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A detailed analysis of the hyperhne properties of the lighter group-II metals, beryllium and magnesium,
has been carried out to understand the relation between the electronic structures of these hcp metals. The
"lens" and butterflies" of the magnesium Fermi surface have large s character, leading to an apprecia-
ble value of the Knight shift E,. In contrast, beryllium does not have these pieces of the Fermi surface,
and this qualitatively explains the vanishingly small E, for beryllium. Core polarization (cp) plays an
important role in explaining the experimental values of E,. There is a basic difference between beryllium
and magnesium as regards the cp contribution to the Knight shift (X,p). For beryllium, X,'~'&, the p part
of the cp contribution is negative and this, together with a small direct contribution X, , leads to a vanish-
ingly small value for E. (0.7&(10 '%), as compared to —0.25&10 '% obtained experimentally. Orbital
effects are expected to explain the remaining discrepancy in beryllium. For magnesium, X,'& is roughly
38% of E,", and the total theoretical value of E, is 0.0554%, compared to the experimental value of 0.112%.
The uncertainties in the exchange enhancement of X„and the role of other contributions to E, are dis-
cussed. The relaxation time in beryllium is quite large because of the small spin density, and T&T is found
to be 1.0035&10' deg sec as compared to 1.66)(10 obtained experimentally. No experimental value of
T1T is available for magnesium. Our theoretical value, including exchange enhancement eGects, is 0.0346
)&104 deg sec. The relatively large p contribution to X,'& in both the metals plays an important role in
the deviation of E,'T1T from its ideal value, (ye/p~)'A/4vrk~.

I. INTRODUCTION

~ 'HE first-principle theoretical interpretation of
hyperfine properties of metals available from

resonance experiments provides a detailed test of our
knowledge of electronic wave functions. These proper-
ties provide information on electronic behavior in
position space, in the same way that cyclotron reso-
nance, the de Haas —van Alphen effect, and associated
properties provide information about momentum space,
particularly in the vicinity of the Fermi surface. Among
the hyperfine properties that are available from mag-
netic resonance experiments are the isotropic and
anisotropic Knight shifts, the relaxation time, and the
nuclear quadrupole coupling tensor. ' The first three of
these also require a detailed knowledge of the Fermi
surface, since they depend on the spin susceptibility
X„, and the wave functions of the conduction electrons
at the Fermi surface. The metals in which hyperfine
properties are understood in most quantitative detail
are the alkali metals' whose electronic structure and
Fermi surface are relatively simple. Detailed analyses'
have also been performed in metallic lead, whose Fermi
surface, though complex, is well understood both
theoretically and experimentally. The group-II metals
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are more complex than the alkali metals for two reasons.
One is their hcp structure, in contrast to the cubic
structure of alkali metals. Secondly, they have four
electrons per unit cell which is enough to fill two
Brillouin zones. The Fermi surfaces in these metals are
thus expected to be of a more complicated nature than
in the alkali metals. However, by a combination of de-
tailed experimental and theoretical analyses, the band
structure and Fermi surface of these metals are well
understood. Three of the group-II metals in which
resonance data are available are beryllium, magnesium,
and cadmium. The c/a and nt*/m ratios in these metals
(Table I), as well as in zinc, provide an interesting com-
parison among themselves. While the c/tt ratios make
beryllium and magnesium more similar to each other,
with respect to the nt*/m ratio, magnesium is an
exception compared to the other three. There seems,
therefore, to be an interesting interplay between the
lattice structure which determines the framework of the
Brillouin zone and the potential experienced by the
conduction electrons. With respect to the latter,
beryllium and magnesium are expected to be more
similar to each other and different from zinc and
cadmium because the latter have d electrons in their
outermost cores. The combination of these two factors
characterizes the nature of the Fermi surface in each
case. An analysis of the magnetic and hyperfine proper-
ties of these metals should therefore provide a better
understanding of the relation between the electronic
structures of these metals. In this paper, we present a
detailed analysis of the direct and core-polarization' (cp)

' G. D. Gaspari, W. M. Shyu, and T. P. Das, Phys. Rev. 134,
A852 (1964).
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TABLE I. Some structural, band, and electronic properties of group-II metals.

433

Metal

Beryllium

Magnesium

Zinc

Cadmium

c/a

1.567

1.624

1.828

1.862

4.3211

6.026

5.0256

5.6092

rs

2.37

3.324

3.239

(w /eE)expt,

0.45
0.37
1.23
0.946
0.842
0.601
0.731
0.515

(m*/m)ae .b.

0.45

0.59

Electronic
con6gur ation

2$
IS 4

2P6 3$2

3d" 4s2

4d" Ss'

a The upper values represent (m+/m) obtained directly from specific-heat data LBe, Ref. 36; Mg, Ref. 28; Zn, G. Seidel and P. H. Keesom, Phys. Rev.
112, 1083 (1958); Cd, N. E. Phillips, Phys. Rev. 134, A385 (1964)g and the lower ones, after applying electron-phonon correction factors calculated bv
McMillan (Ref. 30) for Be, P. H. Allen, M. L. Cohen, L. M. Falicov, and R. V. Kasowski, Phys. Rev. Letters 21, 1794 (1968) for Zn and Cd. For mag-
nesium no such calculation is available. A 30% correction is used in comparison with Na and Al.

b The theoretical values are from band calculations; for Be, Ref. 13 (OPW procedure), and for Zn and Cd, Ref. 21 (pseudopotential procedure),

contributions to the isotropic Knight shift E, and
relaxation time T&, in magnesium and beryllium. The
Knight shift in beryllium has been reported' briefly
earlier. We shall include more details of the beryllium
calculation as well as an analysis of the relaxation time.
A comparison of the results in the two metals provides
a deeper insight into the mechanisms that are respon-
sible for the contrasting experimental situations of a
small negative Knight shift in beryllium and an
appreciable positive shift in magnesium. A subsequent
paper will report the results of our analysis on cadmium
which are currently under progress. A comparison of
the origin of X„and the hyperfine properties in all
three hcp metals will be made there, to provide a
broader knowledge of this entire group of metals.

Section II will deal with the direct contribution to
the spin density from various parts of the Fermi surface
and the averaging procedure utilized to get the total
spin density. In Sec. III we will be concerned with the
cp7 contribution to spin density. The exchange enhance-
ment effects on both spin susceptibility and relaxation
rate will be discussed in Sec. IV. The results of our
theoretical calculation of Knight shift, T~ and the
Korringa constant will be analyzed in Sec. V and com-
pared with available experimental data. In Sec. VI, the
conclusions from our investigations will be summarized
and suggestions will be made for f'urther research to
obtain an improved understanding of the properties of
these metals.

tion of E," from Eq. (1) requires a knowledge of the
spin susceptibility and a detailed knowledge' of the
hyperfine matrix elements at various points on the
Fermi surface to carry out the average. In this section,
the evaluation of the spin density using the calculated
wave functions will be described. The calculation of the
spin-susceptibility requires a consideration of the
effects' of exchange and correlation among the conduc-
tion electrons, and will be discussed in Sec. IV.

We have utilized the orthogonalized-plane-wave'
(OPW) model for obtaining the energy bands and wave
functions required for our spin-density calculation.
Since a number of reviews" "of the OPW method are
available, we shall only mention the basic steps of our
calculation briefly, both to introduce our notations and
to give an idea of the accuracy of our wave functions.
The wave function of a Bloch electron in an OPW
representation is given by

4g(r) =P C(k+K)%'opw(k+K, r),

the summation being carried over the reciprocal-lattice
vectors K, and a typical OPW function is expressed as

4opw(k r) =Qe 't'e'&+' —Q B&(k) q&(r)

where) refers to the core states of the crystal, and ic,(r)
is the core wave function. The orthogonalization
parameters B&(k) are given by

g, (k) = Q "'(y,
~

e'~' )r
II. ANALYSIS OF SPIN DENSITY AT NUCLEUS Using a spherical harmonic expansion for eik r and

The direct contribution' ~" to the Knight shift is replacing t by the quantum numbers elm of the core

given by states, we obtain

B„g„(k)=4s.(i)'Qs 'IsPr *(k)T„((k),

where X„* is the spin susceptibility per unit volume
(in cgs volume units), Qe is the volume of the Wigner-
Seitz cell over which the conduction electron wave
function is normalized, and. (~ 4'p(0)

~
'),»" is the

averaged direct spin density at the nucleus due to the
conduction electrons at the Fermi surface. The evalua-

8 P. Jena, S. D. Mahanti, and T. P. Das, Phys. Rev. Letters 20,
344 (1968).

9 S. D. Silverstein, Phys. Rev. 130, 912 (1963).' C. Herring, Phys. Rev. 57, 1169 (1940)."T.O. Woodruff, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1957).

'2 J. Callaway, Energy Band Theory (Academic Press Inc..
New York, 1964).
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where

T„t(k) = jt(kr) U«(r)r dr. (6)

K&i-—
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FIG. 1. First Brillouin zone for the hexagonal close-packed
structure. The rA, rM, and rE directions correspond to the
[0001), L1010), and L1120) crystallographic directions, respec-
tively.

"T.L. Loucks and P. H. Cutler, Phys. Rev. 133, A819 (1964);
T. L. Loucks, ibid. 134, A1618 (1964).

L. M. Falicov, Phil. Trans. Roy. Soc. London A255, 55
(1962). We are grateful to Professor Falicov for kindly supplying
us with the pseudocore wave functions.

' J. H. Terrel, Phys. Rev. 149, 526 (1966).
"C.Herring and A. G. Hill, Phys. Rev. 58, 132 (1954)."3.R. Watts, Phys. Letters 3, 284 (1963).

Here U„t(r) is related to the atomic core function

p„tm(r) by the equation

--()=[&-()/ lI'-(~, ) (7)

The coefficients C(k+K) are obtained variationally by
solving the usual set of linear equations.

The lattice parameters for beryllium and magnesium
that we have used in our calculation are given in Table I.
For the core functions q„t (r), we have employed
pseudocore wave functions for both beryllium" and
magnesium' used by earlier workers. The potential for
magnesium was obtained by Falicov" in an earlier
band-structure calculation.

The band structure of beryllium""" has been
analyzed theoretically by several erst-principle calcu-
lations which give good agreement with experimental
Fermi-surface" data from de Haas —van Alphen mea-
surements. We have employed in our calculation for this
metal the potential tabulated by Loucks and Cutler. "
For both beryllium and magnesium, the number of
basis functions employed in constructing the linear
combination of OPW's (LCOPW) was about 23. The
exact number varied between 22 and 24, depending on
the location of the point k in the Brillouin zone (Fig. 1).
Since most of the points on the Fermi surface that we
considered were not points of high symmetry, group
theoretic factorization of the secular equations was not
particularly helpful and was not used.

The Fermi surfaces of beryllium" and magne-
siumi4, ~8—0 are made up of a number of segments which
are given descriptive names for the sake of visualiza-
tion. In the case of magnesium, there are two very small
identical hole pockets in the hrst zone, referred to as
caps [Fig. 2(b)); a large multiply connected hole surface
in the second zone, which contributes the major part of
the area of the Fermi surface and is referred to as the
monster [Fig. 2(a)j; two identical electron pockets in
the third zone with triangular cross sections, resembling
cigars [Fig. 2(c)]; a large electron pocket in. the third
zone centered on I, which is referred to as a lees
[Fig. 2(d)$; and three identical electron pockets in the
third zone around L, referred to as butterjiies [Fig. 2(e)j.
The Fermi surface of beryllium" is somewhat simpler
by comparison, containing only two segments: a large
hole surface in the second band, which is referred to as
a coronet and is the counterpart of the monster in
magnesium, and two identical pockets of electrons in
the third zone referred to as cigars. The cigars in
beryllium are much more pronounced than those in
magnesium and constitute the entire electron part of
the Fermi surface. In addition to these differences in
the nature of the segments of the Fermi surfaces for the
two metals, the features of the Fermi surface in magne-
sium are found to be reasonably well reproduced by the
Harrison" one-OP% model. In beryllium, on the other
hand, the resemblance between the result of Harrison
construction and the actual Fermi surface is poor. In
particular, the former predicts" a lens and butterflies as
in magnesium, but these are absent in the actual Fermi
surface of beryllium. "' A consequence of this differ-
ence in the nature of the Fermi surface of these two
metals is the difference in their effective masses m*,

magnesium being more free-electron-like. The difference
in the features of the Fermi surfaces in the two metals
will have a bearing on the spin density at the nuclei as
we shall see presently.

The Knight shift expression (1) requires an evalua-
tion of the average over the Fermi surface of

l Vr(0) l

s

due to electrons at the Fermi surface. To carry out this
average, one requires a knowledge of the local density
of states at points (j) on the surface (ith segment)

g;, (kr) =
l
V,E,, l s, s —'. (8)

The Fermi surface average is obtained by combining
the averages over the different segments of the Fermi
surface. Thus (l Vs(0)

l
');, the average spin density for

the ith segment, is given by

&le (0) I')'=2 g't(k ) le (0) I
"f'Z g't( ), (9)

where the summation on j runs over points on the
segment i. In our calculation we have chosen points on

» J. C, Kimball, R. W. Stark, and F. M. Mueller, Phys. Rev.
162, 600 (1967).

'9 J.B.Ketterson and R. W. Stark, Phys. Rev. 156, 748 (1967).
'0 R.. W. Stark, Phys. Rev. 136, A998 (1964)."W. A. Harrison, Pseudo Potential irt Theor-y of Metals (W. A.

Benjamin, Inc., Neve York, 1966).



HYPERFINE PROPERTIES OF Be AND Mg

Fro. 2. Single-OPW Fermi surfaces
of magnesium: (a) monster (second-
zone holes); (b) cap (first-zone holes);
(c) cigar (third-zone electrons); (d)
lens (third-zone electrons)i (e) butter-
fly (third-zone electrons); (f) (fourth-
zone electrons).

K (b)

(c)

t
wH

A

(e)

symmetry lines and symmetry planes and utilized
proper geometrical factors to include the contributions
from equivalent points to the summation (9). A com-
parison of the average spin densities (l +p(0) l

'), reveals
the relative extent of s character for the different
segments of the Fermi surface, since the non-s parts of
the wave functions do not contribute to the direct spin
density at the nucleus. The contributions from all the
segments are then combined as in Eq. (10) to obtain the
average over the entire Fermi surface.

(I e,(0) I'&..=p, s,(l e,(0) I
s&,(Z, s, . (1o)

In Eq. (10), g, is the surface area of the ith segment of
the Fermi surface.

The direct spin densities l%'~(0)
l
s' at various points

on the Fermi surface, chosen in our calculation, are
listed in Table II. This table also includes the density-
of-states function g,,(kp) and cp contributions to the

spin density, to be discussed in Sec. III.The correspond-
ing results for

l ++(0) l,' in beryllium have been pre-
sented earlier' and will not be repeated here. The net
contributions to the direct spin density are included in

Tables III and IV for beryllium and magnesium
In beryllium, the direct spin-density results indicate

that the cigars have more s character than the coronet.
However, the contributions of both of these segments
to the direct spin density are small. In magnesium, we

see from Table II that the lens and butterflies which are
absent in beryllium, have strong s character and the
direct spin density in magnesium is, therefore, much
larger than in beryllium. The cigars are more s-like than
the monster, a feature similar to beryllium. The con-
tribution from the cigars is, however, much smaller
than that from the lens and butterflies, since the cigars
have very little surface area in magnesium. The surface
areas that are needed in Eq. (10) to obtain the net

TABLE II. Direct and cp contributions to the spin density (Ss,S,~) from various points on the Fermi surface of magnesium.

Coordinate

(o, o, o.o58)
(0.2208, 0.1275, 0)
(0.253, 0, 0)

(0.6951,0, 0.2771)
(0.6211,O, 0)
(0.6731,0.0381,0)

(0.5213, 0.301,0.2921)
(0.5213, 0.301,0.2711)
(0.5022, 0.29, 0.3211)
(0.5428, 0.2638, 0.3211)

(0.6891,0.0104, 0.3211)
(o.6o6, o, o)
(0.405, 0, 0)
(0.3914,0.226, 0)
(0.3594, 0.2075, 0)

Segment

Lens

Cigars

Butterflies

Monster

0.6858
0.6303
0.6427

0.0220
0.2047
0.2999

0.7161
0.6771
0.6891
0.7200

0.0011
0.1736
0.0
0.0701
0.0602

0.1543
0.1554
0.1492

0.0022
0.0637
0.0815

0.1910
0.1858
0.1556
0.1678

0.0070
0.0429
0.0
0.0155
0.0124

S,p&

0.0161
0.0311
0.0274

0.0700
0.0605
0.0556

0.0110
0.0120
0.0184
0.0136

0.0732
0.0528
0.0576
0.0586
0.0631

S"
—0.0038—0.0030—0.0032

—0.0014—0.0021—0.0019

—0.0044—0.0045—0.0045—0.0044

—0.0012—0.0022—0.0016—0.0018—0.0020

I/I &s& I

0.9346
7.6923
2.5270

1.6284
1.2484
0.1792

3.8461
3.8097
2.1157
4.3643

1.4762
1.1864
1.2456
1.1205
1 ~ 1467
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TABLE III. Direct and cp contributions to the spin density
(Sg and S,p) from various segments of the Fermi surface of
beryllium.

Segments
of Fermi
surface Sd X1o' Sop'X10 Sop X10 Scp"X10 StotX10

Coronet 2.0871 0.3767 —1.8110 —0.0878 0.5651
Cigar 8.0210 1.5348 —2.3162 —0.1263 7.0341
Total 10.1081 1.9115 —4.1272 —0.2141 7.5992

for magnesium, and

Sg '=O. i0ii (12)
for beryllium.

It is more meaningful to compare the ratios of these
densities to that of the valence s states (2s for beryllium
and 3s for magnesium) in the corresponding atoms.
Since the atomic hyperfine effect is measured in the 'P
state, one should use the valence s-state function in this
atomic state. However, the valence s function does not
vary very much between the 'S(3s') and the sP(3s3p)
states and so we have used the former for comparison.
One then gets

SdM /I ps, (0) IM, '=0.2185,

SP'/
I p„(0) I n, ' ——0.1340.

(13)

(14)

These ratios clearly demonstrate the larger fractional
s character in magnesium metal. This fact, coupled
with the diRerence in the nature of the cp in the two
metals, to be discussed in Sec. III, provides an explana-
tion of the contrasting situations for E, in these two
metals.

A knowledge of the average wave function densities
in Eqs. (11) and (12) also allows an evaluation of the
direct contribution to spin-lattice relaxation time (Tt).
The expression for the direct contribution to Tj ' is
given by

(TtT)d—' ——A(Sg)',
'~ E. Fawcett, J. Phys. Chem. Solids 4, 320 i1961l.

(15)

Fermi surface average are tabulated for magnesium in
Table IV. The areas from experimental dimensions
agree very well with those from the Harrison construc-
tion" for the cigar. For the other three segments there
are sizable diRerences rejecting the inRuence of the
potential. Since the band-structure" ' calculation gives
linear dimensions and cross sections. in good a,greement
with experiment, ""it is fair to say that the former
would also give surface areas in reasonable agreement
with the experiment. For beryllium, a similar com-
parison with Harrison construction" is not meaningful.
The surface areas of cigars and coronet are obtained
from I.oucks and Cutlers'" band calculation. The direct
spin densities averaged over the entire Fermi surface
I S& of Eq. (1)$ were found by this procedure to be

g,~« =0.2409

where A = (16s/9) A'y, 'y~'k~g'(E~) Qss, g(E p) is the
density of states per electron (instead of the density per
spin state, which is smaller by a factor of s) at the
Fermi surface, and where k~ is the Boltzmann constant.
On substituting the result of Eqs. (11) and (12) for
beryllium and magnesium in Eq. (15), we get

(T T) '=0 85&(10 deg sec,

(TtT)P'=1.4747X104 deg sec.

(16)

(17)

These values are obtained without the inclusion of
correlation and exchange effects among the conduction
electrons. The correction due to such effects and the
a,dditional contributions from cp eRects will be con-
sidered in Secs. III and IV.

It should be noted that if exchange enhancement and
cp effects are neglected for both E, and (TtT) ', then
the Korringa constant" E,'T~Ty~' has the universal
value

The departure of the actual Korringa constant" from
this result also reRects the relative importance of the
above-mentioned effects and will be analyzed in Sec. V.

III. CP CONTRIBUTION TO SPIN DENSITY

S"=2 «2 ((~mt I
~8 I «)

where the summations on t and t' extend over all the
23 J. Korringa, Physica 16, 601 (1950).
'4 W. M. Shyu, G. D. Gaspari, and T. P. Das, Phys. Rev. 141,

603 (1966);W. M. Shyu, T. P. Das, and G. D. Gaspari, ibid. 152,
270 (1966).

In this section we shall be concerned with the addi-
tional spin density that arises at the nuclear site from
the exchange polarization of core electrons in the
presence of a magnetic field. Since the conduction
electrons have a surplus spin polarization in a direction
antiparallel to the magnetic field, the core electrons
with spin antiparallel to the magnetic field will experi-
ence a different exchange potential due to the conduc-
tion electrons than those with opposite spins. The
procedure for the calculation of the spin density and
Knight shift due to this cp effect by the moment
perturbed (mp) method have been described in a num-
ber of earlier papers. ' This method amounts to
calculating the magnetic moment induced in the core
electrons through the magnetic hyperfine interaction
and the interaction between this induced moment and
the conduction electrons through the exchange eRect.
Since the steps involved in the calculation have been
described in detail elsewhere~ we shall merely quote the
final expressions that are used for the actual quantita-
tive evaluation. Thus, the spin density due to cp is
given by
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TABLE IV. Direct and cp contribution to the spin density from various segments of the Fermi surface of magnesium.

Segment
of Fermi
surface

Lens
Cigars
Butterflies
Monster

Kxpt
surface
area of

the segment

0.6366
0.6252
1.3452
3.9996

Surface area
of the segment
from Harrison
construction

0.7804
0.6252
2.4684
2.7342

Sg

0.6377
0.0813
0.7050
0.0466

0.1543
0.0217
0.1730
0.0135

0.0290
0.0669
0.0138
0.0638

S,
—0.0031—0.0016—0.0044—0.0016

Stot

0.8179
0.1683
0.8874
0.1223

X~=K'~(1)=E'Ek ~'k(1), (20)

core states. The cp contribution to E, is obtained by
multiplying S,~ with (ger/3)X„*Go, the same factor that
one uses to multiply S& to get the direct Knight shift.
In Eq. (19) the operator SCAN describes the exchange
between the core and conduction electrons and is
given by

wave function. The orthogonality of the spherical
harmonics ensures that there are no cross terms such
as (sp), (pd), (sd), . . . arising from cross interaction
between the various angular momentum components.
The following general expression applies to the contri-
bution from the 1th angular momentum component of
the conduction-electron wave function:

where
e&

; (z)s(r)=( % (r ) —s(r ) s ~%'s(r). (21)
r;, )

S.,z =S„z(I)+S.,z(1

4m

S.,'(I) =2 Re g ——P C*(k+K')C(k+K)
~o K, K

(23)

The summation in "i" extends over all the core states
and the summation in k over the conduction-electron
states at the Fermi surface. The average in Eq. (19) is
taken over the Fermi surface and by& are the mp func-
tions corresponding to the core state y&. The by& are
obtained by solving the perturbation equation

( + Pns
I

—P+ ~q -,N

XPz(COSHk+K', k+K) 8Vns(rz)

(
&«z(lk+Klrz) «1I V-.(r2)r2'

ark'+'

IIN Pns+Q (Pn's I HN
I Pns) &P ' ns

n, '8

X~z(lk+K'l, r2) «2+r1' Vns(r2)
~ z+1

+Q (en's ens)(&Pn's
I ~Pns, N) Pn' ss(22)

n's

where rp„, are core s functions and e „the corresponding
eigenvalues and H~ is the Fermi contact term. The
terms 3'Qt in Eq. (19) arise out of nonorthogonality
effects"" involving the perturbed wave functions for
the various cores. These terms do not occur for beryllium
since it has only one core. On the other hand, in magne-
sium the equations for both by j, and 8@2, involve non-
orthogonality terms between perturbed is and 2s core
states. The radial equations corresponding to Eq. (22)
for the magnesium 1s and 2s states are exactly identical
in form to those for aluminum' and will not be re-
produced here. The corresponding equation for the
beryllium 1s core state has also been given earlier. The
solution of the integrodifferential equation was carried
out by a noniterative procedure to obtain the perturbed
functions. For detailed analysis of the cp contribution
to E, and T~, it is useful to separate S,~ into contribu-
tions from s, p, d, . . . pa, rts of the conduction-electron

2~ K. J. Duff and T. P. Das, Phys. Rev. 168, 43 (1968).
ss A. Dalgarnos Proc. Roy. Soc. (London) A251, 282 (1959).

S, '(II) = —2 Re P
8+tL p

() V„,(r) V„,(r)dr

4x
X ——Q C*(k+K')C(k+K)

Qp K, K'

( 1 sk

xPz(COSHk+K, k+K)l v„,(r2)r2'
(r Z+1

X&z( I
k+K I,r~) dr~+rkz

1
V.,(rg)—

z+z

with

x (~ k+zz~, r ) dz(), (25)

Ez( I
k+K I,r)

=riz(lk+K
I r) —P- 2'-z(1k+K I) V-z(r) (26)
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Fro. 3. Unperturbed P1, and moment perturbed bPI, states for magnesium.
(Referred to as Uq, and SUq. in the text. )

In Eqs. (24) and (25), the sums on e and rI' run over all
the core s states; but in Eq. (26), n refers only to the
occupied core states of the particular angular momen-
tum in question. The various contributions of s, p, d, . . .
type are obtained by introducing 1=0, 1, 2, . . . in

Eqs. (24)—(26).
A plot of the mp function 8U&, for beryllium'4 is

already available in the literature. We shall present
only the functions 8Ut, (Fig. 3) and 8U» (Fig. 4) for
magnesium. In addition to their use here, they could be
helpful in the interpretations of Knight shift in magne-
sium alloys. To help in the understanding of the relative
contributions from the polarizations of the 1s and 2s
cores and from the s and p parts of the conduction-

electron wave function (4'„„q), to be discussed later in
the section, we have also presented the unperturbed
atomic functions U~„U2„and V~„ in the same graphs.
As in the analogous case of aluminum, 6U~, and 6U2, are
seen to have one and two nodes, respectively. Using
these mp functions and the expression for S„.~ in Eq. (19),
the contributions S,p', S,~~, and S,~" were calculated for
magnesium. The nonorthogonality terms in S,~ in

Eq. (19) involving the perturbed 1s and 2s functions
gave mutually canceling contributions. Their sum total
amounted to a small percentage (6%%uo) of the direct
term S,~(I) similar to the situations for alkali metals
and aluminum. '4 Further, as in these earlier cases, the
ratio of the nonorthogonality" ",term to the direct
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term involving the perturbed is core was larger than
the corresponding ratio for the 2s core. The same ex-
planation for this effect as that advanced for the alkali
atoms'~ and alkali metals would also apply here. The
direct and cp contributions from various points on the
Fermi surface in beryllium have already been pub-
lished. ' For the sake of completeness we shall merely
quote the total spin densities from the two segments of
the Fermi surface referred to as cigars and coronet.

In Table III, the segmentwise contributions from
the cp, direct and total terms have been listed after
multiplying by the weighting factors related to the
surface areas of these segments. The various types of
contributions to the spin density from the entire Fermi
surface can thus be obtained from listed contributions
from individual segments by vertical addition as indi-
cated in the last row of the table. Particularly meaning-
ful for the analysis of the relaxation time and the
Korringa constant" in Sec. IV, are the total spin
densities from the s, p, and d components of the
conduction-electron wave functions, shown in the last
row of the Table III.

For magnesium, it is interesting to examine the
relative signs and magnitudes of contributions to 5,.~
from the exchange polarization of the 1s and 2s cores

~7 L. Tterlikkis, S. D. Mahanti, and T. P. Das, Phys. Rev. 176,
10 (1968).

by the s, p, and d components of the conduction-electron
wave function. For this purpose, these various contri-
butions to S,~ are listed in Table V for one typical point
on each of the segments of the Fermi surface. The
following features may be noted for S,~ from Table V.
Under the inAuence of the polarizing effect of the s
component of %„~,both is and 2s cores lead to positive
spin densities, the latter being usually a factor of 3
iarger than the former. For the p component of +„„q,
the cp contributions from is and 2s cores have opposite
signs, the latter being positive and more than an order
of magnitude larger than the former. The net S,~
associated with the p part of 4„„qis, therefore, positiee
as in the case of aluminum, '4 but opposite in sign to that
assumed for metals with d bands.

While these observations regarding the signs and the
relative magnitudes of various cp terms are obtained
from actual numerical calculations, they could have
been anticipated from the radial characters of the mp
and unperturbed atomic functions in Figs. 3 and 4. The
latter functions are also representative of the behavior
of conduction-electron OP% functions in the core
regions. Thus, an exaniination of Eq. (24) and the plots
in Fig. 4 reveals that the exchange-polarization integral
for the 2s state derives its contribution from a positive
region in the outer parts of the ion core and negative
region in the inner part. The former region can be seen
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TABLE V. cp contribution from s, p, and d parts of +,0~$ to spin density in magnesium
from 1s and 2s cores for some typical representative points.

Coordinate

(o, o, o.o58)
(0.622i, o, o)
(0.5213, 0.301,0.2921)
(0.3914,0.226, 0}

Segment

I.ens
Cigar

ButterQy
Monster

cp contributions from 1s core
S p

0.3920X10 ' —0.4110X10 ' 0.4693 X10 '
0.1532X10 ' —0.2108X10 ' 0.2020X10 '
0.4560X10 ' —0.4429X10 ' 0.5298 X10 '
0.3756X10 ' —0.1839X10 2 0.1698X10 '

cp contributions from 2s core
S p d

0.1201 0.1647x10 ' —0.4314x10 '
0.4840X10 ' 0.6258X1.0 ' —0.2336X10 '
0.1403 0.1250X10 ' —0.5033X10 '
0.1174X10 ' 0.6038X10 ' —0.1961X10 '

to occupy more phase space, and thus to determine the
over-all sign of the cp contribution. The 1s cp contribu-
tion, because of the small values of r over which the 1s
wave function is confined, derives major contributions
from the negative part of 8Ui, (r) and hence has a nega-
tive sign. Similar examination of the cp effect for the
s part of 0'„„d can help explain the difference in nature
of the observed ratios of the 1s and 2s cp contributions
from the s and p components of %„„q.Our calculated
contributions to the spin density from the direct and
cp terms are listed in Table II for all the 15 points on
the Fermi surface that we have analyzed. Also listed
for reference are the k-dependent density-of-states
functions 1/

~

7'j,E~ which are needed for the averaging
procedure in Eq. (9). In Table IV, we have listed the
average direct and cp contributions from each segment
of the Fermi surface. Because of their importance in the
interpretation of T~T and the Korringa constant, the
contributions to 5,~ from. the s, p, and d components
are again presented separately. Vnlike Table III for
beryllium, the spin densities listed in Table IV for the
various segments of the Fermi surface have not been
multiplied by the weighting factors associated with the
relative areas. Instead, we have listed the two sets of
areas of the segments described in Sec. II, which may
be utilized to obtain the net Fermi surface average.

Several comments may be made about the results for
magnesium in Tables II and IV. The variation in the
direct and the cp contributions over various points
considered for the lens, cigar, and butterfiies is not very
marked. The monster which spans a number of different
parts of the Brillouin zone shows more variations in the
spin density. We have, therefore, utilized more points in
the averaging procedure for monster than for other
cases. The contributions from the four segments of the
Fermi surface indicate that the lens and butterflies have
primarily s character. The monster and cigars, on the
other hand, have more p and d characters and thus
make relatively small contributions to the direct spin
density. The d contribution is seen to be orders of
magnitude less than the p and s contributions and,
therefore, the neglect of higher angular components

f, g, . . . is justified. The over-all cp contribution frmo
the s component of the wave function is seen to be com-
parable to the cp result from the p component. How-
ever, for the Korringa constant the ratio of S,~~ to the
sum of Sd and S,~' is important. This ratio, obtained by

combining contributions from the various segments, is
seen from Table VI to be 6 and positive.

We sha, ll consider the exchange enhancements of X(0,0)
and X(q ~0) separately.

A proper treatment of the exchange enhancement of
X„would require the solution of the problem of Bloch
electrons in a magnetic field. There are two difhculties
connected with this problem. First, the ordinary
metallic densities do not correspond to the extreme
limits of high and low densities, where one can solve the
many-body problem for a uniform electron gas with fair
accuracy. Secondly, there is the problem of the depar-
ture of an actual system from a uniform electron gas, a
consequence of the 1attice potential which leads to the
band structure. We shall utilize the exchange-
enhancement results of Silverstein, ' and use an effective-
mass approximation to incorporate the effects of band
structure.

Silverstein's expression for the exchange enhanced
susceptibility X~* is

Xu—
1+(m/m* —1)X /Xr

(28)

Eq. (28), Xr is the free-electron susceptibility
appropiate to the density of conduction electrons in the

IV. SPIN SUSCEPTIBILITY AND EXCHANGE-
ENHANCEMENT EFFECTS

Both E, and T& are expected to be inRuenced by the
effect of electron-electron interaction on the response of
the electrons to a magnetic field. This effect is usually
referred to as exchange enhancement and for E, it is the
exchange enhancement of the Pauli spin susceptibility
X„* that has to be considered. The basic difference
between the exchange-enhancement processes for X„
and Tj can be understood as follows: X„ is the response
of the conduction electrons to a uniform static magnetic
field. On the other hand, for the case of relaxation time
T~, the electrons can be thought of responding to the
fiuctuating inhomogeneous magnetic field produced by
the nucleus. The relevant response function in this case
is not X„but X(q,co) where X~ is the static and uniform
limit of X(q,a&), i.e.,

X~=X(0,0) .
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TABLE VI. Direct. and cp contribution to Knight shift in beryllium and magnesium.

Metal

Beryllium
Magnesium

&." (in %)
0.9444X10 '
0.3818X10 ' 0.1786X10 '

0.9558X10 '

X,'r (in /o)
p

—0.3856X10 '
+0.8020X10 2

—0.0200X10 '
—0.3804X10 '

E,~" (in jo)

+0.71X10 '
+0.5538X10 '

E;*&' (in 'Po)

—0.0025
+0.112

metal. X„ is the exchange enhanced susceptibility in the
free-electron approximation. The factor (m/m* —1) in

the denominator takes account of band effects. It
should be noted that if one puts X„=X~, then Eq. (28)
gives

X„*=Xr(m*/m) =Xb,a,

which is the unenhanced band susceptibility. Since

m*/m =g(EF)
~
~.t.)/g(E p) ~

rre. ,

where

g(Ep) = (drl/dE) ~=g~,

(29)

(30)

(31)

the incorporation of the factor (m/m* —1) in Eq. (28)
introduces band effects on the unenhanced suscepti-
bility, and also indirectly includes the effect of the
lattice potential on the exchange enhancement. For
purposes of understanding the origin of exchange en-

hancement of the relaxation rate, to be discussed later
in the section, it is helfpul to define two parameters n

and n as

g(EI:)=53.7959)&10", (35)

which corresponds to

(m*/m) =0.946. (36)

The ratio m*/m found in this manner is nearly equal
to 1. This gives us added confidence in the applicability
of Silverstein's expression. From the curves in Silver-
stein's paper for X~ and X„versus r„ for magnesium
(r, =2.64)

X„=1.325&10 ' cgs volume units (37)

tion of g(Er). We have used X =0.3 which was obtained
by Kimball et al." from comparison of cyclotron-mass
and band-mass data at some representative points on
the Fermi surface. This value of P for magnesium is
consistent with theoretical estimates by McMillan" for
the adjacent metals, sodium and aluminum. In this
manner we have obtained

rr =1—Xr/X„,

n* = (m*/m) rr .

(32)

(33)
X~ ——0.9788)&10 ' cgs volume units (38)

Since Silverstein's expression uses the effective-mass

approximation, it is expected to be most valid for metals
whose band structures are nearly free-electron —like.
Thus, there is evidence that Silverstein's result is

reasonably satisfactory for alkali metals. For magne-

sium, even though we have (essentially) two bands at
the Fermi surface, the fair agreement between the
Harrison construction and the actual band structure
over most part of the Fermi surface leads one to expect
that Silverstein's expression may be satisfactory in this
case. No theoretical results are available for magnesium.

We have, therefore, used available low-temperature
specific-heat data and the relation

leading to a free-electron enhancement parameter

n =0.2613.

&„*=1.2299X10 ' cgs volume units (40)

n* =0.2472.

The corresponding value for Xb,„~ is

Xi„~=0.9259X10 ' cgs volume units.

(41)

(42)

On substituting these values of X„and Xr in Eq. (28)
together with the value of (m*/m) from Eq. (36), we get

'~'1~Jr'g(Er) (1+)) (34) It is to be noted that from these results we obtain

to obtain g(Er). In Eq. (34), r =CI/T, where Cz is the
speci6c heat, and X is the enhancement factor of the
specific heat due to electron-phonon interaction. Two
values are available for y. The most recent one, obtained

by Martin, ' is 292.7&2.5 cal deg ' g-at. ', about 11%%uz

lower than the somewhat earlier results of Esterman
et ul. ,

'9 and we have chosen Martin's value for calcula-

ss D. L. Martin, Proc. Roy. Soc. (London) 78, 1482 (1961).
'9 I. Eastermann, S. A, Driedberg, and J. E. Goldman, Phys.

Rev. 87, 582 (1952).

o*/rr =m*/m =0.946,

X„*/Xb,~a = rl, =1.3283. (44)

When a more detailed theory of exchange enhancement
for Bloch electrons is available, it would be integgsting

"W. L. McMillan, Phys. Rev. 167, 331 (1968),

indicating that there is only about a 6%%uz decrease in the
parameter n due to the interplay of band and exchange-
enhancement effects. Also we obtain
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where X;,„and X„b d;, are, respectively, the ion-core and
orbital contributions. The ionic contribution X;,„ is
given by

X;.„=—(e'ap'E/6mc')

&&(2(r')r, +2(r')s, +6(r')2y) emu/mole, (46)

where (r'), represents the expectation value of r' for
core electrons in a state i. On substituting for the ex-
pecta. tion values taken over the 1s, 2s, and 2p atomic
core functions of Clementi, "we get

X;,„=—0.2709X10 6 cgs volume units. (47)

The orbital part of the susceptibility is difficult to
evaluate exactly. If one uses the simple result

= —1
XLandau 3Xf (48)

for free electrons, one obtains from Eq. (45), using
Eqs. (47) and (48) and Burr and Orbach's" recent'
value of

Xto&»=0.9658X10 ' cgs volume units,

a predicted value for the spin susceptibility

(49)

X~*=1.5867&&10 ' cgs volume units. (50)

This value is about 30%%uz larger than the theoretical
value in Eq. (40). One possible reason for this dis-
crepancy is the simple approximation of using x» d,„
for X„b d;,.' Actually, detail treatments of. X„b d;, in-
dicate that there are a number of other terms which can
contribute comparable amounts. Part of the disagree-
ment could, however, be due to a possible ina, ccuracy in
our result for X„*given in Eq. (40). An experimental
measurement of the spin susceptibility would be very
helpful in this connection.

The exchange-enhancement situation in beryllium is
more complex than in magnesium. In beryllium, the
eRective mass" departs strongly from the free-electron
value and the Harrison construction" does not repro-
duce the actual Fermi surface. These strong departures
from free-electron character suggest that Silverstein's
expression' would not be applicable for beryllium. In
fact, the experimental' value of the spin susceptibility

"C. R. Burr and R. Orbach, Phys. Rev. Letters 19, 1133 (1967),"B.I. Vyerkin and I. V. Svyechokarov, Ukr. Piz. Zh. 7, 322
(1962).
+,33 E. Clementi, IBM J. Res. Develop. 9, 2 (1965).

'4 J. E. Hebborn and M. J. Stephen, Proc. Roy. Soc. (London)
80, 991 (1962).

pa G. Feher and A. F. Kip, Phys. Rev. 98, 337 (1933).

to see how closely its predictions agree with the num-
bers in Eqs. (43) and (44).

No experimental value is available for the spin
susceptibility to compare with X„*.Two recent experi-
rnental values"" (in good agreement with each other)
are available for the total susceptibility X&,&» given by

Xtotal Xion+Xorb-dia+Xy

from ESR experiments is

Xexpp =2 X10 cgs volume units

as compared to the band value

(51)

where
(2 1T)Moriya (2 1T)ooat ('gztr) r

nM=(r 1—~*J"(V)] ')-
(53)

(54)

3' R. W. Hill and P. L. Smith, Phil. Mag. 44, 636 (1953)."K. Gmelin, Compt. Rend. 259, 3459 (1964).
38 R. L. I'alge, Jr., Phys. Letters 24, 579 (1967).
39 T. Moriya, J. Phys. Soc. Japan 18, 516 (1963).
"A. Narath and H. T. Weaver, Phys. Rev. 175, 373 (1968),

Xb,„d——6.36&(10 ' cgs volume units (52)

obtained by using the band-structure density of states.
This value is in reasonable agreement with 5.2)(10 ' cgs
volume units, which is obtained from the specific-heat
measurements of Hill and Smith, " after correcting for
the phonon eRects. There are two other measurements
of specific heat by Gmelin'~ and Falge'8 and using their
values and appropriate phonon corrections, one obtains
for Xb,„d, 4.2&10 and 4.8&&10 cgs volume units,
respectively. A comparison of experimental X„and
different available values of Xb,„d indicates that there
is a strong deenhancement of the susceptibility due to
exchange, rather than the enhancement predicted from
the physical consideration for an electron gas. Normally,
one expects the exchange interaction between the
electrons to be attractive and hence to lead to a stronger
alignment of the electrons in a magnetic field than would
be the case for noninteracting electrons. The de-
enhancement effect in beryllium suggests that the
crystalline potential leads to an apparent antiferro-
magnetic exchange interaction between the electrons.
Evidently, a thorough treatment of interacting Bloch
electrons in a ma, gnetic field is necessary for a proper
understanding of the situation in beryllium. In our
calculation of the Knight shift, we have a,voided this
question and made use of the experimental result" for
the spin susceptibility.

For the exchange-enhancement effects associated
with the relaxation rate (Tl) ' as mentioned earlier, we
require a knowledge of X(q,cp). Since the important
frequency range for the relaxation process is in the
neighborhood of the nuclear Larmor frequency col.,
which is slow compared with the motion of the inter-
acting electrons, we can effectively use X(q,0). Moriya
has carried out an evaluation" of X(q,0) using a 3-

function approximation to the screened exchange
potential between the electrons. This is a reasonable
approximation to the short-range screened exchange
interaction between electrons in a metal. Narath and
Weaver' and Mahanti and Das' have already applied
Moriya's" theory to alkali metals where the exchange
enhancement is found to substantially improve agree-
ment between theory and experiment. The expression
derived by Moriya, including exchange-enhancement
eRects, is
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TABLE VII. Results for the relaxation rate in beryllium and magnesium.

Metal (1/T&T)a (1/TiT)aipp, g (1/T1T)~p p (1/T1T)tot (T1T)tot (T1T)tot (T1T)empt

Beryllium 0.6781x 10 0.9588x 10 o.1130x 10 0.9965x 10 1.0035x 10' 0.8726x 104 (1.66+0.2) x 10
Magnesium 1.1765X10 ' 1.8392 X10 ' 0.0519X10 ' 1.8565X10 ' 0.5386X10' 0.3458X10'

The parameter n* in Eq. (54) is the same as in (41).The
function F(q) is the linear dielectric function which, for
a spherical Fermi surface, is given by

1 4h p' q' —2k F+q
F(q) = — 1+ —ln ——

2 4& pq

(55)

The average in Eq. (54) is carried. out over all values of

q which are consistent with the energy conservation
relation

(56)E(kp+q) —E(kp) =aAco&=0.

For beryllium, the calculation of p~ presents some
problems due to the uncertainties discussed earlier for
the exchange enhancement of X„. In Sec. V we have
presented results for beryllium both for 0.*=0 which
corresponds to no enhancement and o.*=0.0846 from
Eq. (33) using pertinent values of m*/m and n for
beryllium.

V. RESULTS AND DISCUSSIONS

The Knight shift and the relaxation time including
the effects of cp can be obtained from a knowledge of
the spin densities determined in Secs. II and III. The
corresponding expressions are

where

K, =K,"+K;p = (Sir/3) xp*QOS,

S=Sd+S.p'+S.p"+S.p"

(57)

with
(TiT) '=AG—

(S yS s)2+1(S p)2yl(S d)2 (58)

The quantity 3 has already been defined in Eq. (15).
In Eq. (57), either the experimental susceptibility, if
available, or the theoretical susceptibility including
exchange-enhancement effects' have to be utilized. For
beryllium the experimental susceptibility" X„*is avail-

For a spherical Fermi surface, the range of q in keeping
with the condition is 0 to 2k p. The enhancement factor
for (TiT) ' is small compared to that for K„because
F(q) decreases as q increases. This result has an im-

portant bearing on the Korringa, constant23 and would
lead to a departure from the value, (A/4~kii) (y,/y~)' of
the latter for noninteracting electrons.

For magnesium, we have used the value of o.* in

Eq. (48) leading to

g~ ——1.5573.

able while for magnesium we have utilized the value
obtained from the low-temperature specific-heat (yT)
data after applying corrections for the electron-phonon
enhancement to y and the exchange-enhancement
effects to the susceptibility. These values have already
been discussed in Sec. IV. For the relaxation time, one
again has to apply a correction for exchange-enhance-
ment effects. The nature of this enhancement has been
discussed by Moriya" and others and a value for the
corresponding enhancement factor has been obtained
for magnesium in Sec. IV. For beryllium the situation
is somewhat uncertain in view of the apparent de-
enhancement effect derived from the experimental
susceptibility while the available theoretical treatments
predict an enhancement. The corresponding treatment
of exchange effects" on (TiT) ' also leads to an en-
hancement factor of 1~ 15 derived in Sec. IV. These
uncertainties have to be borne in mind while comparing
theoretical and experimental values of E, and T~. The
dissimilarity in the influence of cp effect on E, and T&

apparent from Eqs. (57) and (58) is expected to have a
significant bearing on the Korringa constant" when
the non-s cp is significant.

In Tables VI and VII we have listed the various
contributions to K, and (TiT) ' in beryllium and

magnesium using Eqs. (57) and (58), and the spin
densities obtained in Secs. II and III. We shall consider
the results in beryllium first. The p-cp makes a sub-
stantial negative contribution to the Knight shift which
is larger than the s-cp in magnitude and about one-third
that of the direct contribution. The reason for this
pronounced p-cp is that both the coronet and cigars
have sizable areas over which the p character is pre-
ponderant. ' However, the negative p contribution from
E,'» is not enough to counterbalance the positive E,~

to lead to the negative sign that is observed
experimentally. 4' '

One, therefore, has to invoke other contributing
mechanisms, such as the orbital I andau-type'4 effect to
explain the experimental negative sign. The alternative
explanation that we might have made an under-
estimation of E,'I' & does not seem likely, in view of our
careful scanning of the Fermi surface and the accuracy
with which the features of the Fermi surface can be
explained by OPW band calculation. Additionally, such
an explanation will be shown. to widen the gap between
theory and experiment for T&.

4'W. T. Anderson, Jr., M. Ruhlig, and R. R. Hewitt, Phys.
Rev. 161, 293 (1967).

4' D. E.Barnaal, R. G. Barnes, B.R. McCart, I,.W. Mohn, and
D. R. Torgeson, Phys. Rev. 157, 510 (1967).



JENA, DAS, AND MAHANTI

The results for the relaxation time, listed in Table VII
complement the results for Knight shift in providing an
estimate of the importance of the various mechanisms
that contribute to the hyper6ne effects in this metal.
The p-cp contribution to (TqT) ' is found to be less
effective than in the case of E, as expected from
Eqs. (57) and (58). An increase in the magnitude of S,~"
would increase the p contribution to (TqT) ' and thus
widen the disagreement between experiment and theory.
The theoretical value of (T~T) ' is in reasonable agree-
ment, but a factor of ~3 higher than the experiment. A
possible reason for this discrepancy is that our estimate
of Sd and S,~' might be too large. As emphasized before
in discussing E„we do not believe that this is the case.
Orbital and dipolar contributions to the relaxation
time" are expected to be small because they involve
(I/r') which is very small for a light metal likeberyllium.
In addition, their inclusion would increase (TqT) in a
direction opposite to the experiment. We believe that
the main reason for the remaining discrepancy with
experiment is the presence of an exchange-deenhance-
ment effect similar to that observed for X„. Since the
square of a conduction-electron matrix element is
involved in (TqT) ', the use of the same deenhancement
factor as X„ for the spin matrix element would lead to
much too small a value for (T~T) ' as compared to the
experiment. It thus appears that a much feebler de-
enhancement effect seems to be occurring for (TqT)
as compared to X„.

A comparison between the theoretical and experi-
mental Korringa constant K,'T~T is not very meaning-
ful at the present time for beryllium for two reasons.
First, there are the uncertainties connected with the
exchange-deenchancement effects for both E, and
(TzT) '. Secondly the exact influence of orbital con-
tributions' to E, is not known, leading to the dis-

crepancy between the sign of the experimental and
theoretical values, the latter obtained from purely spin
effects. However, to demonstrate the infiuence of cp on
the Korringa constant" and in particular the difference
in behavior of beryllium and magnesium in this respect,
it is helpful to compare the values of K,'TjT with and
without including cp effects. The values of these
quantities are 0.5115)&10 ' and j..33)&10 ', respec-
tively; the former value being smaller because we have
a negative p-cp effect. The corresponding situation in
magnesium will be seen to be opposite in nature.

The Knight shift results on magnesium in Table VI
show significant qualitative differences from those on
beryllium. One significant difference is the positive cp
contribution from the p character of the conduction-
electron wave function in contrast to the negative
contribution for beryllium. This difference in behavior
has a profound effect on the total Knight shift. In
particula, r, the s and p contributions from the monster

4' A. Abragam, The I'rincip/es of ENclear Magnetism (Oxford
University Press, Oxford, 1961).

which account for the major area of the Fermi surface
now reinforce each other in contrast to the cancellation
of these contributions from the coronet in beryllium
(which is the counter part of monster in magnesium).
In beryllium, the other important segment of the Fermi
surface was composed of cigars which had larger
amounts of s character than the coronet, but still
smaller compared to the p character so that there was
again a substantial cancelling eBect. In magnesium, on
the other hand, the remainder of the Fermi surface is
composed of butterflies, lens, and cigars. ""The lens
and the butterflies are seen to have much stronger s
character than the cigar in beryllium. The cigars
in magnesium have smaller relative area than in
beryllium, but the positive sign of the p-cp helps in
making their contributions quite important. Thus we
see that a combination of these two features —the
larger amount of s character, and the positive cp due to
p character —provide a qualitative explanation of the
positive and substantial Knight shift in magnesium, in
contrast to the situation in beryllium.

We next turn our attention to a comparison between
our theoretical result of E, and the experiment and the
possible importance of other mechanisms that could
contribute to the Knight shift. In this connection it is
interesting to note that the relative areas of various
segments of the Fermi surface have a significant role in
determining the values of the direct and cp contribution
to the Knight shift. This is because the lens and the
butterflies have substantial s character and their rela-
tive contributions are determined by their areas as
compared to the monster which seems to be predomi-
nantly non-s in character. Thus, if one uses the relative
areas obtained from the Harrison's one OPW construc-
tion, "ironically the Knight shift (0.0784%%uz) is in better
agreement with experiment than our value in Table VI
which was obtained by using areas determined from
the magnetoacoustic attenuation measurements of
Ketterson and Stark. "Since the dimensions predicted
by OPW calculations using Falicov's'4 potential are
in substantial agreement with Ketterson and Stark's
experimental dimension for several parts of the Fermi
surface, this acts as a check o~ both the correctness of
the wave functions that we have used for our calculation
and the relative areas used in our averaging procedure.
The value for E, in Table VI is, therefore, more
acceptable than the apparently better value calculated
by using the surface areas from Harrison's construction.
As regards the calculation of the cp contribution, the
mp procedure' adopted here has been tested by applica-
tions to atoms and other metals. In other metals, it
gives corrections in the right direction and about the
right magnitude to improve agreement with the experi-
ment. For atoms, it has been found to give results in
good agreement with cp contributions calculated by
diagrammatic perturbation theory techniques44 and, in

44 N. C. Dutta, C. Matsubara, R. T. Pu, and T. P. Das, Phys.
Rev. Letters 21, 1139 (1968).
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several instances, with the results of the unrestricted
Hartree-Fock method. 4' A conservative estimate is that
our cp result is accurate to within 10% which is a much
smaller fraction of the total E,. One must, therefore,
look for other causes for an explanation of the diRerence
between the theoretical value, 0.0564%, and the
experimental value, 0.112%.

In looking for sources to explain the difference be-
tween the theory and experiment. ,

' '7 there are two
categories to consider. In the 6rst, are the possible in-
accuracies in the quantities and procedures we have
already used for evaluating the direct and cp contribu-
tions and in the second are the additional mechanisms
contributing to E,. As regards the first category, we
have already pointed out that there is not much
likelihood of any signi6cant inaccuracy in our spin-
density calculation. The major uncertainty is in the
spin susceptibility X„. Since a calculated density of
states is not available, we have had to use the speci6c-
heat data" with an approximate correction" for the
electron-phonon enhancements. But even more serious
is the question of exchange enhancements to be applied
to X„.The effective mass in magnesium is close to unity.
The Fermi surface exhibits fewer gaps and a closer
resemblance to free-electron —type behavior than in
beryllium. There is, therefore, reason to believe that the
exchange-enhancement approach of Silverstein is more
justi6able for magnesium than for beryllium. However,
an experimental measurement of X„*would be helpful
to remove this uncertainty. Until such a measurement
is available, it is dif6cult to assess the role of other

mechanisms for E, and our subsequent comments are to
be considered somewhat tentative. It is interesting,
however, that X„*=1.5867 g 10 ' cgs volume units
calculated from the total susceptibility is somewhat
larger than the value X~*=1.2299&i0 ' cgs volume
units we have been using based on the specific-heat data.
While the use of total X to obtain X„*has uncertainties
due to the orbital contributions, the difference between
the two values of X~* is in the right direction to improve
the Knight shift value.

Among additional mecha, nisms tha, t could contribute
to the Knight shift, one possibility is a mechanism
analogous to the cp effect considered already. The
conduction electrons below the Fermi surface can be
exchange polarized4' by the surplus electrons of one
spin at the Fermi surface in the presence of the magnetic
field. This mechanism is similar to the polarization of
the s-band electrons by the magnetic d electrons in
ferromagnets. Unfortunately, it is difficult to apply
the mp procedure to this problem because the electrons
that are being perturbed are not localized as were the
core electrons and one cannot obtain simple radial
differential equations to describe the perturbation by
the nuclear moment. One has, therefore, to adopt other
methods. This effect may be seen easily to vanish for
free electrons since the exchange potential cannot, by
itself, perturb the plane waves. The Bloch electrons,
however, can be perturbed by the exchange-polarization
potential, and the spin density at the nucleus due to
this mechanism will be proportional to the second-order
energy

(&~'(1)»(2) Ir» 'I »"(1)&~'(2)&(»"(1)
I
&~(1) l »(1)&

g.n
(59)

occupied bands are small. From the calculated band
structure of magnesium, there are only a few regions
with small band gaps. It is difficult to estimate the exact
magnitude of the contribution from this mechanism
without actual calculation, since the convergence in e
is determined both by the numerator and the denornina-
tor of Eq. (59). One thus requires a detailed knowledge
of the energies and wave functions of the excited bands
for all of k space. We could, however, speculate quali-
tatively on the importance of this mechanism by
analogy with beryllium. Regions of small band gaps at
the Fermi surface are more pronounced in beryllium
and if this conduction-conduction exchange mechanism
were important, it would be expected to make more
signi6cant relative contribution compared to other
mechanisms in beryllium. If this were true, then the
theoretical E, would be altered markedly from the
near-zero value that has been obtained, bringing it into
qualitative disagreement with experiment. It seems to
us that the conduction-conduction exchange-polariza-

where k~; represents a particular state at the Fermi
surface, kj an occupied conduction-electron state beloved

the Fermi surface, and kj" an unoccupied state with the
same reduced vector kj, but belonging to an empty
band above the Fermi surface. The energy difference
(E," E;) represents the ve—rtical interband excitation
energy for the state 0;, the summations i and j refer to
the states on the Fermi surface and below it, respec-
tively, while e runs over all the excited bands. This
conduction-conduction exchange-polarization mecha-
nism' appea, rs to be quite sensitive to the band gaps
(Ep E;) and could derive —significant contributions
from regions where the gaps between occupied and un-

~M. H. Cohen, D. A. Goodings, and V. Heine, Proc. Phys.
Soc. (London) 73, 811 (1959).

46T. J. Rowland, in Progress in 3Eaterial Science, edited by
Bruce Chalmers (Pergamon Press, Inc. , New York, 1961),
Vol. IX, p. 14.

47 P. D. Dougan, S. N. Sharma, and D. L. Williams, Can. J.
Phys. (to be published).

S. H. Vosko and R. A. Moore, Bull. Am. Phys. Soc. 12,
314 (1967}. ~4
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tion mechanism is unlikely to be responsible for any
major part of the difference between experiment" ' and
theory in magnesium.

Another possible source of contribution to the Knight
shift is through the nuclear-electron orbit interaction. '4

A quantitative evaluation of this effect would require
the calculation of the complicated interband and intra-
band terms in the generalized expression derived by
Hebborn and Stephen. '4 However, for qualitative dis-
cussion, the orbital effects could be divided into two
parts, a Landau-type effect characteristic of the con-
tinuous nature of the energy levels in the bands and a
Van Vleck —Ramsey type interband contribution anal-
ogous to the chemical shift effect in molecules. The
Landau-type effect is pronounced only if the effective
mass of the conduction electron is small compared to
the free-electron mass. Since m*/m in magnesium is
close to unity, it is safe to conclude that the Landau-type
effect is not significant in this metal.

The Van Vleck —Ramsey type orbital contribution
Eq. (59), the exchange matrix element being replaced
by a matrix element involving the magnetic field.
Again, it is difficult to decide on the actual importance
of this mechanism without explicit calculation. Since
there seems to be substantial non-s character on the
monster which is necessary for the orbital contribution
to be finite, this orbital effect is likely to be more im-

portant than the conduction-conduction polarization
mechanism.

Finally, there could be some contribution to the spin
density from the correlation' between the core electrons
and the spin polarized conduction electrons at the Fermi
surface. This is rather a dificult effect to calculate be-
cause it requires an analysis of the many-body effect
involving both the core and conduction electrons in the
presence of a magnetic field. However, an estimate of
the importance of this mechanism can be made by
comparison with core-valence correlation contributions
to the hyperfine interaction in sodium atom. '~ In
sodium atom, a comparison of the theoretical hyperfine
constant including direct and cp effects with the experi-
ment indicates that the correlation effect is about 15%
of the direct plus cp effect. Since the conduction elec-
trons of magnesium on the Fermi surface involve both

p and d characters as well as s, the percentage im-

portance of this correlation effect can be somewhat
different. Nevertheless, an estimated 10-15% contri-
bution to the Knight shift from core-conduction
correlation effects seems reasonable.

In summary, it is our feeling that while a combination
of orbital'4 and core-conduction correlation' effects
could explain a reasonable part of the difference between
the theoretical E, in Table VI and the experiment,
the main source of correction is quite likely to come out
of a change in the Pauli susceptibility X„.

Unfortunately, no measurement of the relaxation
time T~ is currently available for comparison with our
theoretical value. However, Dougan, Sharma, and

Williams4~ have mentioned that they had distortion due
to saturation at 1.2'K indicating a long relaxation time
Tj. Our calculated value of T~T would lead to T~ =288.2
sec at 1.2'K and 82.3 sec at 4.2'K, the temperature at
which Dougan et al."carried out their measurement.

The following observations may be made regarding
the nature of the theoretical TJ. The positive cp contri-
bution to the spin density from the p component of the
conduction-electron wave function does not affect
(TtT) ' as markedly as it does E,. This is because of
the dependence of (T&T) ' on the square of S,,& instead
of linear as in the case of E,. This, of course, will have
important consequences for the Korringa constant, to
be discussed later in this section. While the evidence is
not clear cut, the Knight shift E, appears to have been
underestimated as a result of a corresponding under-
estimation in the theoretical X~ . For the relaxation
time it is the q-dependent spin susceptibility X(q) in the
range q=0 to q=2kf which is important, and one
expects a similar underestimation in X(q) as in X„. In
addition to this uncertainty, the other contributing
factors such as the conduction-conduction polarization4'
and the orbital relaxation process and core-conduction
correlation' which could have appreciable eRect on the
Knight shift are also expected to influence T~. However,
the s and non-s components of the conduction-electron
wave function are expected to influence (TtT) ' in the
same manner as in the case of cp mechanism in Eq. (42).
Thus the influence of these additional mechanisms are
expected to be less important for Tj than for E„
particularly the orbital effect4' which has no contribu-
tion from the s component of the conduction-electron
wave function. Considering all these factors and in-
cluding the uncertainty in X„(q), we expect that our
theoretical TJ could be reduced by as much as a factor
of 3. An experimental determination of T~ will, there-
fore, be extremely useful in throwing light on the rela-
tive importance of these various factors that could
contribute to it.

It is interesting to consider the Korringa constant"
E,'TjT since it allows one to nearly cancel out the un-
certainties associated with the spin density. Since no
experimental measurement of T~ is available we have
no information about the correctness of the calculated
(E,'T,T),~„,——1.06&&10 ', particularly its ratio with
respect to (E.'TtT)f«. =0 7013X10 '. The departure of
this ratio from unity is a product of the ratio 1.5110
between tl, ' and ti~ and the factor (S'/G) arising from
the spin-density components. The latter factor is found
to be larger than unity because of the positive sign of

p A negative sign of this latter quantity would have
led to a value of (S'/G) smaller than unity an.d pushed
the Korringa constant towards a value smaller than the
ideal case. A measurement of E,'TJT would, therefore,
throw some light on this question of the sign of S,p
The conduction-conduction polarization, the orbital

H. Mitchell, J. Chem. Phys. 26, 1714 (1957).
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and core-conduction correlation mechanisms would also
have a similar type of effect on E,'T&T as the cp
although the exact extent of their inhuence is not
currently available.

VI. CONCLUSION

The wave functions of the conduction electrons on
the Fermi surface of beryllium and magnesium have
been obtained by the OPW procedure and used to
calculate the Knight shifts and relaxation times in

beryllium and magnesium. The results provide an
explanation of the small observed Knight shift in
beryllium and the substantial Knight shift in magne-
sium. The small spin density obtained in beryllium ex-
plains the origin of the rather long relaxation time T~
found experimentally. The relaxation time in magne-
sium on the other hand, was found to be about 25 times
faster than that of beryllium, but much longer than that
observed in aluminum. Our predicted long relaxation
time in magnesium is consistent with the experimental
observation4~ of substantial distortion of the resonance
lines by saturation at 1.2'K.

An important result of general interest from these
calculations is the observation that the cp due to the
p component of the conduction-electron wave function
is negative in beryllium and positive in magnesium. In
both these cases, the inclusion of this eRect improves
the agreement between theoretical and experimental
Knight shifts. Thus, in beryllium, it cancels a large part
of the direct Knight shift and reduces the total to a
small value. In magnesium, on the other hand, the cp
effect adds to the direct Knight shift and again
markedly improves the agreement. This feature of the
cp eff ect also has an important inhuence on the K orringa
constants in these metals. The diRering signs of the cp
effect in beryllium and magnesium indicate that one has
to be cautious in making general assumptions regarding
its sign in the interpretation of Knight shift data in
pure metals and alloys.

The remaining difference between the theoretical and
experimental Knight shifts is attributed in beryllium
mainly to a negative Landau-type orbital eRect. In
magnesium, the difference between experiment and
theory is expected to arise principally from the uncer-
tainties in the Pauli spin susceptibility. However, other
mechanisms such as core-conduction correlation and
Van Vleck.—Ramsey type orbital contribution to E,
could also provide improvements in the right direction.
Experimental data on T& and spin susceptibility X„,
when available, would be helpful for a better under-
standing of the relative importance of various contri-
buting mechanisms to the hyperfine properties of
magnesium.

Finally, we would like to draw attention once again
to the dilemma of understanding the disagreement be-
tween the experimental and theoretical Pauli spin
susceptibiltiy in beryllium. The experimental result for
X„* from spin-resonance measurements is expected to
be quite accurate. The theoretical value from the
calculated band density of states seems to require a
strong deenhancement (about a factor of 3) to explain
the observed X„*, in contrast with the enhancement
predicted by theoretical models. A much feebler de-
enhancement seems to be necessary to explain the
experimental (TiT) '. It appears, therefore, that
further development of the theory for exchange and
correlation effects for Bloch electrons in a magnetic Geld
beyond. current models is necessary before one can
understand the uniform field susceptibility X(0) and
the wave-number —dependent susceptibility X(q) that
occurs in the theory of (TiT) '.
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