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Second-harmonic generation and ferromagnetic resonance have been investigated in spheres
of yttrium iron garnet (YIG) as a function of incident power above the threshold for excitation
of z-directed spin waves by the second-order Suhl instability. The fundamental frequency
was 8.42 GHz and the temperature 300'K. The second-harmonic power output P2„has the
following features above threshold: (a) P2„goes through a minimum and then a maximum as
a function of incident power; (b) the line profile of P2„versus dc field & shows two and then
three peaks; (c) sufficiently far above threshold, P2„initially increases after the pulse of
incident power is turned off. None of these effects is correlated with unusual behavior of the
transverse magnetization, which always increases with power above threshold, has a single
resonance line, and begins to decay as soon as incident power is turned off. The results are
explained in terms of parametric coupling between the initially excited z-directed spin waves
and other spin waves, with explicit account taken of the ensuing phase relations. These tend
to make the other spin waves interfere destructively with the uniform mode (k =0) in their
contribution to P2„. In this way, quantitative agreement betwet. n theory and experiment is
obtained with reasonable values for two adjustable parameters. Coherent phase relations be-
tween the interacting spin waves are essential for an understanding of the results. If all k & 0
magnon interactions are lumped into effective relaxation rates, it is possible to explain the
transverse resonance data, but not the second-harmonic effects.

I. INTRODUCTION

Since the explanation by Suhl' of the premature
saturation of ferromagnetic resonance observed
by Bloembergen and Wang, it has been known that
spin waves of nonzero wave vector are excited in
conventional (transverse pumping) ferromagnetic
resonance experiments. This excitation occurs
through parametric coupling of the uniform mode
to a pair of spin waves with wave vectors k and

—k. When the uniform mode reaches a critical
amplitude determined by the coupling strength and
spin-wave relaxation rate, the pair k and —k is
excited to a very large amplitude. Further growth
of the uniform mode amplitude is inhibited, thus
causing the observed saturation.

In its original and most elementary form, theory
predicts the uniform-mode amplitude to stay con-
stant above threshold which results in the rf sus-
ceptibility declining as 1/h, where h is the driv-
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c„=—i+ac~ —igs„ctoct~+(other terms), (1)

where (d~ is the spin-wave frequency and go~ is the
coupling constant for destruction of two uniform
mode (k =0) magnons and creation of the pair k,
—k [Fig. 1(b)] . The second term in (1) is recog-
nized as arising from the Hamiltonian appropriate
to Wg. 1(b):

3', (Suhl second order) =go*„etcc~c ~ +H. c., (2)

FIG. 1. (a) First-order Suhl process. A uniform
mode (k = 0) magnon is destroyed and a pair k, —k of
nonzero wave-vector magnons is created. Conservation
of energy requires ~&=2wp, and this is possible in a YIG
sphere at room temperature on resonance only for ~p/
27I & 3.3 GHz. {b) Second-order Suhl process. Two uni-
form-mode magnons are destroyed and a pair k, —k of
nonzero wave-vector magnons is created with Q)y= Q)p.

It is always possible to satisfy this condition on reso-
nance.

ing field amplitude. This has been verified ' '

for the first-order Suhl process, which is illus-
trated in Fig. 1(a). For the second-order Suhl
process, shown in Fig. 1(b), however, the sus-
ceptibility falls off more slowly than 1/k. Such
behavior occurs even in highly pure, highly pol-
ished samples of yttrium iron garnet (YIG) where
two-magnon scattering is not overly important.

In this paper we report experiments on both the
uniform mode and second-harmonic generation in
a single-crystal YIG sphere above the second Suhl
threshold. The results are interpreted as show-
ing that the originally excited spin waves k, —k
grow to sufficiently large amplitude that they ex-
cite other spin waves by parametric coupling, as
illustrated in Fig. 2. Striking effects on the sec-
ond-harmonic power output- both steady state and
transient —and second-harmonic line shape are
explained in terms of coherent phase relations
between these other spin waves and the original
ones.

That spin waves other than the first ones to go
unstable can be excited is certainly no surprise.
The noteworthy featur e of our results is the im-
portance of phase relations among the various spin
waves. Such phase coherences are not required in
order to explain the behavior of ferromagneticres-
onance, but they play a dominant role in harmonic
generation.

In order to discuss the effects of coherent and
incoherent phases (and precisely what we mean by
these terms), consider some of the basic equations
involving the second Suhl threshold and harmonic
generation. (We assume throughout that the first
Suhl process [Fig. 1(a)] is forbidden, which is the
case in our experiments on YIG at X band. ] The
4'+0 spin-wave amplitude c& satisfies the equation

where H. c. stands for "Hermitian conjugate" and
the c 's and c~'s are treated as boson annihilation
and creation operators, respectively. The "other
terms" in (1) describe all other scatteringprocess-
es in which the mode k is involved. These may
i.nclude coupling with phonons as well as with other
k &0 magnons. A common assumption is to say
that the only important effects of these other terms
are to produce a frequency shift and finite lifetime.
Thus (1) is approximated by

~
~ rv 2

C p
= $M p Cg —g pCk Zg0g CO C

where (d~ is the shifted frequency and g~ is the re-
laxation rate. The standard assumptions required
for the validity of rate equations must be employed
in going from (1) to (3). These include random
phases among the interacting spin waves and small-
ness of all k &0 spin-wave amplitudes compared to
the one in question. When we say that k 40 spin
waves have "incoherent phase relations" we hence-
forth mean that Eq. (3) is satisfied for all spin
waves excited to appreciable amplitude. This term
will be further clarified momentarily.

Solutions of (3) and a similar equation for c t~

show'7'8 that c~ grows exponentially for gs„I co I

&p„,assuming m~ = aro. Steady-state conditions
require, for Ic~I 40,

CO &gOR

which leads to the result that the uniform-mode
amplitude remains constant above threshold. An-
other useful steady-state relation is

FIG. 2. Destruction of the magnons tt, —R created by
the Suhl second-order process. For sufficiently large
amplitudes of k and —k, the pair can break up into
another pair k, -k' by the same type of mechanism
which limits the uniform mode IFig. 1(b)].
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Ck C-k I (gok/'gk)C 0 Ck (5)

M, = Mo —ykE»aka»

&n= ~ucI &I c-n

c =ce '"'
k

(8)

(&)

(8a)

for Icklk40. Thus there is a coherent phase re-
lation between the magnons k and -k. This results
from the fact that k and —fc are excited at the same
time by the destruction of uniform-mode magnons.

Instead of saying that (3) implies incoherent
phases, one could more properly state that the
phases of k and -k are related by (5). That is,
all excited spin-wave pairs have phases such that
they absorb energy from the uniform mode. How-

ever, as seen, this does imply that interactions
among k &0 spin waves may be treated by effective
relaxation rates without worrying about the relative
phases of k and k' when k' is excited by scattering
from k.

It is not difficult to account for leo I increasing
above threshold within the framework of (4). As
the initially excited spin waves grow in amplitude
and the temperature of the magnon system increas-
es, it is reasonable that the relaxation rate q~ will
increase. This allows Ick I' to increase according
to (4). Schlomann has used this same reasoning
to discuss parallel-pump susceptibilities. It ap-
pears to work quite well in describing the trans-
verse resonance susceptibility when the Suhl sec-
ond-order process is operative, as we show in
Sec. IVA. One might then ask why leo) does
remain constant above threshold for the first-order
process. The Appendix is devoted to this question.

The above gives justification for the earlier
statement that it is not necessary to consider phase
relations among the excited spin waves for a de-
scription of the resonance susceptibility. These re-
lations, however, are important to harmonic gen-
eration, as we now show.

The z component of magnetization, where z is
the equilibrium direction, varies at a frequency
2&v if- the transverse magnetization precesses in
an elliptical path at frequency m With suitable
microwave circuitry, this time variation can be
detected in the form of second-harmonic power
radiated from the sample. Ayres, Vartanian, and
Melchor' first observed harmonic generation from
the uniform mode. Richards and Shaw" later
showed that k 40 spin waves also contribute to har-
monic generation.

The pertinent equations for describing second-
harmonic generation are as follows:

(+ Q/4&k)sin &k e '
k +B,/2+»,

k&0,
and &Opo = B,/2~»

(lla)

(11b)

for k = 0 and a sample with equal transverse de-
magnetizing factors. Here &u~= 4myMO, 8» and Q»
are polar and azimuthal angles, respectively, de-
scribing the direction of k, and 8, is a contribution
due to single-ion anisotropy. For cubic symmetry,
B,= 0 if the sample is magnetized along a (100) or
(111)direction and B,= (3yA, /4MO) if magnetized
in a (110) direction, where K, is the first-order
cubic anisotropy constant. It is important to note
that B, is independent of k for single-ion anisotro-
yy-

That spin-deviation and magnon operators are
not one and the same, i.e. , p, ~ &0, results from
terms in the dipolar and anisotropy Hamiltonians
which do not commute with M, . This also gives
rise to time variation of M„expressed by M, (2&@),

which is that part of M, which varies as e '"'. By
referring to c~ and c~ as magnon operators, we
mean that the part of the total Hamiltonian which
is quadratic in the spin-deviation operators X'3'

may be reduced to

=Qk SN»C»C» (12)

upon application of the Holstein-Primakoff trans-
formation. It has been assumed in (8) that all ex-
cited spin waves are driven at the frequency ~.
This implies resonance of the uniform mode under
influence of a driving field at cu and excitation of
spin waves by couylings such that ~~= ~„asfor
the second-order Suhl yrocess.

If the magnitudes and phases of the excited spin
waves are independent of azimuthal angle pk and,
as corresponds to our experiments, the sample
has equal transverse demagnetizing factors and is
magnetized in a direction such that B,40, then the
dipolar contribution to A„p,~ does not survive the
summation in (9) and we are left with

In the above, M, is the total s component of mag-
netization, a~ and a~ are the spin-deviation creation
and annihilation operators, respectively, as de-
fined by Holstein and Primakoff, '

Mo is the satu-
ration magnetization at O' K, and y is the magni-
tude of the electronic-gyromagnetic ratio. The
spin-deviation operators are related to the mag-
non operators c~ and c~~ by the Holstein-Prima-
koff transformation ' whose parameters X& and
p.„aregiven by

&k — Il k

C~ C
t eicot

M (2~) = y @+k~k 0 »eke k- (8b)

(9) M.(») =—
2

' c'o + Z c,'c ',yaB, /, (13)
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a form which will be assumed throughout.
In (13) the k 40 and uniform-mode contributions

have been separated for convenience. Suppose now
that phase relations are assumed as in (5). Then
(13) becomes

M, (2td)= 'c", t+iZ (~") c, 'ykB
2~k k ~O Rk

(14)

Nowv gok is real for all k. It follows that the spin-
wave contribution to second-harmonic power out-
put, which is proportional to lM, (2&@)I, is simply
additive.

Thus the assumption (5) of incoherent phase re-
lations (as defined earlier) leads to a very definite
prediction: The total second-harmonic power out-
put P,„above threshold must be greater than or
equal to that due to the uniform mode alone. Since
the uniform-mode amplitude is found to increase
above threshold, we may also state that P2„must
increase above threshold. Our results show con-
clusively that this is not the case. P~„goes
through a minimum above threshold, and at this
minimum it is from 2 to 5 times less than P~„at
threshold and from 12 to 30 times less than would
be expected from the uniform mode contribution
alone. (The varying numbers reflect differences
in crystal orientation. )

Better accounting of the spin-wave phases is
required to explain our results. Section IV gives
a detailed treatment, but the qualitative features
which provide agreement with experiment may be
discussed here. Let lt and -f be the first spin-
wave pair to acquire large amplitude due to the
Suhl process. When their amplitude becomes suf-
ficiently large, they can excite another pair k',
—k' by the same type parametric coupling. This
is shown in Fig. 2. Assume for simplicity that

gok = 0 so that this new pair absorbs energy from
the pair k, —k alone. The phases co, ckc ~, and
c„'c k' are displayed in the diagram of Fig. 3. We
have assumed gkk and gok to be real and positive,
which is the case for spin waves of interest. '
The phase of ck c

„

is given by an equation analo-
gous to (5):

Ck C-k' = Zhgkk'/ /k') CkC-k C

The important thing to observe in Fig. 3 is that
ck.c k. is 180 out of phase with co and thus, from
(13), destructively interferes with the uniform
mode's contribution to P2„. In this way P2„can
decrease above threshold for excitation of the sec-
ond pair k', —k'.

The fact that parametric processes occur be-
tween pairs of k &0 spin waves as well as between
a given k &0 pair and the uniform mode has been
ignored in the incoherent phase equation (3) which

FIG. 3. Phasor diagram for uniform mode and ex-
cited spin waves. The pair k, —k is excited by the pro-
cess in Fig. 1(b), and the pair k, -k' by the process in
Fig. 2. Coupling between 0 and the uniform mode is
neglected.

lumps all interactions not involving k = 0 into an
effective relaxation rate and frequency shift. When
the phase relations such as (15) demanded by para-
metric excitation are included it is possible to
explain the striking harmonic generation effects to
be described in Sec. III. These include sudden
increase of P2„upon switching off the pulse of in-
cident power and two or three peaks in the second-
harmonic line profile, as well as the above-men-
tioned minimum in P2„.

II. EXPERIMENTAL DETAILS

A. Samples

Experiments were performed at room tempera-
ture on highly polished single-crystal YIG spheres
between 0.5 and 1.3 mm in diameter supplied by
Airtron, Inc. These were found to have an intrinsic
linewidth 4Ho of about 0.4 Oe at a fundamental
frequency &uj2s = 8.42 GHz. (b, Ho is the full width

of the absorption curve at half-maximum in the
limit of no radiation damping by the waveguide
fields. ) Detailed results to be presented here are
for the largest, 1.3-mm-diam, sphere. Similar
results were obtained for smaller samples although
weaker harmonic signals limited accuracy.

The sample was mounted on a quartz rod so that
its (111)direction was approximately along the axis
of the rod. This was accomplished by letting the
sample rotate freely on a horizontal magnet pole
face so that the easy (111) axis is vertical in equi-
librium. It was then glued to a quartz rod with this
position maintained. I- ray analysis later showed
the sample to be orientated with its (111)direction
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at an angle of 4' + 3' from the rod axis. With the
rod perpendicular to the dc field Ho, it was then
possible by rotating the rod to vary approximately
the direction of Ho in the (111)plane.

B. Microwave Circuitry

Power at the fundamental frequency &d/27i = 8.42
GHz was furnished by a 20-W Varian VA-617G cw
travelling wave tube (TWT). The TWT was driven
by an X-13Breflex klystron whose output was
modulated by a Philco diode switch. The diode was
pulsed on by a Hewlett-Packard 212A pulser which
has a rise time of 20 nsec. Because of the non-
linear character of the diode switch, the resulting
pulses of microwave power had rise and fall times
of 5 nsec.

A low-pass filter cut off at 12 GHz was placed
in front of the TWT in order to prevent harmonics
generated by the TWT from being detected.

The microwave circuit at the fundamental fre-
quency is simply a shorted waveguide. But at the
second-harmonic frequency it is a cavity resonant
at 2ru/27i = 16.84 6Hz with a loaded Q of about 2500.
A cavity is not necessary at the fundamental be-
cause of the strength of the YIG transverse res-
onance. It is required at the second harmonic,
though, in order to increase the level of radiated
power to a conveniently detectable level. This
circuitry is accomplished by the geometry shown
in Fig. 4. X-band and Kp, -band waveguides are
cross coupled by a circular iris. The Kp. -band
guide acts as a short circuit to the fundamental
fields while allowing second-harmonic energy to
propagate through the iris. A reduced height sec-
tion which is cut off to the TED& mode below 22 GHz
is placed at the input end of the X-band guide. The

space between the reduced height section and the
iris then forms a TED» cavity which can be made
to resonate at 2~ by proper adjustment of the sap-
phire tuning stub. The TE&0 mode in which funda-
mental energy propagates is not significantly af-
fected by the reduced height section [measured
voltage standing-wave ratio (VSWR) was less than
l. 1].

The sample is placed in the center of the cavity
(whichis —,'X~ from the effective short for the funda-
mental) as shown. In this position M, (2&@) couples
optimally to h, (2+) of the TED,2 mode, and the uni-
form mode is excited by h„(~)of the TE,0 mode.

C. Detection

Resonance at the fundamental frequency is de-
tected by two methods. First, the standard tech-
nique of monitoring the reflected power is used.
Second, the precessing transverse magnetization
M~(&o) is detected by a coupling loop in the x-z
plane as shown in Fig. 4. The loop is particularly
useful for transient measurements of the trans-
verse magnetization since it responds only to fields
generated by M, . Steady-state measurements re-
ported here were taken by the reflection method
while transient data are from the loop.

The second-harmonic power on threshold radi-
ated into the Kp. -band guide is of the order of 10 '
mW= —50 dBm (dB above 1 mW) for the cavity de-
scribed above. This agrees well with the calcu-
lated value. ' Since transient as well as steady-
state measurements of P2„were performed, we had
to balance sensitivity with bandwidth in designing
a detection scheme. The most satisfactory ar-
rangement with available equipment proved to be
superheterodyne detection and video amplification
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Phase of the second-harmonic signal was mea-
sured by the following method, shown in Fig. 5.
Some (- 20dB) of the incident fundamental power
is fed into a crystal diode which is used as a har-
monic generator. The second harmonic produced
in this way has a constant phase with respect to
the incident fields at ~ and hence with respect to
the uniform mode if resonance conditions are
maintained. It is then mixed with the second har-
monic generated from the sample. One can mea-
sure how the phase of the 2~ signal generated from
the sample varies with power by observing the
amount of phase shift which has to be introduced
by the precision phase shifter in order to mini-
mize the detected signal. He must, of course,
not make any adjustments of attenuators beyond
the coupler in Fig. 5, nor do anything else to
introduce an extra phase shift as the power is in-
creased. Also, the phase difference between ~
incident upon and 2& generated from the diode
must not depend on power level. This was checked
and found to be the case.

E. Coupling of Sample to Waveguide Fields

Parameters are measured as a function of rf
driving field h at the fundamental frequency. As
used throughout, h is the field which exists in the
sample. It is related to ho, the waveguide field in
the absence of the sample, on magnetic resonance
by4, 14

h =ho/(1+ p)

where P is the sample coupling coefficient

P = 16m V, y /X, ab

(16)

for the sample located as in Fig. 4 where V, is the
sample volume, X, is the guide wavelength, ab is
the waveguide cross section, and X is the imag-
inary part of the rf susceptibility on resonance.

for most of the measurements. An X-12 klystron
was used as a local oscillator, and the i.f. fre-
quency was 80 MHz. The i.f. envelope was am-
plified with a Hewlett-Packard 462A video amplifier
and displayed directly on the face of a Tektronix
581A oscilloscope. In this way powers of —60
dBm could be detected. Straight video detection
could be used at higher powers where sensitivity
was not an overriding factor.

The cavity Q limited the response time to 50
nsec. For some measurements it was necessary
to look at shorter-time responses. Here we re-
moved the iris, thereby reducing the loaded Q to
about 300 and cavity ring time to about 5 nsec.
(A cavity remained at 2~ because of the disconti-
nuity between X- and Kp, -band guides. )

D. Measurement of Second-Harmonic Phase

HG. 1 X- Kp,

P

20dE|
H.G2

2 Eal

Detection
FIG. 5. Microwave circuitry for measurement of

second-harmonic phase. The solid lines indicate the
&-band waveguide and the thick and thin lines, the Ep-
band waveguide; R is the variable attenuator; the arrow
is the isolator; the circle with an arrow is precision
phase shifter; X-Kp is the X-band to &p-band transi-
tion; H. G. l is the diode harmonic generator; H. 6.2 is
the YIG sample harmonic generator; 20 dB is the 20-dB
directional coupler. X'-band components related to
coupling fundamental power &;„into sample and detec-
tion of reflected power are not shown.

Experimentally, p is measured as

P = r, overcoupled sample
= 1/r, under coupled sample, (18)

where x is the VSWR on resonance, it being as-
sumed the fundamental frequency microwave cir-
cuit is a shorted waveguide so that ~- ~ well off
resonance. Distinction between overcoupled and
undercoupled can readily be made by microwave
techniques. '

The 1.3-mm-diam sphere was overcouyled with

P = 9. Such strong coupling, even without a cavity,
is typical for YIG. The large value of P has two
important consequences. First, h is not propor-
tional to incident power above threshold since X"
is power dependent in this region. Second, there
is a sizable radiation-damping contribution to
linewidth. Analysis~4 shows that

~H, =~H„+~H, =~H, (1+P)

where 4H&, the loaded linewidth, is what is ob-
served experimentally, &H& is the radiation
damping contribution to linewidth, and ~HO is the
previously defined intrinsic linewidth. From mea-
surement of &Hz, and VSWR on resonance, (18)
and (19) can be used to determine AHO.

Transient decay of the uniform mode occurs at
a rate ybHl. which, for the 1.3-mm sample, is
10 times faster than the intrinsic decay rate yhHO.
Spin waves decay at their intrinsic rates, however,
since k 40 modes do not couple to transverse
driving fields. This feature enables us to study
the k 0 contribution to second harmonic by ob-
serving the decay rate of M,(2~), since for times
much greater than (yb Hz, )

' it is dominated by
k 40 spin waves.

Coupling of M,(2&@) to the second-harmonic cav-
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FIG. 6. Square of transverse magnetization lM&(~) l

versus square of driving field at sample h2. Suhl thresh-
old occurs at 0 dB, which corresponds to k=6.5 x10
Oe. The solid curve is Eq. (30) with C' =2. The dashed
curve shows behavior for inhomogeneity scattering.

Figure 6 shows transverse magnetization
IM, (u&) I versus fundamental rf field h. Threshold
is clearly recognized, as is the fact that IM~(v) I

increases above threshold. The critical field is
h, =6. 5&&10 Oe, 2nd the intrinsic linewidth is
WHO= 0. 38 Oe. From the relation'

a, = ~a, (r e, /4')'", (20)

we obtain hH„=0. 51 Oe as the full linewidth of the
~-directed spin wave, which is the first to go un-

ity fields can, in principle, lead to radiation
damping of the uniform and k 40 modes. But for
the low efficiency of harmonic generation reported
here, this effect is completely negligible.

III. RESULTS

A. Uniform-Mode Resonance

stable since it has the maximum coupling go~. In
(20), 4' =1750 6 is the saturation magnetization
of YIG at room temperature.

Above threshold the dc field H, required for
resonance, changes with power level, as observed
by Matcovich et al. Data were taken with H ad-
justed to give resonance at each power level. The
solid curve in Fig. 6 is theoretical and is dis-
cussed in Sec. IVA. The dashed curve shows the
expected behavior when two magnon-scattering
processes are included but nonlinear processes
between k 40 spin waves are ignored. Both the
general shape of the curve above threshold and
the value of b,H~ agree closely with previous mea-
surements. ~ Linewidths and behavior of IM~(w) I

above threshold are insensitive to orientation of H
in the (ill) plane, although the value of H required
for resonance does vary in a manner well corre-
lated' with theory.

Relaxation oscillations' occur for h greater
than 16 dB above threshold and prevent meaningful
measurements from being taken.

B. Second-Harmonic Power Output

Second-harmonic power output P~„is shown as
a function of A, in Fig. 7 for three different orien-
tations of H approximately in the (111)plane.
Powers are normalized to the values at threshold.
Below threshold the absolute value of P2„varies
with angle in a manner which agrees with the the-
oretical variation of 8, (13) in the (111)plane. '
This is such that P2„is a maximum with H in the
[110]direction and is a minimum with H at an an-
gle of 30' with respect to [110]. The ratio be-
tween maximum and, minimum P2„is about 9.

The dashed curve represents the expected P2„

0

0 (LAN 8$4 g

4
4 4

4

t I

4
2 8

o (ct~)

FIG. 7. Normalized second-
harmonic power output versus
square of driving field. 0 dB
corresponds to threshold. The
circles indicate H along j110];
the squares, H 10' from [110]
approximately in (111) plane;
the triangles, H 20' from [110]
approximately in (111)plane.
The dashed curve is P2„~l~~
&& (~) l4 which represents con-
tribution from uniform mode
alone. The solid curve
through&data is Eq. (42) with
G. and v given by Fig. 11.
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FIG. 8. Phase of second harmonic versus square of
driving field. Data are for H 20' from [110]approxi-
mately in (111)plane, corresponding to A points of Fig.
7. The solid curve is obtained from Eq. (42) with o'. and
v given by Fig. 11.

due to the uniform mode alone. This is given by

P,„(k= 0) o- I c, I ~ IM,(~) I

as follows from (13). Above threshold, the total
I'2„is considerably less than the k = 0 contribution,
in marked disagreement with the picture (5), (15)
in which all excited spin waves have phases such
that they absorb power directly from the uniform
mode.

C. Second-Harmonic Phase

Phase of the second harmonic M,(2~) is shown

in Fig. 8 for one crystal orientation. If we let

M,(2(o) = ctssE(2(c)

then the phase angle 4, is given by

tan4, = lmE(2w)/ReE(2&@) (22)

4Qs~aajv jj'~~

where Im and Re stand for imaginary and real
parts, respectively. Since the dc field is adjusted
to keep the uniform mode on resonance, the phase
of Po is constant with respect to the incident driv-
ing field. This, together with the fact that the
phase of the second-harmonic cavity field is con-
stant with respect to M,(2~), enables 4, to be mea-
sured by the method discussed in Sec. II C.

Note that C, exceeds 90' for a range of powers
above threshold. This is incompatible with Eq.
(15) if

Q (go)/1) a) I ca I & 0 .
080

Examination of go„shows that this certainly should
be the case since tgo„l is very small forgo~&0
and thus there should be relatively few spin waves
excited with go~ & 0. Hence both the phase-shift
and I'~„data refute the predictions based on inco-
herent phase relations among k 40 spin waves.

Qd8

45
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-1.5 H. 1.5 Oe -1.h H, 1.50e

FIG. 9. Second-harmonic power versus dc field H.
Orientation of II is the same as forD points of Fig. 7.
Numbers in dB refer to the level of h above threshold.
Curves on the left are experimental. Curves on the right
are theoretical as explained in Sec. IV C. Transverse
magnetization gives a single resonance line at all power
levels centered at &0. (The value of &0 does change with

power level, and the width of the resonance curve in-
creases with power. )

FIG. 10. Second-harmonic and transverse magnetiza-
tion pulse shapes (a) 6 dB above threshold, 1 psec/cm;
(b) 9.6 dB above threshold, 1 @sec/cm; (c) 14 dB above
threshold, 1 @sec/cm; (d) 8 dB above threshold, 50
nsec/cm. In (a)—(c) the upper trace is second-harmonic
(if envelope) and the lower trace transverse magnetiza-
tion. In (d) the lower trace is second-harmonic (straight
video detection) and the upper trace transverse mag-
netization.
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The solid curve in Fig. 8 is theoretical and is
explained in Sec. IV 8.

D. Second-Harmonic Line Profile

Dependence of P2„upon applied field H has par-
ticularly interesting features as seen in Fig. 9.
Below threshold, a single peak appears at the field
required for resonance Ho. In the region between
threshold and the minimum in P2„,two peaks are
seen with a minimum occurring at Ho. As h is in-
creased above the point where P2„has a minimum,
three peaks appear with the one at Ho growing rel-
ative to the other two. Over the whole range,
however, the uniform-mode resonance gives only
a single line. Theoretical curves are shown

alongside the experimental ones. These are dis-
cussed in Sec. IVC.

E. Pulse Shapes

In Fig. 10 we present a series of fundamental
and second-harmonic pulse shapes observed be-
tween 6 and 14 dB above threshold for Ho along
(110). Other crystal orientations give similar
results. Below threshold the pulse shapes are
essentially square on the I-psec/cm scale. The
fundamental pulses record IM,(&u) l as detected
with the pickup loop (Sec. II C).

The transverse magnetization has an initial
spike above threshold, but no other unusual fea-
tures. The second-harmonic pulse, however, has
additional peculiarities besides the initial spike.
For h greater than about 10dB above threshold,
P&„shows an initial increase after the pulse of
incident power is turned off. At about 12 dB above
threshold P&„develops a second peak after the ini-
tial spike. Results quoted in Secs. II B and IID
referred to the steady-state portion of the P~„
yulse after the second peak has decayed out.

The traces in Figs. 10(a)-10(c) were taken with

Qz = 2500 for the loaded Q of the second-harmonic
cavity. In Fig. 10(d) the loaded Q was reduced to
about 300 so that the initial decline in P~„could
be observed. This effect is masked with the larg-
er Q since it occurs in a time shorter than the
response time for Q~= 2500.

Theoretical curves are presented in Sec. IVD
which reproduce qualitative aspects of those shown
here.

F. Relaxation Rate of Spin Waves from P&~

Since the uniform mode decays very rapidly
(decay time = 15nsec) because of radiation damp-
ing the long-time trailing edge of the P2„pulse is
assumed to be due to 0 WO spin waves. Its long-
time decay constant gives a measure of the relax-
ation rate of spin waves which contribute to second

We show in this section that the peculiarities
associated with second-harmonic generation can
be explained at least qualitatively by accounting
for parametric coupling among k 40 spin waves and
the ensuing phase relations. The behavior of
transverse magnetization above threshold can,
however, be reproduced by a simpler effective-
relaxation-rate theory, which is demonstrated in
Sec. IVA.

A. Uniform Mode above Threshold

Above threshold the uniform mode couples di-
rectly to a pair of z-directed spin waves R and
—k. Following Schlomann's treatmento of paral-
lel pumping' ' above threshold, we assume that
as the amplitudes of k and —k grow their relaxa-
tion rate q~ increases. This is caused by nonlin-
ear processes involving destruction of magnons
k and —k. If the net effect of these simply is to
make q„power dependent then (4) still holds but
with q~ not a constant. Schlomann took

(23)

where q~(0) is the spin-wave relaxation rate below
threshold, T is the lattice and spin-wave tempera-
ture below threshold, and hT the increase in tem-
perature of the spin waves above threshold. The
increase in spin-wave temperature 4T is assumed
to be proportional to PI„the energy absorbed per
sec by the spin waves:

(24)

where C is an appropriate constant. Now PI, is
given from conservation of energy considerations
by

P~=P-Po (26)

where P is the total power dissipated by the sys-
tem of spin waves plus uniform mode and Po is the
power dissipated by the uniform mode. We have

P = —,'&y "h2~ Ico)h

and Pp= Rgpk(up Icp I

(26)

(2'f)

Equation (26) expresses the fact that the total en-
ergy absorbed from the driving field arises from

harmonic. We find this rate corresponds to AH,
=0.630e approximately independent of power lev-
el for A, greater than 9. 6dB above threshold. At
lower powers, the signals were too weak for mean-
ingful measurement to be performed. This value
of 4HI, is close to the figure 0. 510e obtainedfrom
the critical rf field (Sec. IIIA).

Time bases as shown in Fig. 10(d) were used
for these measurements.

IV. THEORY AND INTERPRETATION OF RESULTS
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coupling of the uniform mode to h since the k 40
modes do not couple directly. In the steady state,
the total energy absorbed is, of course, equal to
the total energy dissipated.

It is convenient to introduce normalized vari-
ables defined by

have a finite value below threshold. Solutions of
(3) and a similar equation for c» then give for
an e'"o' time dependence

2i Ic» I tl»Zo»c o {rl»+i (&» +o8'
k 8 -2 2+822 r

x =a/a„„
y = Icol/Icol

(28a)

(23b)

where random phases of ck and c k have been as-
sumed and where

so that x andy represent, respectively, rf field
and uniform-mode amplitudes normalized to their
values on threshold. Then (24) becomes, with use
of (25)-(2V),

n.T/T =C'y(x —y) (29)

where C is a new constant. With (29) in (23) and

(4) we then have

yo= 1+C 'y(x —y) (30)

B. Second Harmonic, Power Output, and Phase

As mentioned previously, the simple phase re-
lation (5) is totally inadequate for explaining sec-
ond-harmonic data. Before proceeding to analyze
phase relations in the presence of parametric cou-

pling between k 40 spin waves, we wish to justify
an assumption used throughout: The excited spin
waves all have effective frequency 8k=(do= + . It
is important that this be examined since if the spin
waves are not excited in resonance (2» &Go), then

one can expect departures from (5) even for a sin-
gle pair of excited magnons. The second equality,
&o = ~, is always satisfied by proper adjustment of
8 to ensure resonance of the uniform mode. The
symbols &ok and coo are used to account for power-
dependent frequency shifts.

To discuss the above question we replace the
term q»c» by q»(c»- c») in (3) where c» is the ther-
mal equilibrium value of ck. This allows ck to

for the predicted dependence of uniform-mode am-
plitude on rf field (y versus x) above threshold.
Equation (30) with C = —, is shown as the solid line
in Fig. 6. It is seen that the power-dependent
relaxation-rate method of Schlomann gives a good
description up to 12 dB above threshold.

We note that the measured value hH»= 21'»/y
= 0. 510e (Sec. III A) is in exact agreement with
the theory of Sparks, Loudon, and Kittel for re-
laxation of a z-directed spin wave by the three-
magnon confluence process. This strengthens our
basic premise that the initial departure from lin-
earity in Fig. 6 is due to the second-order Suhl

threshold for a homogeneous specimen, and not
caused by inhomogeneity scattering which leads to
a gradual decrease in susceptibility for Ico I &7I»/

~Ok ~

nk= nk
—)sok)')Co) ' (32)

Ck = —
Z kCk QkCk ZgokCOC k

—Z~ gkk Ck C-k C k
k'~ O

where gkk. is the coupling constant appropriate to
the four -magnon process in Fig. 2, and gkk = 0.
Since only a portion of the scattering terms has
been treated explicitly, (33) is still not exact, but
it should contain the most important parametric
terms. The reasons for sorting out the k, —k- k', —k' terms as opposed to three-magnon or
k, q-k', —k'+k+q(qx —k) processes are that (a)
only processes of this type give rise to a coherent
phase between spin waves k' and -k", and such
phase coherence is necessary in order for the pair

The first term in curly brackets of (31) leads to the
phase relation (5). The term i (9» —&Do) causes a
departure from (5), but it is negligible for the fol-
lowing reasons. From the denominator in (31) we
see that &kc~ is appreciable only for l~k- Go)

Thus the ratio of the second to the first
term in curly brackets of (31) should not be great-
er than the order of q»/g» . But for spin waves ex-
cited to large amplitude by parametric coupling,
gk-0, and thus gk «gk for the important spin
waves. The same point has been made by Schlo-
mann in showing that gk is sufficiently small that
effects may be observed due to discreteness of the
spin-wave spectrum. A second reason for ignor-
ing the Qk —coo contribution to phase shift is that if
a group of spin waves centered about 2k= Qo is ex-
cited then the summation g» c»c~ is involved. The
magnitudes of the contributions of the qk and Qk
—Go terms in curly brackets of (31) will then have
a ratio of the order of go»/q»(ago»/9&v»), which should
be of the order of e»/q»»1.

Having seen that nonresonant (8» &2o) excitation
of spin waves cannot account for significant depar-
tures from the simple phase relation (5), we now

examine parametric processes involving k &0 spin
waves. The other terms in (1) are written so as
to take explicit account of four-magnon processes
in which k and —k are converted to k' and —k'

(Fig. 2). All other scattering processes are as-
sumed to be describable by effective relaxation
rates and frequency shifts. Thus (3) becomes
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to contribute to P2„(13).That is, if k' is excited
by one scattering and -k' by another, they will
not —at least in first approximation —contribute to
second harmonic since their phases will be random;
(b) the initial spin waves to have large amplitude are
of opposite momenta since they are excited from
the uniform mode. The next energy- and momen-
tum-conserving nonlinear process which can then
occur is one in which the initial pair scatters into
another pair since relatively large amplitudes of
the incident magnons are required. A three-mag-
non splitting process k-k', k -k' is not allowed
since we assume that the first-order Suhl process
is forbidden, and thus there are no spin waves k'
for which 0)k, = —2'too= —,

'
tok. Thus (33) does account

for the initial parametric processes properly.
We assume an e time dependence and Gk = Go

for all spin waves, as discussed previously.
Steady-state solution to (33) then yields, similar
to (5),

cic', =c' "c, +2 C;ccc,'c,'.) )c, l' . (34)
k'40

If a phase angle Ck is defined by

c„c,=i Ic, I'c 'e' "/Ici)l'

then (34) becomes

eio» g0»
I I2 Q g ck

I
I2 ic»

&k k'AO

The relation (13) for M, (20)) is

j j2 fe'k

( )
yk8, , g I I

p Cp

(36)

(37)

Z lc, l'e' »= Z " Ic, l'Ic I'
k ~O k'~O Rk'

Thus an expression is needed for jck j e k summed
over the excited spin waves. For the sake of ob-
taining a solution we assume that g» ). Ogkk Ic„.I'/tI».
is independent of k. This can be reasonable well
above threshold when many spin waves should be
excited. However, it is of questionable validity
immediately above threshold where only one spin-
wave pair has large amplitude. With this assump-
tion (36) then gives

g»qolckl . The groundwork for this has been laid
in Eqs. (25)-(27), which give power absorbed and
dissipated by the k &0 spin waves and the uniform
mode. Since we assume &ok= (do for all excited spin
waves, the expression for the spin-wave energy
dissipated per sec is, analogous to (27),

Pk= 2ho)OZ )1»IC, I'
k~p

Use of (26), (27), and (39) then gives

(39)

Z Ic, I'=, , Ico I',»ty(x -y)
kwo

(40)

in terms of the normalized variables x and y (28).
The quantity (pk& represents an average of 7i» over
the excited spin waves:

(q, &
= Q ri, I c, I'/2 Ic, I

'
k40 k &0

(41)

With (40) and (38) in (37), we then get

M(2 ) 1+ t2 y (x -y) 1+ t2 y (x -y)
(42)

(43a)~= &gkk'/teak&(i'o/&'ilk&) lcol t

)' =
&gok/'0» & (')10/ &7lk & ) Ic o I (43b)

with averages (& defined as in (41) with respect to
the distribution of excited spin waves.

The effect of coupling between k &0 spin waves,
expressed by n, is seen to reduce IM, (2to) II both
by adding a component 180' out of phase with co
[second term in (42)] and by reducing the 90' com-
ponent [third term in (42)]. With u = 0 (42) reduces
to (14).

The second-harmonic phase C, (22) has its tan-
gent given by the ratio of the imaginary to the real
parts of the expression in brackets of (42). For
v & n, it is possible to have C, &90 sufficiently far
above threshold, in agreement with experiment
(Fig. 8).

Equation (42) has been compared with experi-
ment by treating a and v as adjustable parameters
which are uniquely determined by P~„and 4,. The
quantities x and y are taken from the data of Fig.
6. It is reasonable to expect n and v to decrease

't»1
kk'j~, j2

k'0 0 Ik'
(38)

The above shows that as the number of excited spin
waves increases the net phase of the spin waves
with respect to the uniform mode is such as to in-
troduce a component which interferes destructively
with c 0' in the contribution to P2„(forg,*„.and go»
of the same sign). This confirms the physical pic-
ture discussed in connection with Fig. 3.

The next step is to obtain an expression for

1.0-

.6-

.20
I

8
h (dB)

I

12

FIG. 11. Dependence
of parameters & and v

tEq. (43)) upon square of
driving field. Solid curves
of Figs. 7 and 8 are ob-
tained from this figure
and Eq. (42).
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with increasing power well above threshold. This
is because g~ must be regarded as an effective re-
laxation rate into which all nonlinear processes
other than the k, -k-k', -k ones are lumped.
Also (go~/g~) can be expected to decrease even for
constant q~ as spin waves are excited which couple
more weakly to the uniform mode than the initial
pair. Thus we have attempted to fit the data of
Figs. 7 and 8 (20' orientation only for Fig. 7) with
values of o.'and v which are not allowed to increase
with h. The resulting o. and v are shown in Fig.
11, and the theoretical curves are the solid ones
in Figs. 7 and 8. Above the region where & and v

are constant, the points in Fig. 11 correspond to
the values required to obtain exact agreement. At
lower powers v must increase with h in order to
get perfect agreement. Use of a constant in this
range has a negligible effect on P,„,but does pro-
duce as much as 20% error in C, , as seen. It is
noteworthy that with n and v decreasing functions
of h it is possible to describe the maximum in P2„
at about 15 dB above threshold.

The values of n and v used in the constant region
of Fig. 11 are 1.5 and 1.4, respectively. They
can be estimated theoretically from the experimen-
tal measurements of &H, and hH, . Since xl~/go/
= Ical~„«on threshold, we should have v= go/gq
= 0.75. The quantity g» is' approximately equal
to gp& for k and z-directed spin wave, so we should
expect &=v. Hence there is about a factor of 2

discrepancy between the predicted o. and v and the
ones given in Fig. 8. This, together with the fact
that v must increase initially in order to reproduce
the phase shift, is perhaps indicative of the weak-
ness of our assumptions immediately above thresh-
old, as discussed prior to Eq. (38). We also
point out, though, that since (21) &H~/& Ho is pro-
portional to h,/&Ho, 10/o errors in the measure-
ment of AHo and h, couldalter the ratio b, H~/&Ho

by a factor of 1.7, so the factor of 2 error in n

and v may not be too serious.
Equation (42) differs slightly from a previous

version. In the earlier work we treated C» as
independent of k and solved (36) for tan@~. This
leads to an inconsistency which was not appreciated
at the time. Phase-shift measurements had not yet
been performed then, so the unique determination
of n and v was not possible.

C. Second-Harmonic Line Profile

The structured P2„line shapes of Fig. 9 may be
understood in terms of the dependence of P2„ver-
sus h on resonance (Fig. 7). To do this we make
the following assumption: The power output at any
dc field H depends only on the uniform-mode am-
plitude. That is, for a given value of bcpl, P~„is
the same whether this value is attained on reso-

y'=yo [1+4(H -H, )'/AH2~] ' (44)

where yp is the value of y on resonance. The load-
ed linewidth &HI, is used since H is varied at con-
stant driving field ho (see Sec. II E. ). As y de-
creases from yp to zero, P,

„

then assumes in suc-
cession all values on the curve P,„versus y for
y ~yp. Thus, for example, if we are at the mini-
mum in Pa„(about 10 dB above threshold) with H
on resonance, then as H is moved off resonance
P~„increases since decrease in y means an in-
crease in P2„in this region. A maximum in P2„
versus H occurs for y = 1 as can be seen from Fig.
7. Also it is evident that for h above the value
at the minimum in P2„,there will be a local maxi-
mum in P» on resonance while for h less than-
that required for the minimum, P2„will go through
a minimum on resonance.

Quantitative line shapes P~ (H) are readily ob-
tained from Figs. 6 and 7 and Eq. (44). Thus we
have

P,„(H)= P,„[x[y(H)]}, (45)

indicating that P2„is a function of driving field x
(28a) which is a function of uniform-mode amplitude

y which is in turn a function of dc field H. The re-
sulting curves in Fig. 9 are seen to agree well
with experiment.

nance (H=H, ) or off resonance (H &H,). Justifica-
tions for this assumption are that (a) the ellipticity
of the modes, which gives rise to second harmonic,
is independent of H -Hp because it is governed by
the natural elliptical precession of the mode (hop, o

&0). A case for which ellipticity does depend on
H Hp occurs for Xpp, p

= 0. Then the natural pre-
cession is circular, and second-harmonic genera-
tion is possible only by excitation of both the res-
sonant and counter-rotating senses of circular po-
larization. As long as Xo~ » EHO/Ho, effects of
the counter-rotating component on P~„may be ne-
glected. For YIG with H in the (111)plane, this
condition is well satisfied. (b) Nonlinear excita-
tion of spin waves takes place by coupling to the
uniform mode rather than the driving field. Thus,
for example, Eq. (33) involves only co~, and no
mention need be made of whether or not the uniform
mode is on resonance.

Consider then one of the curves in Fig. 7, which
gives P2„versus h for H adjusted to resonance.
This can readily be converted to P&„versus y
(28a) by use of Fig. 6. The general shape of Pa„
versus y is the same as P,„versus h since y is
an increasing function of k. Now as H is varied
off resonance y decreases. To be specific, we
take a Lorentzian
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D. Pulse Shapes

Transient Decay

Keys to behavior of the second-harmonic pulse
after the incident fundamental power has been
turned off are the vector diagrams of Fig. 12 and
the fact that the uniform mode decays much more
rapidly than the k +0 spin waves due to radiation
damping. The spin-wave contribution to Pz„,gk
&&c~tc~~ is divided into components 90' and 180' out
of phase with cata. Figure 12(a) is for the 180'
component k„oless than Ico I in the steady state.
ln this case, IM,(2+) I decreases during the rapid
decay of the uniform mode, as long as Ico I &kysp.
After Ico I has decayed to the level k,ko, IM, (2+) I

increases until such time as relaxation of the k90
and k, so components becomes important. This
situation corresponds to the trace in Fig. 10(d).

Figure 12(b) is for k„ogreater than Ico I in the
steady state. Then I M, (2&v) I initially increases
as IcoI' decreases. Figures 10(b) and 10(c) show
the experimental decays for this case.

2. Approach to Steady State

In an effort to reproduce the pulse shapes of
Fig. 10 in the region before steady-state values
are reached, we have obtained numerical solutions

to the coupled nonlinear Eqs. (33) and the uniform-
mode equation

0 +0 0 loco +k+fk k -k 0 )

(48)

where F is a driving term proportional to h. As
many as three pairs of excited spin waves k, —k;

—%; and R ', —R have been considered. Fre-
quencies ur& and relaxation rates g~ are held con-
stant during the calculation.

Spin-wave buildup cannot occur unless the ini-
tial k 40 amplitudes are nonzero. It is possible to
rewrite (33) and the similar equation for ctk as
coupled equations for the quantities c,c ~, c~c

„

and lc~ I = lc & I . The advantage of this is that
separate initial conditions can be placed on Ic„l
and c~c, . %e have taken c„c„=0, Ic& l

=0. 1lcol«« for all k+0 and co= Ical =0 as initial
conditions. These allow for random phases at
t = 0 and let the spin waves build up in a fairly
short period of time. Since we are primarily in-
terested in the shape of the pulse rather than ab-
solute buildup times, the initial value of Ic, I is
not overly important.

Harker and Shaw have also obtained computer
solutions for spin-wave buildup and reaction back

(2~)
/

/
/

/
/

kgo

k180

t=o

, -&90
'Mz(2~)

k180

kgo

"Mz(2~)

= kgo=Mz(2~)

k180

k90

180

M z(2~)

f Mz(2~) I

0 t-1 t-2

FIG. 12. Phasor diagrams for explanation of transient decay of second-harmonic pulse. 0, kep kg8p are, respec-
tively, contribution to ~~(2~) of uniform mode, spin waves 90' out of phase with cp, and spin waves 180 out of phase
with cp . (a) kf8p~ )cpl in steady state, (b) kg8p& leg l in steady state. Incident power is turned off at t=o, and uniform
mode decays rapidly owing to radiation damping. Uniform-mode amplitude has become negligible in time t2 in (a) and
t( in {b).
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on the uniform mode. They performed integrations
over % space and thus included all spin waves which
interact with the uniform mode, but they did not
consider interactions among k 40 spin waves as
we do. That is, they solved Eqs. (3) and (46).
Interaction terms g», of course, complicate mat-
ters considerably and restrict us to a small num-
ber of spin-wave pairs.

Results are shown in Fig. 13 for two and three
pairs of excited spin waves. Parameters are
given in the figure caption. The initial spikes
agree with experiment quite well. These occur
because the uniform mode can build up to a great-
er-than-steady-state value before the limiting ef-
fects of spin waves are manifested. Transient de-
cays also are satisfactorily reproduced.

The main feature we had hoped to explain, how-
ever, is the pronounced second peak on the har-
monic pulse [Fig. 10 (c)] which occurs after the
transverse magnetization appears to have reached
steady state. Comparison of Fig. 13 with Fig. 10
(c) shows that we have not had much success in
this regard. We do note, though, that the curve
with three spin-wave pairs shows a much longer
decay of the second peak than does the one for two
spin-wave pairs. This is a step in the right direc-
tion, and perhaps a model with many more inter-
acting pairs can reproduce the experimental re-
sults. Computer time for such a calculation is
likely to be prohibitive, however. Twelve minutes
on a GE-625 were required for two spin-wave
pairs, and 20 min for three pairs.

E. Spin-Wave Contribution to P from Transient Decay

In our previous work' ' we felt that the steady-
state spin-wave contribution to P~„,proportional to

ig„,cktc tk I', could be estimatedby extrapolating
the long-time behavior of the P~„transient back
to the time at which the incident pulse is turned
off. The values thus obtained were, however, con-
siderably greater than given by theory (see Fig. 2
of Ref. 22).

The reason for this discrepancy is probably that
initially after the incident pulse is turned off the
spin waves decay at a rate slower than g~ because
of energy supplied from the uniform mode. Not
until the uniform-mode amplitude has decayed well
below the threshold value can we expect the spin-
wave contribution to P2„to show an e "&' depen-
dence. Thus if the long-time portion of P2„,which
does go as e "k', is extrapolated back to t = 0 (time
at which incident pulse is turned off) the resulting
extrapolation will be greater than the true value
at t =0.

V. SUMMARY AND CONCLUSIONS

Measurements of second-harmonic power output

have been performed above the second-order Suhl
threshold. These show several interesting fea-
tures. The steady-state power output goes through
a minimum and then a maximum as incident power
is increased above threshold. Dependence of P2„
upon dc field H shows two and then three peaks.
After the pulse of incident power is turned off, P2„
initially increases. None of these curiosities is
reflected in the uniform-mode behavior. The
transverse magnetization always increases above
threshold, shows only a single peak versus H, and
decays normally.

Parametric coupling between the initial spin
waves which go unstable and other k 40 spin waves
can explain the above effects. This coupling im-
plies phase relations such that the second group of
excited spin waves contributes to P3„180'out of
phase with the uniform mode. On the other hand,
if all k 40 magnon-magnon interactions are lumped
into effective relaxation rates, all spin waves
would contribute to Pz„90'out of phase with the
uniform mode, and none of the observed anomalies
would result.

We conclude that our experiments give striking
evidence of the fact that the same type Suhl pro-
cesses which limit uniform-mode growth also oc-
cur for the spin waves which are excited by the
uniform mode. This coupling produces coherent
phase relations which can be inferred from study

FIG. 13. Computer solutions for transverse magneti-
zation and second-harmonic pulses. Driving field cor-
responds to 14 dB above threshold. Solid curves I'2„,
dashed curves l~~(~) I2. Curves are normalized to
steady-state values. (a) For two spin-wave pairs k, —k
and k', —k' excited; qo/&k=0. 8, pk /0k ——0.5, Z+, /+ok ——0.5,
g» /Aq=0. 8. (b) For three spin-wave pairs %, -k,
k'-k', and k", -k" excited; qo/qI, =0.8, g„./g~=0. 5,

gOk'/+Ok ' & gOk" ~ gk'k '/+Ok gkk "/80k
Ak'/Ak =0 7.
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y = ~no(0)/f) o (47)

where qo(0) is the uniform-mode-relaxation rate
below threshold and

Qo $0+2 gok tck I cos@k2

@40
(46)

This involves an average of g0~cosC„over the
distribution of excited spin waves while the aver-
age of cosC„itself is needed for P2„. Also g0 may
be power dependent since it depends on the spin-
wave temperature. Thus two new parameters,
depending upon variation of qo and (@ok) with pow-
er, are required; so it is not possible to predict
uniform-mode behavior from the quantities n and

v alone which are needed for the P2 data.
We have attempted'4 fitting the transverse mag-

netization data with a two —spin-wave-pair model,

of harmonic generation. Analysis of the trans-
verse resonance alone does not reveal the pres-
ence of these phase relations between k 40 modes;
so the usefulness of harmonic generation as a re-
search tool is established.

Agreement between theory and experiment is
satisfactory in most aspects. The strong second
peak on the P2„pulse has not been adequately ex-
plained, however. This is an interesting effect
since it shows that relatively large harmonic pow-
er outputs are possible on the front part of the
pulse and for times longer than required for the
transverse magnetization to reach its steady-state
level. There are indications that inclusion of
many spin-wave pairs in a numerical calculation
may reproduce the observed pulse shape. This is
based on the fact that three spin-wave pairs gives
a better qualitative picture than two pairs. A sec-
ond point is that the assumption of azimuthal in-
dependence of ckc k, whereby one goes from (9)
and (lla) to (13) may not hold, at least during the
transient buildup. If, for example, spin waves
with 0k= —,m and one definite Qk were to be excited,
they could make a very large contribution to
P2„(ur„=30B, for YIG) without having a drastic ef-
fect on the transverse magnetization. Crystalline
anisotropy does introduce Qk dependence; so such
a situation could be possible.

The effective-relaxation-rate treatment (Sec.
IV A) does reproduce the transverse magnetization
quite well whereas we know from the harmonic- gen-
eration data that this theory cannot be correct.
Such agreement must therefore be regarded as
fortuitous. Ideally the dependence of uniform-
mode amplitude upon driving field should be ob-
tained from (33) and (46) with the same param-
eters as required to fit the harmonic-generation
data. In this way we would have a completely con-
sistent theory. On resonance, (35) and (46) yield

but the results are not nearly as good as those ob-
tained from Eq. (30). Thus the effective-relaxa-
tion-rate description of the uniform mode above
resonance is useful if not correct.
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APPENDIX: SUHL FIRST-ORDER PROCESS

The uniform-mode amplitude stays constant
above threshold when the Suhl first-order process
is allowed on resonance. ' ' To our knowledge
there are no exceptions to this reported in the lit-
erature, and we have verified the behavior with
experiments on our YIG spheres between 1.86 and
2. 1 GHz (frequency must be less than 3. 3 GHz for
the process to be allowed on resonance in a YIG
sphere a.t room temperature).

Why there is "sticking" for the first-order, but
not for the second-order process, m3y be under-
stood either in terms of the effective-relaxation
rate model or explicit consideration of the para-
metric processes. Consider first the effective-
relaxation-rate picture. We assume Eqs. (23) and
(24) to hold for the first-order process with rough-
ly the same value of C. Then since the critical
value of (c0( for the first-order process is less
than that for the second-order process by a factor
of the order of qk/&o„«1, (26) and (27) show that
the corresponding change ~T in spin-wave tem-
perature is much less for the first-order process.
That is, much less power is involved in the first-
order process; so there is not sufficient heating
of the spin-wave system to cause g~ to change ap-
preciably.

What about the initially excited spin waves being
limited by parametric processes? Here we note
that for the first-order process the first spin
waves to go unstable have ' 8~= &m. Intheabsence
of anisotropy they willbe excited equally in all azi-
muthal directions; so no one pair can acquire large
amplitude as required for the parametric limiting.
With the inclusion of cubic anisotropy, Schlomann
has shown that azimuthal invariance is preserved
for H in a (100) direction, but the coupling does
vary with Qk for H in the [111]direction. Even in
this latter case, though, there are still six direc-
tions where the coupling constant has the same
maximum value. Hence the amplitude (c&l for
each direction is 6 what it would be if only one
pair were excited; so it is difficult for sufficiently
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large spin-wave amplitudes to be attained. Also,
the next spin waves excited do not have total mo-
mentum of zero, since they are produced by de-
struction of a single magnon k. Thus energy can-
not be coupled into them from the uniform mode.

For the second-order process, the first spin
waves to go unstable are z directed. There is only
one pair, so a large spin-wave amplitude can re-
sult. The next pair k, —k to be excited can ab-
sorb energy from the uniform mode as long as
go&. &0, and this aids in maintaining the excitation.
These considerations show why the initially ex-
cited spin waves are not likely to be limited by

parametric processes when the Suhl first-order
process is involved while such limiting does occur
for the second-order process.

A final note is that for the initially excited spin
wave to undergo a first-order parametric process
one requires the existence of spin waves for which

For a YIGsphere at room temperature,
this means the frequency must be less than 2. 2
GHz. For this reason, we operated at 2. 1 GHz
and below. A null result at these frequencies
showed, consistent with the above, that these pro-
cesses do not in fact occur even when allowed by
conservation of energy.
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