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Asymptotic Interaction Energy between Pairs of Point Defects in Cubic Metals
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(Received 23 July 1969)

We have calculated the asymptotic interaction energies between pairs of interstitial Cu atoms in Cu
and between pairs of vacancies in Al, Na, and K. These calculations were performed using the asymptotic
equations of the method of lattice statics. The exact method of lattice statics is based on the Fourier trans-
formation of the direct-space equilibrium equations for a "supercell" of the lattice containing one defect
surrounded by a large number of host atoms. The asymptotic interaction energies were compared with
the corresponding results obtained from the exact method of lattice statics. This comparison indicates that
elasticity theory cannot be used to obtain strain-field interaction energies for defects nearer than at least
26 or 27 neighbors from each other, and is probably not truly valid until much larger interdefect separa-
tions are considered. This result places a heavy restriction on the use of elasticity theory in practical defect-
interaction calculations.

I. INTRODUCTION

HEN two defects are present in a crystal, each
defect modifies the strain-field displacements of

the host atoms produced by the other. Hence, the
strain-field contribution to the formation energy of the
defect pair is different from the sum of the contributions
of the individual strain fields to the formation energies
of the isolated defects. This energy difference manifests
itself as an "indirect" energy of interaction between the
two defects, as opposed to any direct energy bonds
which may exist, and depends only on the relaxed
configuration of the host atoms in the presence of the
defect pair. We refer to this indirect potential as the
strain-field interaction energy. If no direct interaction
exists between two defects, as is the case for widely
separated defects in metals or uncharged defects in the
alkali halides, the strain-field interaction will be the
dominant one and will play a decisive role in determin-
ing the stability of a given pair of defects.

The classical approach to calculating the strain-field
interaction energy involves the use of continuum
elasticity theory in which each defect is represented as
a distribution of body forces. The interaction energy is
then defined in terms of the dilatation produced by the
first defect at the position of the second in the presence
of the stresses produced by the second defect, and vice
versa. However, it has been pointed out repeatedly'
that classical elasticity theory does not give reliable
values for strain-field displacements until one is much
farther from the defect than had previously been
assumed. Since the interaction energy calculations are
based explicitly on the results of the displacement
calculations, they must inherently contain the same
restrictions.
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Hardy and Bullough" have applied the method of
lattice statics to obtain an expression for the interaction
energy between a pair of similar defects in a lattice
having cubic symmetry. The method of lattice statics is
based on the Fourier transformation of the 3EX3E
direct-space equilibrium equations for a "supercell"
containing E host atoms and one defect. The result of
this transformation is a set of E 3)&3 decoupled equa-
tions in reciprocal space, each of which can be solved for
one of the Fourier amplitudes of the direct-space dis-
placement field. By imposing periodic boundary condi-
tions across the faces of a supercell having the same
symmetry as the primitive lattice cell, one ensures the
existence of only E independent wave vectors q con-
tained within the first Brilloinn zone (FBZ). This is
equivalent to solving the problem for a superlattice of
defects with one defect per supercell. Once the Fourier
amplitudes have been determined, the direct-space
displacement field can be found by Fourier inversion.
However, the Fourier amplitudes are often a more
convenient set of generalized coordinates than the
direct-space displacements and, in the case of the
interaction energy, it is a simple matter to perform the
entire calculation in reciprocal space.

The lattice statics expression for the interaction
energy can be used to obtain the strain-field interaction
between all but very close defects, for which the inter-
defect spacing is determined by direct interactions
between the defects. For very widely separated defects,
the interaction energy is determined entirely by Fourier
amplitudes evaluated in the long-wavelength limit. We
have shown' that in this limit, the expressions for the
Fourier amplitudes are identical to the corresponding
equations of elasticity theory. Hence, the asymptotic
lattice statics expression for the interaction energy
should be the same as that predicted by continuum
elasticity.

Hardy and Bullough' have treated the asymptotic
interaction energy between similar cubic defects in an

~ J. R. Hardy and R. Bullough, Phil. Mag. 15, 237 (1967).
6 J. R. Hardy and R. Bullough, Phil. Mag. 16, 405 (1967).
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isotropic lattice. In this case, the 6rst term in the energy
expansion vanishes, as predicted by elasticity theory.
The lowest-order nonvanishing term is found to fall o6
as 1/R', where R is the interdefect separation distance,
a result which has only recently been obtained from an
elasticity theory approach due to Seims. '

In the present paper, we will be concerned with the
asymptotic strain-6eld interaction between pairs of
defects in anisotropic materials. We will show that for
this case the 6rst term in the interaction energy ex-
pansion does not vanish but falls off as 1/E.' in any
given direction, as in the theory of continuum elasticity.
For anisotropic materials, the various terms in the
energy expansion cannot be treated analytically as they
can for isotropic materials. Moreover, the manner in
which the second-order terms in the expansion depend
upon the form of the generalized forces, makes it
impossible to evaluate them in a general way for a
variety of materials and defect types. We will therefore
confine our discussion to the 6rst term in the expansion,
which we assume to be the dominant one for Inost
materials.

We have evaluated the interaction energy in the
asymptotic limit for a set of defect types and lattice
models for which exact lattice statics calculations have
also been done. By comparing the results of exact
lattice statics calculations with the corresponding
results obtained from the asymptotic theory, we can
gain some insight as to the conditions under which
continuum elasticity can be justi6ably applied.

In Sec. II, we state the important points of the lattice
statics approach to determining the interaction energy
in the long-wavelength limit. In Sec. III, we will use
this approach to 6nd the interaction energy between
widely spaced pairs of interstitial Cu atoms in Cu and
between pairs of widely separated vacancies in Al, Na,
and K. In Sec. IV, we compare the asymptotic inter-
action energy results with those obtained using the
exact theory of lattice statics. Section V is devoted to a
summary of our results and conclusions.

II. ASYMPTOTIC INTERACTION ENERGY
BETWEEN PAIRS OF POINT DEFECTS

IN AN ANISOTROPIC CRYSTAL

The derivation of the lattice statics expression for the
interaction energy between two similar point defects has
been given by Hardy and Bullough' as

E= ——P, F»(V») 'F'cosq R
E

for a pair of defects separated by a vector R within a
supercell containing Ã host atoms. The summation is
over the 1V distinct wave vectors q in the FBZ. F' is
the generalized force array associated with a given

7 R. Seims, Phys. Status Solidi 30, 645 (1968).

defect type and is given in terms of the direct-space
forces F' exerted by the defect on the surrounding host
atoms by

F~»=P~F 'exp( iq r'),

where r' is the perfect lattice position vector of the 1th
neighboring atom to the defect. a refers to one of the
axes of a set of Cartesian coordinates having the defect
at the origin and axes along the (100) directions in the
crystal.

The matrix Y» in Eq. (1) is the Fourier transform of
the direct-space force constant matrix V ss' and is
given by

V s-»=P~ V ss'exp(sq r').

The components of the perfect lattice position vector,
r' can be expressed as integral multiples of "a";half of
the cubic unit cell side. Hence, in the limit as the wave
vector q tends to zero, the expression for the interaction
energy given by Eq. (1) can be expanded in a power
series in the variable

~ q ~

a.
Since the generalized forces are odd functions of qu

and the V» matrix is an even function of qa, we may
expand these matrices in the forms

F '=(F '}t+{F'}s+{~')s+
and

~ '=(~ ') +(~ ')4+(~ ')s+
The subscripts on the various terms in the expansions

indicate the orders of qa contained in each of these
terms. Using this notation, the first term in the inter-
action energy expansion is

~—=——Z»{&»)tL{~ »)s7 '{F»)tcosq R (2)
E

As we mentioned earlier, this term vanishes for pairs
of similar cubic defects in an isotropic material and the
lowest-order nonvanishing expression must be obtained
from the next two terms in the expansion, which are
both of the same order in qu. These terms can be evalu-
ated analytically, though the process is tedious and
complicated. The interaction energy term in Eq. (2)
cannot be evaluated analytically for a general direction
in an anisotropic material and we must perform these
calculations numerically on a computer.

The matrix product L(V»)s7 '{F»)t in Eq. (2) is
actually the Fourier amplitude Q» in the limit q 0 and
we have shown in a recent paper4 that

Q~»=LC, a'/E(k)e7k~(Ek'+Fk 'k'+Hk 'k ') (3a)

where k=qa and v is the volume of a unit cell. E(k) is
the determinant of the V» matrix and is given by

P(k) =Dk'+8k'(k 'k '+ksskss+ktsk ')
+Akt'ks'ks'. (3b)

The constants in Eqs. (3a) and (3b) are functions of the
three independent elastic constants for a cubic host
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and make use of the fact that
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(Cll C12 2C44) L(C11 C44) (Cll+C12)
—2(C12+C44)'g, where

V'12 cosk. L= —k' cosk L,

{F&)1——C, k2

.k3.

for the generalized force array of the defect type under
consideration. lt can be evaluated in terms of the
strength parameter G of the defect, in terms of which

C, = —iG/a.

The strength parameter is, in general, a tensor, the
elements of which are given by a prescription due to
Hal dy

in terms of the Cartesian components of the direct-
space position vector r' and the direct-space forces F'
exerted by the defect. For a cubic defect, the off-
diagonal elements of G vanish and all of the diagonal
elements are the same. Hence, we represent the defect
strength for this case as a scalar G.

Carrying out the remaining matrix multiplication in
Eq. (2), and converting the sum over wave-vector space
to an integral, we have

C 2 Ek'+8 k'(k14+k2'+k24)+3Hk12k22k22

P(k)

Xcos(k L)d'k, (5)
where L—=R/a.

This integral can be evaluated by techniques similar
to those used in Ref. 4 and, whenever possible, we will
use the notation of that paper. We first make a co-
ordinate transformation which puts the vector R along
the polar axis of the new set of coordinates. The vector
k can be expressed in terms of the polar angle 8 and the
azimuthal angle P by equations of the form

k '=k'g (cos8,&), (6)

where the g are functions of cos8 and P and, as before,
0. refers to a component of the original set of Cartesian
axes. We then define a function

&+~(gl'+g22+g22)+3&glg2g2
X (cos8,&) —= , (7)

D++ (glg2+g2g2+g lgl) ++glg2gl

8 J. R. Hardy, J. Phys. Chem. Solids 29, 2009 (1968}.

8=C44(C11+C12)(Cll —C12—2C44),

D=CggC442 )

E=C44(C11—C12 —C44),

F=C44(C12 —Cl1+2C44),

H = (Cll —C12—2C44)'.

The constant C, in Eqs. (3) comes from the limiting
expression

+ +
BI 2 BJ 2 BJ 2

Substituting Eqs. (7) and (8) into Eq. (5), we obtain

C 2

2

(2~)'a
FBZ

X(cos8,$)

&&cos(kL cos8) dk d cos8 dP. (9)

We assume that for widely separated defects the main
contributions to this integral will come from a region
near the origin in wave-vector space. We therefore
insert a convergence parameter of the form t, '~ into the
integrand, extend the k integral to infinity, and evaluate
the integral in the limit as e —+ 0. The k integration then
results in a 8 function the argument of which is cos8.
The resulting integral is

C2 ] 2v 1

2

8~2a
X(cos 8,&)

Xb(cos8) d(cos8) ~,
and, integrating over cos8- we obtain,

' X(0&)d.2

SX2u p

(10)

III. APPLICATIONS

We have calculated the interaction energy in the
asymptotic limit between pairs of interstitial Cu atoms
in Cu and between pairs of vacancies in Al, K, and Na.
The force constants and direct-space forces F' were
taken from the lattice statics calculations of Bullough
and Hardy' for vacancies in Al, and from our own
calculations for interstitial Cu atoms in Cu ' and for
vacancies in Na and K, for which the K(1) and Na(1)
lattice models of Ref. 3 were used.

Since the interaction energy term which we have
evaluated falls off as 1/R2 in any given direction, we
have chosen to represent our results as interaction
energies between a defect at the origin and a similar
defect situated on a sphere of radius "a."One can find

The remaining integral over P cannot be evaluated
analytically, in general, for an anisotropic crystal and
we must resort to evaluating it on a computer. The
parameter P is independent of L so that we may take
the operator V'1.2 inside the integral and perform the
necessary derivations analytically. After a good deal of
algebraic manipulation, one obtains an analytic form
for the integrand of Eq. (10) for a given L and one can
then evaluate the resulting expression numerically.
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In Table I, we compare the exact and asymptotic
interaction energies between vacancy pairs in Al. It is
apparent that the asymptotic results fall far below the
values predicted by exact lattice statics. This is not
surprising since aluminum is nearly isotropic and, as we
mentioned earlier, the term which we have evaluated
in the energy expansion vanishes identically for an
isotropic material.

The comparison between the exact and asymptotic
lattice static results for the interaction energies associ-
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FIG. 3. (a) Asymptotic interaction energy profile in the first
quadrant of the (001) plane for vacancy pairs in K. (b) Asymp-
totic interaction energy profiles in the first quadrant of the (011)
plane for vacancy pairs in K.

2(a) and 2(b),we show the corresponding profiles for
pairs of interstitial Cu atoms in Cu. Figures 3 and 4
show the energy profiles for vacancy pairs in K and Na.
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IV. DISCUSSION

The primary importance of the calculations which we
have just described is that we may make a direct com-
parison of the asymptotic results shown in Sec. III with
the corresponding results obtained from exact lattice
statics. From this comparison we will get some idea of
the distance by which two defects must be separated
before one can expect to obtain reliable values of inter-
action energy using a continuum elasticity approach.
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FrG. 4. (a) Asymptotic interaction energy profiles in the first
quadrant of the (001)[plane for vacancy pairs in Na, (b) Asymp-
totic interaction energy profiles in the first quadrant of the (001)
plane for vacancy pairs in Na.
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O.I2 TABLE I. Comparison of strain-Geld interaction
energies for vacancy pairs in Al (eV).
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110
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0.0002—0.0019
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0.0008
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0.0143
0.0072
0.00093
0.00080
0.00113—0.00114
0.00027—0.0009—0.00046
0.00018
0.00012
0.00021
0.00011
0.00016
0.00014

Lattice statics value Asymptotic value
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Pro. 5. EE' as a function of interdefect separation,
E, along the (100) direction in K.

0.6-

05-

ated with pairs of interstitial Cu atoms in Cu is shown
in Table II. The agreement between the two sets of
results in this case is considerably better than for the
vacancy pairs in Al. A comparison between the asymp-
totic and exact lattice statics calculations for the strain-
field displacements induced by an interstitial Cu atom
in Cu shows that the elastic regime is only valid at
distances greater than about 5a from the defect. ' Hence,
we cannot expect the asymptotic values of the inter-
action energy shown in Table II to be reliable except
for the (6,0,0) and (4,4,4) defect pairs, and we have
reason to believe that our exact lattice statics results for
the (4,4,4) defect pair are inaccurate due to the limited
size of our wave-vector sample density. (A sample of
64 000 regularly spaced wave vectors was used for the
exact calculations. )

In the case of the alkali metals Na and K, we have
indicated in Ref. 4 that the elastic regime is only

attained beyond the 26th or 27th neighbors from the
defect. Valid lattice statics results for such large dis-
tances have only been computed along the (100),
(110), and (111) directions in the K(1) lattice
model.

In Fig. 5, we have plotted exact values of ER' versus
R in the (100)direction for K(1).The asymptotic value,
ER'= —0.00796 is shown as a horizontal dashed line.
There is no apparent tendency for the energy to settle
to an asymptotic limit. In Fig. 6, we show EE' versus
&22 along the (110) direction in K(1), and Fig. 'I

shows ER' versus &38 along (111).In both cases, the
asymptotic limits are virtually indistinguishable from
zero and the exact lattice statics results always stay
well above the asymptotic limit. There are two possible
sources of discrepancy between the exact and asymp-
totic results for K. First, we again emphasize that we
are evaluating only the lowest-order term in the inter-
action energy. |A'hile we have every reason to expect
this term to be dominant for anisotropic materials, the
effect of the long-range interatomic potentials for the
alkali metals, extending out to fifth neighbors, may
result in a slowly converging series for the interaction
energy. Second, the Fourier amplitudes which were used
in the exact calculations were those appropriate to a
superlattice of regularly spaced defects. (One defect for
every 64 000 host atoms in the calculations along (100)
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in K. 8 is the interdefect separation.

40

Neighbor

200
220
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440
442
444
600

0.4004
0.09751
0.02414—0.03468
0.001636—0.000297
0.09381
0.03737
0.003284—0.007348

—0.1675
O.Q786
0.0548—0.0209—0.0104—0.00281
0.0980
0.00824
0.00687—0.00619

Lattice statics results Asymptotic results
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and (110) and one defect for every 512 000 host atoms
for the calculations along (111).) Hence, the interaction
energies calculated using exact lattice statics contain
contributions from the strain fields of other defects in
the lattice and these contributions are known to be
dominant at distances of more than 26 neighbors from
a vacancy in K or Na.

Nevertheless, even if we make large allowances for
the approximations inherent in our calculations, it is
apparent that we cannot completely account for the
discrepancies shown in Figs. 5—7, and we must conclude
that the elastic regime is simply not attained within the
range of interdefect distances considered here. This
places a very serious restriction on the usefulness of
continuum elasticity when one considers that for any
reasonable concentration of defects in a lattice the
migration of defects will be determined largely by
defect interactions which cannot be treated by elasticity
theory.

V. SUMMARY

We have applied the method of lattice statics in the
asymptotic limit to the calculation of interaction
energies between pairs of similar point defects in Al, Cu,
Na, and K. In each case, a comparison was made be-
tween the asymptotic interaction energies and those
obtained from exact lattice statics.

The asymptotic interaction energy was taken to be
the lowest-order term in the energy expansion. Since
this term vanishes identically for an isotropic lattice, no
meaningful asymptotic results could be obtained for Al.

A comparison has been made between interaction
energies in the long-wavelength limit and the cor-
responding results obtained from exact lattice statics
for pairs of vacancies in K and Na. We conclude from
this comparison that elasticity theory calculations of
the strain-field interaction energies between point
defects in K and Na will not yield reliable results for
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interdefect spacings smaller than about 27a from the
defect, where u is half the lattice constant.

In light of these findings, it appears to us that inter
action energies obtained by any method in which
elasticity theory is applied at interdefect spacings
smaller than those specified above should be viewed
with some suspicion. The method of lattice statics
provides a natural and consistent transition from lattice
theory to continuum elasticity and is thus free from the
constraints imposed on the lattice in direct-space calcu-
lations and therefore, seems to present the most direct
and reliable approach to the type of problem considered
here.


