession, at the in-
stant of time at which s =Ps, the vector of d S„/dt
is given by

fg/N =g cosy (A2)

For up spins (i. e. , S,=+S) with s =f s„, the an-
gle between fs and 8„ is approximately equal to
(s„„-se,)/S when the usual linearization approxi-
mation Is„l « tS, I is satisfied; thus (Al) and (A2)
give

&us„=SJ'(sa~- sz„) .

The corresponding results for arbitrary values of
and S~g axe

—((d/SZ) SAg=&SAx —SBx

—(&o/S J) s„-„=+ s~-„+s e'»
(A3a)

(A3b)

-Io

FIG. 6. Dispersion relations for the flip-surface
waves of a simple cubic ferromagnetic with a (100) sur-
face for various values of the surface exchange constant

The bulk-mode dispersion relations also are shown.

where the' and superscripts indicate S,=+S and
S,=-S, respectively. The first term on the
right-hand side of (A3a) [ or (A3b)j corresponds
to S~, 0 &&a» and the second term corresponds to
s~~S~, . Using these results, it is not difficult
to show that for J & 0 and S„,=+S exponentially
decaying spins s„=so e ~»'" give a positive v,
while cosinusoidally varying spins s „„=sac'"~'"
give a negative (o.
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The heat capacity and magnetization at constant field versus temperature, as well as the
adiabatic variation of temperature with magnetic field, have been determined in fields directed
along the c axis of a large spherical single crystal of MnC12'4H20 to virtually the limits of
resolution of the dc methods used. In this study of the behavior of these quantities in the
neighborhood of the antiferromagnetic-paramagnetic transition, one specific goal was to ob-
serve the (near) singularity in (BM/BT) z at T&(II). In addition, we sought to test the predic-
tions that isentropes cross the phase boundary (defined as the locus of maxima in CH) tangen-
tially, and that this crossing point should prove to be the point of inflection of the isentropes
provided CH does not diverge too strongly. A test for determining the existence of a diver-
gence without the necessity of measuring infinitely high values is outlined. The fact that the
maximum in the zero-field adiabatic susceptibility occurs at a temperature T~& T~(0) has
been found to be reflected in the persistence of a minimum in plots of the isentropic variation
of T versus & up to T= T~. This curious behavior has led us to speculate on a larger co-
existence region of somewhat different character than has heretofore seemed reasonable.

The bulk magnetothermodynamic properties of
antiferromagnetic substances have for some time
been the subject of intensive study. It ha.s been
the practice of those performing these experiments
to summarize the salient features of the resultant
data in a graphical display known as the phase di-
agram in the H-T plane. For a uniaxial antiferro-
magnet of weak anisotropy with the field applied
along this axis, the resultant diagram will be sim-
ilar to that shown in Fig. 1. The letters a, P, and
b will be used to denote the antiferromagnetic,
paramagnetic, and spin-flopped regions. Unfor-
tunately, the phase diagrams derived from differ-
ent types of measured data are not always con-
gruent.

The heat capacities of these materials typically
exhibit X-shape anomalies. In analogy with the
work of Buckingham and Fairbank on He, ' the
maxima in these curves a,re usually taken as the
Noel temperature [T„(H)]. The available data on
the in-field heat capacities of oriented single-
crystal antiferromagnets are sparse, ' but that

available data agree well with the estimates of

T„(H) derived from optica16 and radio-frequency~
spectroscopic measurements although more com-
ment is also necessary even here. Large discrep-
ancies appear, however, in attempts at correla-
tions with magnetization data where the maxima in
the observed M versus T isoersteds have been
used as a measure of T„(II).

The antiferromagnetic-paramagnetic (ap) transi-
tion in antiferromagnets is often referred to as
being of second order. Using the Ehrenfest cri-
teria, this implies that the second derivatives of
the Gibbs function with respect to its intensive
variables are discontinuous. Thus we might ex-
pect the trio

to exhibit discontinuities if this scheme were ap-
plicable. Cooperative phenomena display, rather,
a divergence of these Ehrenfest derivatives to
hypothetically infinite values where the physical


