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The surface impedance of a metal slab, in the presence of a magnetic field normal to its surface, is studied.
A model Fermi surface, which exhibits realistic properties, is considered and the various modes of the
electromagnetic 6eld (helicons, Doppler-shifted cyclotron resonance, Gantmakher-Kaner oscillations) are
analytically examined separately in order to gain a greater understanding of the sources of these con-
tributions. Variations of the basic model Fermi surface are then introduced. In particular, it is shown that,
for a suitably designed partially compensated Fermi surface, it is possible to obtain high-frequency helicons
at reasonable magnetic fields for metallic net carrier densities. A general hierarchy of cylindrically sym-
metric Fermi surfaces is presented, leading to a variety of Gantmakher-Kaner contributions.

I. INTRODUCTION

HEN a metal is subjected to a dc magnetic field
normal to its surface and an rf electromagnetic

field tangential to its surface, the electric field inside the
metal is quite complicated, depending on the method
of excitation, the details of the surface scattering, and
the shape of the Fermi surface, as well as the magni-
tudes of all the various parameters involved. Although
formulas have been developed" for the electric field,
and more specifically, for the surface impedance, real-
istic Fermi surfaces usually require that these formulas
be evaluated numerically. It is thus rather difficult to see
how the various aspects of the Fermi surfaces come into

play in their effect on the different modes of the electro-
magnetic field.

The purpose of this work is to examine various models
of Fermi surfaces which are suQiciently complicated
that they exhibit realistic properties, and yet which are
sufficiently simple that the analysis can be carried
through analytically. This enables us to look separately
at the various modes, helicons, ' ' Doppler-shifted
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cyclotron resonance (DSCR), ' ' and Gantmakher-
Kaner (GK) oscillations, " and to examine how each
of them can be affected by appropriate Fermi surfaces.
In particular, it suggests the types of Fermi surface
that can produce anomalous effects in the surface
impedance. It also allows us to clear up some confusion
about the amplitude of the GK oscillations.

We begin, in Sec. II, with a discussion of how the
electric field and surface impedance are calculated for
several different methods of excitation, once one knows
the conductivity. All of our discussions will be confined
to the assumption that the electrons in the metal are
specularly rejected at the surface of the metal. How-
ever, we will indicate where difIuse boundary conditions
would be expected to give qualitatively different results.

In Sec. III, we will evaluate the conductivity for our
basic model Fermi surface. This model, suggested by
Copper in the L111j direction, contains necks and
velocity maxima and will serve as the central core of
the work. After separating the contributions of the
different modes to the electric field in Sec. IV, and
examining the pole contributions (helicon, DSCR) in
Sec. V and the branch cut contribution (GK oscilla-
tions) in Sec. VI, we shall consider how these are modi-
fied by various modifications of the Fermi surface. Thus,
in Sec. VII we shall consider compensation effects and
show how, under appropriate circumstances, they may
give rise to high-frequency helicons at the usual experi-
mental magnetic fields, while in Sec. VIII we shall
consider a variety of other, but related, Fermi surfaces.
The distinction, in Sec. VIII, will be primarily the
nature of the branch-cut contribution. All model Fermi

8 P. B. Miller and R. R. Haering, Phys. Rev. 128, 126 (1962).' E. A. Stern, Phys. Rev. Letters 10, 91 (1963).
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Fiz. 48, 1572 (1965) LEnglish transl. : Soviet Phys. —JETP 21,
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surfaces we use will have cylindrical symmetry about
the direction of the magnetic Geld, but within this re-
striction a complete hierarchy of surfaces and attendant
branch-cut contributions will be presented.

II. ELECTRIC FIELD AND SURFACE IMPEDANCE

Ke consider here a slab of metal of infinite transverse
dimensions lying between s= 0 and s= I.. The rf electric
field E, propagating in the positive s direction with
time dependence e '"', and the electric current in the
metal j, both of which vary only in the s direction, are
related by Maxwell's equation

d'E(s) M' 4zrno-+ -E(.)=- i().
QS2 C2 C2

&IG 1 Experimental arrangement for
two-sided linearly polarized excitation
showing rf coil and coordinate system
used.

=H

To obtain another relation between the current and
the field, we introduce the complex tensor conductivity
0.. For the case of an infinite sample, 0. is translationally
invariant and Ohm's I.aw takes a particularly simple
form in terms of momentum components. Platzman and
Buchsbaum' have shown, for the case of specularly re-
jecting boundaries, how to convert this slab problem
to a bulk problem with periodic current sheets (i.e. ,
discontinuities in E —=dE/dz) at s=nL, with E even
about any of these planes. We will therefore simply
sketch the derivation. With

The tensor whose inverse we need in (6) will be dia-
gonal, assuming the metallic lattice has at least three-
fold symmetry about the s axis (i.e. , the metal is cut
with a symmetry direction normal to the surface) if we
use the circularly polarized components of the electric
field

E~= E +zE„, (&polarization) . (8)
In order to go further with (6), we must state the

experimental conditions, as they will relate 8'(0+) and
E'(L—). We shall consider two different situations.

1(q) = -"*i() = () (), (2)
A. One-Sided Circularly Polarized Excitation

Maxwell's equation (1) becomes

E(q) 2 Q e—2izzI q

C
2 m=oo

This is the case considered by Platzman and Buchs-
baum. ' We take the incident wave coming from the left.
The boundary condition is then that to the right of the
slab there is only a free-space solution to the wave
equation propagating to the right. That is

&&t E'(0+)— * E'(I-—)g= —(4r' / ') (q)E(q). (3)

Noting that

'*""=—Z ~(q-k )
m=—oo n=—~

If we let
&+'(L—)/&+(L —) = /

zizz zz (2 5zz, o)coskzzs
f+(s L)=

Lc ~=0 k~' —(M /c') ey(k„)
where

we may write

E(z) = —e'&*E(q)
2'

k.=n /L, ,
where e~(k„) are the appropriate diagonal elements of
e(k„), we get

&+'(L—)/&+'(0+) = f+(L L)/L1+f (O,L)3 (11)
and hence, the surface impedance for one-sided circu-
larly polarized excitation

N
eikzzz k 2 e(k )

n=—oo

X$E'(0+)—(—1)"E'(L—)3, (6)

4zruo Eg(0+) 4zr( f '(L,L) )Z,= — — = —
I f~(O,L) —

~. (12)c' E~'(0+) c k 1+f~(O,L)1

B. Two-Sided Antisymmetric Linearly
Polarized Excitation

where we have introduced the complex-tensor dielectric
constant (suppressing any indication of its dependence
on frequency) as follows:

e(q) = 1+(4zrz/(0) 0 (q) .
This is a commonly used experimental arrangement

(7) where the rf field is produced by a coil wrapped around
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t/2
(2m@,)

. I/R

2m@, {t-——)
2 vk
7P PL

Before proceeding further with the sums, we shall
therefore turn to the evaluation of the conductivity.

-I( 0 k

Pz III. CONDUCTIVITY FOR MODEL
FERMI SURFACE

FIG. 2. Fermi surface (23). The surface is cylindrically symmetric
about the p, axis. Brillouin zone boundaries are at p, =+k.

thC SRIllplC (Fig. 1). TlliS I1CCCSSRllly 1IIlpllCS tliRt
E(L—) = —R(0+) and hence that

so that
E'(L —) = E'(0+), (13)

The condition of linear polarization implies that the
rf magnetic field at the surface is linearly polarized, that
is, H, (0+)=0. But,

Hence,
(i(u/c) H ~ = I"-'z'.

E„'(0+)=0,

(16)

which we may write in the form, for a=0,

E(0+) =P„T„„E„'(0+), (p, p =x, y, s) . (15)

The conductivity (r~(q, cu), in the presence of a static
magnetic field H for the case of a Fermi surface with
cylindrical symmetry about the direction of H (which
we call the z direction), is given by"

ie2 eJI
~+(q,~) =

(2~)' c

JPc I(z

S Q7c (d+~,~'7+Ac gVz

(22R)

v= BE/Bp, (22b)

transverse to and parallel to the magnetic field, p, is the
component of momentum parallel to the magnetic 6eld,
the integral is over those values of p, which lie on the
Fermi surface, z is the scattering lifetime, and co, is the
cyclotron frequency

2zreH /BA~

c %BE)„,
' (22c)

where 4(p„E) is the cross-section area of a surface of
constant energy E on a plane of constant p, .

The model Fermi surface we shall consider here is
dehned by the surfaces of constant energy, in the
vicinity of the Fermi energy p, being given by (Fig. 2),
(taking 4=1),

Here, v& and v, are, respectively, the components of the
velocity

so that E,(0+)= T E,. '(0+), or the surface impedance E=p '/2m+ (2/zr) kI( sinz(zrp, /2k) . (23)

Finally,

where

c' E.'(0+)

2'*.= l (T++2'-)

Thus, the different modes of excitation require dif-

ferent, although similar sums [(10) and (20)7 to be
evaluated. In order to evaluate them, we shall need

expressions for the dielectric constant, or equivalently,

using (7), the conductivity. Actually, since, for Inetals,

the frequencies that we will be interested in are much

smaller than the plasma frequency, we can neglect the
displacement current and write

and

(24)

'Dz = (25)

Here y& is the component of momentum transverse to
the s direction, while k and z are parameters with the
dimensions of momentum and velocity, respectively.
There will be necks of the Fermi surface at p, = (2n+ 1)k
provided that (2/zr)i(k(p. We take the Brillouin zone
boundaries at p, = &k. This surface was suggested by
the Fermi surface of Copper" with its necks along the
[1117 direction. Copper, however, also has six other
necks which introduce interruptions in the electron
orbits as well as various hole orbits. We will consider
in Secs. VII and VIII surfaces which have these
properties.

From (23), we have

(~z/g') g~((f) (4zri(c/(,')(Tg(I() . (21)

"p. F. Gantmakher, in Progress in Jodo Temperature EIlysics,
edited by C. J. Gorter (North-Holland Publishing Co., Amster-

dam, 1967l, Uol. U.

Thus, v, has a maximum magnitude, equal to v, at the

R. G. Chambers, Phil. Mag. j., 459 {1956).
~3A. 3. Pippard, Phil. Trans. Roy. Soc. London A250, 325

(1957l.
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points p, = &-,'k. The cross-section area is given by can write

3(P„E)= 2m' [E ek/—sr+ (vk/m. )cos(x.P,/k) ), (26)

which implies by (22c) that

oo+i6

Ty=-
—oo+ib

4'll zM

~,(q) ~

tan-', qS. , (34)
c'

(u, =eH/mc, (27)

Here,

~(a )= —
(u

——
) &

—
l )

Q~ =MAN g+ z/t (29)

and the square root is defined so that the phase of its

argument lies between —x and vr. If we notice that the
density of electrons contained in this Fermi sea is given
by

independent of p, . This last property will be common to
all the models we will consider.

Inserting these results in (22), we get

where we have used (21) under the assumption that
cv«co~.

The integral in (34) could be evaluated numerically,
and this approach would be best in the case of a real
Fermi surface. However, with the simple conductivity
(32), much of the work can be done analytically, and
this allows us to separate the contributions of the
various physically distinct components of the electric
field. This can be seen by considering the integral in
(34).

In addition to the poles of the integrand of T+ which
come from tan-,'qL and lie on the real axis (and con-
sequently, below the contour), there are two other kinds
of singularities.

5'oles, col/ective nzodes. There are poles, where the
denominator in (34) vanishes, at

mpl2d p,, =
(2n-)'

(30) q'=( '/') +(q)=( /') +(q).

and introduce the plasma frequency co„by

we can write
(u, '= 4z.ne'/m (31)

Z CO
2 —

~~
2- —I /2

a~(q, (u) = ——1—
4z Qg Qg

(32)

IV. SEPARATION OF MODES

This exact expression for the conductivity, though
rather simpler than that for a spherical Fermi sea,
nevertheless, implies the existence of all the usual modes
of the electric field: helicons, DSCR, and GK oscillations.

(q'V) = Qy = (C0+Mg+ l/7')' (36)

As may be seen from (22), the branch cuts occur
wherever

These correspond to modes of the electromagnetic field
(eigenfrequencies of the wave equation) which will be
propagating (if q is essentially real) or damped (if q
has an appreciable imaginary part). The long wave-
length propagating mode is the helicon. ' ~ There is also
a DSCR mode' ' ' at shorter wavelengths and a damped
helicon for the "wrong" circular polarization.

Branch cuts, single particle m-odes There .are also
branch cuts in the integrand of (34) at the branch cuts
of o+(q). The branch points, for Fermi surface (23),
occur at

6)—qV, = WGl, 'L/r, —(37)

which corresponds to the condition for a Doppler-shifted
cyclotron resonance of an electron drifting along the s
direction with velocity v, . Since e is the maximum mag-
nitude of v„ the ends of the branch cuts (37) are given
by (36). These branch cuts produce the Gantmakher-
Kaner oscillations, ' oscillations in the electric field
which are carried into the metal by electrons with the
maximum v„and whose amplitude is diminished by
some power of the distance into the metal, the value of
the power being dependent upon the nature of the
branch cut (see Sec. VIII).

These two different types of contributions may be
examined separately by distorting the contour of inte-
gration in (34) into the upper-half complex q plane.
Since the contribution from the semicircle at infinity
vanishes due to the q' in the denominator, the only
contributions will come from the poles and branch cuts
which lie above the original contour. In Fig. 3, we sketch

P(q)c i@It2-
dq—,(33)

cos-,'gL

co—2 J'(k2.+l) = ——
J n=—oo 4x

where the contour c encloses, in a counterclockwise
direction, all the zeros of cos-', qL (the points q=k2„+l)
but no other singularities that the integrand might
have. We note that q' —(co'/c')ez(q) has no zeros for
real values of q. If all zeros of this function have
~Imq~ )8, where 8 is a positive infinitesmal, and if we
assume that the lattice has reflection symmetry in the
xy plane, so that q' —(~%')e~(q) is even in q, then we

We are now ready to evaluate the surface impedance
of a metal with the Fermi surface (23). We shall do this
for the case of two-sided antisymmetric linearly polari-
zed excitations, although similar techniques could be
used for one-sided circularly polarized excitation. Thus,
we will want to use (32) in (18), (19), and (20).

We transform the summation in (20) to an integra-
tion by using the identity
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Im-qv
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For the most part, we shall be dealing with frequencies
co«co„so we may approximately write

Q~ &—M g (1&$/(d gT) .
It is convenient to introduce dimensionless param-

eters. To do this we measure lengths in units of v/to,
which, to a factor of 2~, is the pitch of the helix des-
cribed by the electrons with the maximum v, along the
magnetic Geld. We then define

z= g&/sac, rl = 1/~, r, »d p = cv„'&uv'/&v, 'c'. (40)

(Throughout this paper we take ~)0, so p)0.) Then
(38) becomes

rl6 ~ g ~g ~ ~
~wt

~ y

~yyyyos

~g ~ OO+

0

~s

qvsrao ~ ~ ~ ~ + Re~,~ og wa

~,
~ 0

~0
~ 0

~ ~
~ 0

~0
~e

~~ ~ ~ ~ ~~~~~
~ g ~~

the positions of all the singularities for the case 0&co
(&cv„co,w))1, in the complex q plane, where we measure

g in units of ro,/v. Figure 3(a) corresponds to the singu-
larities in the integrand of T+ while Fig. 3(b) corre-
sponds to those in the integrand of T . Thus, T+ con-
tains the damped helicon (wrong polarization for co) 0),
while T contains the helicon and the DSCR. We have
indicated the paths along which the poles move as ~,
is decreased.

The contour of integration in (34) originally lay just
above the real axis (above the poles of tansy, which we
have not indicated in the sketch) but below any of the
singularities in the upper-half plane that are sketched
in Fig. 3. The distorted contour of integration circles
each of the singularities in the upper-half plane in a
counterclockwise direction.

(b)

FIG. 3. Positions of singularities of integrand of (34) for Fermi
surface (23). The solid lines are the branch cuts. The dotted lines
indicate the paths followed by the poles as the magnetic Beld is
decreased. Curves are sketched for 0&co((co, and co,r))1. Figure
3(a) is for the + polarization and the pole corresponds to the
damped helicon. Figure 3(b) is for the —polarization. The crosses
indicate the helicon pole positions, while the circles indicate the
DSCR positions.

+s'/p= L(1&sr))'—z'7 'I' (&polarization) . (41)

The propagating modes correspond to those solutions
of (41) for which z lies near the real axis. We can most
easily see the nature of the roots in the collisionless
limit (rl —+ 0) by plotting the two sides of (41) as func-
tions of s . This is done in Fig. 4. Here, curve A is the
right-hand side of (41), curve a is the left-hand side for
+ polarization, while curves b, c, and d are the left-
hand side for —polarization for progressively larger
values of $ (larger values of to or smaller values of II).

Since curves A and a do not intersect, we see that
there is no real root for the "wrong" + polarization. For
the "correct" —polarization, we see that there may be
no roots (curve d) or two roots (curve b) There .is a
critical value of P, $ '=4/27, corresponding to curve c,
which separates these regions. This corresponds to a
magnetic field H . For H)H we have $(g and there
are two roots; for H(EE, we have g) $ and there are
no roots. Just at H there is a double root. LBy a root
we mean a value of ss satisfying (41). This, of course,
corresponds to two values of s, but only one is in the
upper-half plane7. We thus identify H as the helicon
edge, the minimum Geld for which helicon propagation
is possible. (Note that at the edge, when P=P, the
solution is s'=~. Thus 2'&1, qv&~co, at the helicon
edge. )

V. POLE TERMS

We first examine the contribution to (34) and hence
to the surface impedance (18) that comes from those
parts of the distorted contour that circle the poles in
the upper-half plane (see Fig. 3). These poles occur at
the roots of (35) which is the dispersion equation for the
collective modes.

Inserting the conductivity (32), we have

7 2

Fro. 4. Graphical solution of (41).Curve A is the right-hand side
of (41). Curve o is the left-hand side for + polarization. Curves
b, c, and d are the left-hand side for —polarization for progres-
sively larger values of $ (smaller H). Curve c corresponds to the
edge.
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FIG. 5. Plots of the real (a) and imaginary (b) parts of the pole contribution to the surface impedance for —polarization for

the parameters (SO). The helicon edge is at H =6.07 kG. Dotted line is for the case of an infinitely thick sample (i.—& ~).

In this collisionless limit the solutions of (41) for both Here,
polarizations are obtained by solving (47)

zs z4y Ps 0

The roots of (42) are

(42) is the thickness of the sample in units of the pitch.
It is sometimes of interest to separate the contribu-

tions of the ~ polarizations to Z„according to
z12= -2'(1 —2 cos8),

+polarization, damped helicon (43a)
Z. =-2'(Z~+Z ), (48)

s2'= 2(1+cos8—V3 sin8),
—polarization, helicon (43b)

Z22= 2 (1+COS8+V3 Sin8),
—polarization, DSCR, (43c)

where
cos38= (27/2) P—1. (44)

For H) H ($($ ), 8 is a real angle between ssvr and 0,
while for H(H ($) $ ), 8 becomes pure imaginary and
all the roots are significantly displaced from the real axis.

The presence of a hnite lifetime, g/0, produces small
imaginary parts in z2 and z3 even for H) H . The posi-
tions of these poles are indicated in Fig. 3, as well as
the paths they move on as H is decreased.

The contributions of these poles to the surface
impedance may be written as

Z yo le$$
4x'$MV

c2co, i=&
(45)

where /2; are the residues of the integral in (34) after
the variable z has been introduced

Zg ——(42rio1/cs) T~. (49)

Then the pole corresponding to j=1 contributes only
to Z+ while j=2 and j=3 contribute only to Z . To
illustrate the pole contributions, we have plotted in
in Fig. 5 the real and imaginary parts of Z I""for the
following case.

An rf signal vrith ~=2~X104 sec ' is incident on a
sample of thickness L= 0.1 cm with parameters

2/= 1.1X102 cm/sec,

co„'=2.7X1032 sec ',
c 1 38+X10 sec

MgT= 20JI )

where H is the magnetic field in kG.
The dispersion relation for the propagating modes

(—polarization for o1)0) may be written in the col-
lisionless limit (1/ ~ 0) as

(o1 C2/o1 2)q2(1 (qt//o1 )211/2

This curve is sketched in Fig. 6. For small q one sees
the classical helicon dispersion relation

p tan12)1z;
Pj=

s (2P—s')
(46)

o1~(o1,c2/o1„') q'.

The curve of co versus g' departs from linearity in the
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respectively, at

s,=Pi'+ ,'i@i'-~, (~, ~&&1) (56a)

s,=—1+-,'t6+i~, ((, V&&1). (56b)FIG. 6. Dispersion relation for
the propagating modes (helicon
and DSCR) in collisionless limit. Hence, right at the geometrical resonances the tangent

in (46) becomes. approximateiy

qm (~c) tan2lis2~4i/Pi'Ag (('i'lip((1)

tan-,'As6 2i/P, V, P V&&1) .

(57a)

(57b)

= (4/27) i 2(d 6C2/u &v2 (53)

occurs for q=q, where

nonlocal region, and there is a maximum frequency +
for which propagation is possible. This frequency

[Note that the resonances occur when Re(gs, )= (2n+1)v., and hence occur at different fields for the
helicon, j=2, and the DSCR, j=3. When Im(&s, ) be-
comes too large, of course, there no longer are reson-
ances. This is the case with the damped helicon, j=1j.
Hence,

The dispersion curve bends over beyond q, terminating
at the position of the DSCR p6~ —P tan-', Xs6~ —2iP/XV,

(at DSCR resonance) . (5gb)C'= (~./v) '. (55)

(54) p2—2P'" tan-,'Xs, 2i/$6A V,

(at helicon resonance) (58a)

The fact that co vanishes as a square root at this point
is peculiar to Fermi surfaces where the maximum

~
v,

~

(actually ~cIA/Bp. ~) occurs for a finite cross-section
area A.6 In the case of the sphere, the maximum~ cjoy/

6lp,
~

occurs at the pole of the sphere, where the cross-
section area vanishes. The lack of electrons with the
maximum ~ill/4lp,

~
in the sphere makes the DSCR

too weak to bend over the helicon mode all the way to
46=0 at q'= (46,/v)', although there is still a maximum
co at a smaller value of g' than. (55). We shall return to
this point in Sec. VIII. For the present Fermi surface
(23), we see that both the helicon and the DSCR occur
at all 46&co )that is, (51) is double valued for all
46&~ j, becoming hybridized in the vicinity of q .

With regard to this last point, we should also plot co

versus q as we do in Fig. 7. The poles in the upper-half
plane of Fig. 3(b) correspond to wave vectors of opposite
sign for the helicon and DSCR. A glance at Fig. 7 shows
that both modes have positive group velocity, propagat-
ing into the medium. The bending over of the helicon
mode near q corresponds to hybridization with the
DSCR which has negative group velocity (propagating
up from the medium) but which, like the helicon, has
positive phase velocity. This mode corresponds to the
pole in the fourth quadrant of Fig. 3. Precisely at q= q,
both modes have vanishing group velocity, and thus,
as discussed in Ref. 6, produce a peak. in the surface
resistance, the edge anomaly (see Fig. 5).

Before discussing the behavior near the edge, we
wish to examine the relative contributions of the helicon
and the DSCR to the surface impedance at their re-
spective resonances. To do this, we consider the dis-
persion relation (41) for small P in the long mean free
path limit (g&(1). The helicon and DSCR poles occur,

Thus we see, in this limit where $«1, g«1 and &~((1,
that

p6—-t "p2. (59)

Since $6& / '=4/27 for any propagating modes, we
must have

~»& (4/27) 6= 0.022 (60)

and therefore the peaks in the surface impedance due
to the DSCR will be no larger than about 1%%uq of the
size of the peaks due to the helicon.

Returning to the behavior near the edge, we want to
consider f~$ . Through the use of (41), (43), (45),
(46), and (49), we can examine the surface impedance
Z in the vicinity of the edge anomaly. Here it is con-
venient to let

)6= (2/27) (2+6) ) ~
6 ~((1.

For finite lifetimes, (41) may be rewriten as

s6 s4+t6 —0
where

(61)

(62)

(63)

g&(—6 (64a)

=(7rcov/c'46, )(2/3q)"'(1+i), I 6~&&V (64b)

= 4vi( 66vc/'(u, )6 '"(1—6u)/6), g(&6. (64c)

Expanding the primed equivalent of (43), solving for
s& and s6, and inserting the results in (46), we eventually
get the following expressions for the surface impedance
in the limit of an infinitely thick sample so that the
tangent in (46) can be replaced by i:
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e 4(e/ —e/ )/e/„,

but if it is due to a change in II, then

(65)

—12(H —H )/H (66)

Throughout, we have taken
~

e
~ &

g&&1. If the change in

P is due to a change in e/, then
Fro. 7. Same as Fig. 6, but

using q instead of q' as inde-
pendent variable, showing that
helicon (q &0) and DSCR
(q (0) have positive group
velocities but opposite phase
velocities. V

The edge anomaly behavior as given by (64) and (66)
can be seen in Fig. 5 for the case of the in6nite sample
as well as the finite sample. It is possible, for appro-
priate parameters, that q might be nearer a geometrical
resonance of the finite sample, and thus distort that
particular resonance, displacing it slightly. We should
note, finally, that had we assumed diffuse scattering
boundary conditions at the surface of the metal, the
edge anomaly would be quite different. ' In Appendix
8, we exhibit the differences due to boundary conditions
for a different Fermi-surface model.

VI. BRANCH-CUT CONTRIBUTIONS

%e return now to a discussion of the remaining con-
tributions to (34). When the contour in (34) is dis-
torted into the upper-half plane, it encloses not only
the poles that we have discussed in Sec. V, but also
branch cuts (see Fig. 3). The portion of the surface
impedance due to the integrals along the branch cuts
arises from the G-antmakher-Kaner oscillations men-

tioned earlier. Taking account of the discontinuity
across the cut, and writing that part of the surface
impedance (49) due to the branch cuts as Z+oK, we

may write the branch-cut contributions as

exponentials rather than use (70). Thus, we write

where

a& (ss 1)1/2
ds

s6 p4+ (~6

—2 2 (—1)"I-,
n=l

(72)

(ss 1)1 /2

dz
s6 s4+ (&6

(73)

This expansion corresponds to a multiple-reRection
series" with the I„falling off exponentially with nL/i,
where / is the mean free path and

1= 'v7. (74)

The first term in (72) does not oscillate with magnetic
field. The integrals I„can be evaluated in terms of
known functions in the limit

X= L/d, /i/»1 . (75)

This evaluation is performed in Appendix A with the
result

l„~(m/2nX')"'e'&""'+~/" L1—(~y)'"ev erfc(y"')), (76)

where

with

8"LGK

g GK (67)

w (s2 1)I/2

ds tan-,'X's,
s6 s4+ (~6

X'= X(1+ii/), P'= t/(1+i') . (69)

where
y==nVP/2i (77)

and erfc is the complimentary error function. "
If

~ y~, as well as X, is large compared to unity, then

(76) reduces to
exp t i(nX'+ —,'~))I (-', m) '" a, ~y~&&1. (78)

(nial)s/s~~s

The occurrence of the tangent in (68) is due to the
fact that we are treating a finite sample. The peaks of
the tangent occur at the Fabry-Perot resonances. This
can be seen directly by writing the tangent as

00

tan-,'Vs = —2
Xs(1+i')—(2n+1)~

(70)

In the infinite collision time limit (i/ ~ 0), the imaginary
part of (70) becomes just a sum of 8 functions at the
Fabry-Perot resonances

Xs=qL= (2n+1)~. (71)

For a sample which is not too thin, however, it is
more convenient to expand the tangent in a series of

"R.C. Alig, Phys. Rev. 165, 833 (1968l.

This harmonic oscillation with respect to nA=nLe/, /v,
with an amplitude varying as L "', is the result ob-
tained by Gantmakher and Kaner' for the case where
that section of the Fermi surface that had the extremal
velocity in the direction of the magnetic field also had
a finite cross section.

For the case where
~ y ~

is not large, we let

y'/'= (~ 2/i) "/'x, or x= (nV)"/7r)'/' (79)

and use the identity relating the erfc to the Fresnel
integrals"

erfcL(1r/2i) '/'x) = 1—(2/i) "'LC(x)+iS(x)) y (80)

"G. A. BaraB, Phys. Rev. 178, 1155 (1969).
"Handbook of Jj/Iathematica/ PNnctions, edited by M. Abramo-

witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math.
Ser. 55, Chap. 7.
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to rewnte (76) as

I (2r/2nV) '/'e'(n)('+ "'
X[1—~xf(x)+ z~xg(x)), X»1 (81a)

where the auxilliary functions"

f(x) = [-;-S(x)) cos(-2'2rx2)
—[2' —C(x)) sin(2'2rx2 ), (81b)

C(x) = [-' —C(x)) cos(-' *')
+[-',—S(x)) sin(-,' x') (81c)

y sing for real x and are tabulatedare monotonicall decreas'
~ ~

~ ~

tion of the branch-cut contribution to the sur ac

~ is particularly useful in the c l-The expression ~82~ is
isionless limit ~ ~0l

' ' (2/, x real), where it exhibits th l
co-

d r s o thesurface impedance directl
ese are plotted in Fi . 8 forin ig. for the leading reflection

an t e parameters ~50~ ex
e e co )s)onless limit ())= 1/46, 2. -+ 0). For the ao 2.

usin L=
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%e can look analytically at the hi h
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e behavior of the amplitude of th GK
. Thus, for large magnetic field (40, -+06 E s.

e o e oscil-

(75) and (76) are valid. For this li

P6) implies
or is imit wehavey —+0, so

n C p C ~~ (83)

im edanc
and hence by (67) and (72) thee part of the surface
impe ance due to the nth reflection of the GK contribu-

g GK(n) (g GK(n))6

16i(A/2/ ( 2r
ei(n) '+n/4)

c2~,(1+i')'&2nl(')

X[1 2rxf(x)+22rxg—(x)) (82)

tion vanishes as

f
g GK(n)

J
~ —5/2

C (84)

oo

I I ( dS(S2 1)) /2e nr.z/4—I
(6

E2(nL/i), (86)

where E~ is a modified Sesselessel function of the second

with (67) and (72), the low-6eld result

g GK(n) (C& 2(C(u, , o), ~0, but )/&&1, (87)

where C is independent of magnetic Geld.
Thus, this contribution to the surface im e a

amp itu e of these oscillations must, consequentl have

difficult to obtain analyticall its fre u
we ta e t e square of the real part of (82 and

average it over the magnetic 6eldic e oscillations, the re-
u ing unction will be proportional to the squareof t e

e. o n t e maximum of the am litude we
must set the derivative of th'

-g-' 6ld eq-l H
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co times a function of x. Thex. e maximum with res ect to
magnetic held then occurs f 1 uenc-orx equa to some fre uenc-
independent numerical value. Th

'
yue. us, i we vary the fre-

quency, the magnetic Q.eld at tha e maximum amplitude

For low magnetic fields one mustus e careful because
e ec s ecome important as ~, —&0 'll

assume 46«(6, as indicated after (38 .
e case w ere (d, is small so that P))1 but r i

su@ciently large so that «1 I h
(73)

n t islimit, wehave from

(22 1)1/2

&incocI ZI 1)~—nLz/l

2'(&' —1)+5'

so that we have the inequality
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For the parameters (50), the exponential in (89) makes
this contribution quite small.

It will be noted that the GK contribution to the sur-
face impedance in (89) is pure real. This is in fact a more
general result to which we will now turn. Basically the
point is that the two different polarizations set up GK
oscillations with opposite phase velocities (see Fig. 3).
In this linearly polarized excitation, the two polariza-
tions combine so as to give only a real surface impedance
due to the GK oscillations. To see how this comes about,
we note that time reversal invariance, or explicit refer-
ence to (22), implies that

~~*(—v,
—~)=~+(a~) (90)

where we only take the complex conjugate of the func-
tional form of the conductivity, not of its arguments.

'7 G. Weisbuch and A. Libchaber, Phys. Rev. Letters 19, 498
(&967).

must vary in such a way as to keep x constant; that is,
the magnetic Geld must vary as H co'~'. Experimen-
tally, Weisbuch and Libchaber'~ found, for copper in
the [111j direction, that the field at the maximum
amplitude varied as (e'/' (although (e'/' also 6ts the data).
We wish to emphasize, however, that this behavior is
extremely model-dependent, and for a square root
singularity will depend on other parts of the Fermi
surface as mell. Thus, if other parts of the Fermi surface
give a contribution g(s) to the conductivity in addition
to the square root singularity, then instead of the appro-
priate parameter being x XP, it will involve
&@[1—Pg(1)j ' and. one gets a rather different be-
havior. For singularities other than a square root (see
Sec. VIII),~the behavior will again be different. [The
fact that the amplitude maximum in Fig. 8 occurs near
the edge H is fortuitous. Since H ~'~'L' while the
magnetic field at the amplitude maximum varies as
~'~'I-'~', these two Gelds would be separated for different
values of the parameters. $

For sufficiently small fields, ~Z~GK(")~ does not
vanish as suggested by (87) because lifetime effects
become important. [For the parameters (50), this should
occur for II 0.1 kG.j In this case, r/ is no longer
negligible and, in fact,

r'= e/(1+ ~)' -(r/~)'(1+6/~), . 0, (88)

where $/)/ is independent of a), [and equal to about 90
for the parameters (50)]. In this limit the GK con-
tribution to the surface impedance ceases to oscillate
and approaches a constant independent of Geld. The
contribution of the nth reflection to the total surface
impedance behaves like

16m. e)se ) '"
z GK( )+z GK( ) ~ ( 1)

~

C
—(&/&)(5/il)

3c (d~ cl

e), ~ 0. (89)

The same result is true for the dielectric constant (7).
From this it follows that

7'-'( —~)= 7'+(~) (91)

Now, to be able to talk only about the GK contribution
one must be able to separate the branch-cut contribu-
tions from the pole contributions. We have previously
seen how to do this in our case, and since the branch
cuts are entirely a property of the conductivity (90)
[unlike the position of the poles (41)j, we may write
for the GK contribution alone

P" GK( (e)g@—2' GK(~) (92)

Since, for the frequencies we have been considering,
T GK is odd in co, we have

and hence,

2' GK(~) — [2" GK(~) j@

z GK (z GK)a

(93)

so that for linearly polarized excitation the surface
impedance (48)

g GK —r (g GK+g GK) —Re+ GK (95)

is pure real.
Now, experimentally'o one observes GK oscillations in

ImZ, . There are a number of reasons why this may
happen. First, there are various experimental problems:
The sample may not have parallel surfaces so that it
is not excited symmetrically, or the alignment is not
directly along a symmetry direction so that the circu-
larly polarized modes do not quite diagonalize the con-
ductivity. More important, however, is the fact that
we have been assuming specular reflection. This assump-
tion was critical in order to allow us to neatly separate
the modes, and hence deduce (92) from (91). For the
case of diffuse reflection" the strength of the branch-
cut contributions depends on the pole terms and one
cannot separate the modes so neatly. Since the pole
terms are drastically affected when the sign of or is
reversed, we can no longer write (92). This difference
between specular and diffuse reflection seems to be due
to the fact that for specular reflection, electrons carrying
a given mode are only excited at the surface by that
same mode. The effect of fields due to other modes
vanishes by interference between the approach to the
surface and the reflection from the surface. For diffuse
reflection, however, electrons leaving the surface have
no recollection of their trip to the surface, and hence,
they experience the entire field due to all modes without
interference. The experimental observation of GK oscil-
lations in ImZ argues that the electrons do not undergo
pure specular reflection at the surface, but (95) suggests
that the GK oscillations should be more easily detected
through the use of circularly polarized excitation.

"G.A. Baraff, Phys. Rev. 167, 625 (1968).
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FIG. 9. Graphical solution of (98) for P(1. Figure 9(a) corre-
sponds to u(1. Curves a and b are the left-hand side of (9g) for
+ polarization for high and low magnetic 6elds, respectively.
Curves c and d are the left-hand side for —polarization for high
and low magnetic fields, respectively (above and below the edge).
Figure 9(b) corresponds to n)1, with curve e for + polarization
and curve f for —polarization. For ai&(ca„ there is always one
solution for each polarization.

VII. COMPENSATION EFFECTS: HIGH-
FREQUENCY HELICONS IN METALS

The Fermi-surface model (23) was suggested by cop-
per in the L1117 direction. Copper, however, has hole
orbits which partially compensate the electron orbits
for fields in this direction. In order to see the kind of
phenomena that may be produced by partial compen-
sation, we consider, for simplicity, that the electron
surface is that given by (23), while the hole surface is
of the same form but with different parameters. Using
subscripts e and h to denote, respectively, electron and
hole parameters, the conductivity for this partially
compensated model is then {for oi«oi„,oi, a)

Z COpg
2

ay=a e+o. a —~
4s. o)„P(1&ir/, ) ' —(Ip,/oi„) '7i/'

That is, n is the ratio of the extremal derivatives of the
cross-section areas of the hole and electron surfaces,
while P is the ratio of carrier densities.

If /=1, the system is exactly compensated and
f(0)=0. This situation produces Alfven waves rather
than helicons. ~ Ke shall not treat this case here but
confine ourselves to the situation where

~

1—
P~ is not

much smaller than unity. We assume the electrons are
the majority carrier,

(1o2)

This entails no loss of generality since the case P) 1
would merely correspond to letting n —+ 1/u and inter-
changing the two polarizations.

There are two qualitatively different cases, corre-
sponding to o.&1 and n& 1. Ke again plot the left- and
right-hand sides of the dispersion equation as functions
of z' (Fig. 9). For ir(1 LFig. 9(a)7, the behavior is
similar to the uncompensated case: iso real roots exist
for the wrong {+) polarization (as always, we take
o/) 0), while for the correct (—) polarization there is a
critical field JI which separates the high-field region
(I1)II, P($ ), for which there are two real roots,
from the low-field region {II(B,()( ), for which
there are no real roots. The effect of compensation is
simply to lower the edge Geld H somewhat. For very
high fields the helicon obeys the classical uncompen-
sated helicon dispersion equation (52) except that o&„'
is replaced by o/„, '(1—P). That is the charge density n
is replaced by n, —n&.

i-p
CU

oo

(96)
"L(1~ ~ )'—(v"/ ')'7'"&

Here co„and u, I, are both taken positive and we ex-
plicitly exhibit all signs which differ for electrons and
holes. If we de6ne the dimensionless quantities

z= g'vg/eight i ( = o/o)pg 've /aiba c i (97)

in terms of the electron parameters (arbitrarily), the
dispersion equation (35) for the collective modes be-
comes (in the collisionless limit r/„r/a -+ 0)

Cal

CO

a &t

l
I

I
I
I

I
1

X /g
I

where
Wz'/t'= f(z'), (&polarization),

f(zs) —(1 z2)—1/s P(1 ~sz2)—1/2

&a/oi. a BA,

&'e/oiee c/pz e~t r/pz exa

P= na/n, .

(»)

(loo)
Fzc. $0. Graphical solution of (I03) for —polarization showing

the disappearance of the root. Figure 10{a)for a &1, and ay &coI,
(101) shows one root. Figure 10(b) for n (1 and ru&cubi shows none.
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For n)1 [Fig. 9(b)7, the situation is qualitatively
different. Here there is one root for each polarization for
all values of the magnetic field. [Provided that oi((oi„,
cc,s so that (96) is valid. See below for discussion of
larger oi.) At high fields the —polarization root is the
ordinary (predominantly electron) helicon, while the
+ polarization root lies close to the DSCR for holes.
Figure 9(b) indicates that both these roots remain no
matter how small the magnetic field. That is, since f(s')
can vanish for n) 1, it follows from (98) that there is a
root for either polarization corresponding to infinitely
large P. From (97) we see that large j' corresponds to
either small oi„(small magnetic field) or large oi. Thus,
(98) implies that there are propagating modes in this
partially compensated metal for vanishingly small
magnetic fields or infinitely large frequencies (note that
we only require 1)I(I)0, so the carrier density n, (1—P)
=n, —ns can still be of metallic densities).

This result is valid only provided co(&co... co,h. When
this condition is no longer valid, we must use a more
accurate form of the conductivity than (96). Without
assuming small frequencies, but still in the collisionless
limit and ignoring Fermi-liquid effects, the dispersion
equation (98) is replaced by
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FIG. 1.2. Plot of the real and imaginary parts of the conductivity
c as a function of s, Eq. (97), for the parameters (111),and a
magnetic Geld 8=5 kG.

where
Ws'/p= f~( ,zs)c,c(&polarization), (103) It is convenient to rewrite (104) as

f~(s', ic) = [(iaaf/oi„) '—z'j—'~'

—I(I[(1acc/oi.s) '—n's'1 —'i'. (1()4)

(106)

l+~
N2 ce

+

z2

If cr) 1 and oi is increased (holding the magnetic field

fixed), eventually n (oi) will become equal to unity at
some frequency co=co&. Thus, for —polarization, for
oi(oui, there will be a real root for s'/P = f (z', o&) as seen
in Fig. 10(a), while for oi)o&i the graphs of s'/P and

f (s',cc) will not intersect, as seen in Fig. 10(b)."
The limiting frequency co& is determined by

or
1=n (oii) = n(1 o i/cc, .)—/(1+cci/oi. s) (107)

+ce&ch
(n 1)=

ccce+Qoics

~ce&h ch't) e

&e+&s
(108)

22
gS

where use has been made of (100). Note that o&i de-
pends linearly on H.

For the + polarization, the root disappears when

P~(cc) & 1 so that —s'/P and f+(s', &c) no longer intersect
(Fig. 11). There is thus a cutoff frequency at a value
somewhat larger than co2, where

FIG. 11.Graphical solution of (I03) for + polarization showing
the disappearance of the root. Figure 11(a) for Ie+&1 and 60(co2,
shows one root. Figure j. j. (b), for P+)1, co)co2, shows none. The
cutoff frequency is actually somewhat larger than co2.

"There is the possibility that there will still be two roots for
co)co1, but this requires very small p, corresponding to extremely
high magnetic fields, ca, ur„s/c or H~10' lrG.
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where, as usual, H is measured in kG. In Fig. 12, the
conductivity o. , is plotted as a function of s, (97), for
a field of 5 kG, showing the reversal of sign of Imo: at

where we have used (101).
As long as n and p are not too close to unity, ru& and

cv2 will have the order of magnitude of the cyclotron
frequencies, and thus high-frequency helicons (micro-
wave) are possible in partially compensated metals at
reasonable magnetic fields. Helicons at these frequencies
and fields can occur in sernimetals" and semiconduc-
tors" because the density of carriers is low (in our model
this is equivalent to co~.'(1—P) being very small). The
metallic high-frequency helicons discussed here are due
to a rather different phenomenon, as seen in Fig. 9.

To exhibit this explicitly, we have evaluated the sur-
face impedance (or rather its magnetic Geld derivative,
the more commonly measured quantity) for this par-
tially compensated model using the following param-
eters:

so=2m)&10' sec '

L=o.i cm,

n, = 1.1X10' cm/sec,

co~,2= 2.7)(1032 sec 2

coce Mcg 1 38HX 10 sec

g, = gs ——1/(20H),

p=s,

(1+ra/(o. y,)/rr zp& tl— (112)

s a little less than 0.3, where Reo. is still small. In Fig.
13 we show the magnetic 6eld derivative of the imag-
inary part of the surface impedance for the case of the
—polarization. The helicon peaks are clearly exhibited
(quite sharp for this small value of r)). The fact that
the spacing between these peaks is relatively indepen-
dent of Geld is due to the almost vertical Imo, where it
crosses the axis. That is, the value of s at the root of
(103) does not change much with field. For the pararn-
eters chosen there is also a root to (103) for the +
polarization, and in Fig. 14 we show the magnetic field
derivative of the imaginary part of the surface imped-
ance for the case of linear polarization, which by (48)
is just one-half the sum of the contributions for the two
circular polarizations. The double peaks correspond to
one root of (103) for each polariza, tion.

The low-field loss of the peaks is due to the cutoffs
discussed above. When co becomes equal to ~t(H), the
—polarization helicon is lost. For the parameters (111),
this will occur, by (108) when H=0.91 kG, so there
should be no helicons below this 6eld. Similarly ~ will

be equal to ~s(H), according to (110), when H=2.31
kG and the + polarization root should disappear at a
somewhat lower field.

Finally, we should comment on lifetime effects. At
these high frequencies the helicon root is close to s= sp,
the point where f (ss,ce) vanishes (see Fig. 10). For in-
finite lifetime, Reo. would be zero until s= (1+~/&u, s)/n,
where the first square root singularity occurs in o=. In
order that Reo: should still be small at so for finite
lifetime, the spacing between these two points should
be somewhat larger than g, i.e.,

~0 M. S.Khaikin, V. S. Edelman, and R.T. Mina, Zh. Eksperim.
i Teor. Fiz. 44, 2190 (1960) LEnglish transl. : Soviet Phys. —JETP
17, 1470 (1963)j."A. Libchaber and R. Veilex, Phys. Rev. 127, 774 (1962).

Now,
(1+re/a) cs) '—(1—re/o) ..)'P'

So
(&s ps)

(113)
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Hence, to first order in g, (112) implies that Reo. will
be small at the helicon root providing

y]C
2n(n' —P')

(1—(u/re. ,)'n' —(1+a)/a). h)
'

1+re/Mch

VIII. OTHER MODELS: HIERARCHY
OF SINGULARITIES

We turn now to a discussion of a variety of Fermi
surfaces, most derived froin the basic model (23), in
order to exhibit some details that are model dependent.
The basic model (23) had a square root singularity in its
conductivity (32). That is, it had a square root branch
point occurring when (for negligible re and ri)

$8= &co, , (115)

the condition for Doppler-shifted cyclotron resonance to
occur. The nature of this branch point was intimately
connected with the fact that the surface (23) has a
velocity extreinum, a point where Be,/Bp, = 0, and that
this point occurs where the cross-section area A is
finite but where

~
p, ~

has not taken on its maximum
value. This point is p, = —', k (also —2ik), where

A (&-',k, p) = 2m' (hi
—wk/n-) (116)

and
~ P, ~

ranges continuously from 0 to k. (See Fig. 2.)
We shall see that the nature of the branch point

(which affects the amplitude of the GK oscillations)
depends on whether or not there is such an extremum,
whether or not A vanishes at that point, and whether

For the parameters (111), this implies that lifetime
effects will be negligible for the helicon providing H&2
kG. Thus, for these parameters, lifetime effects become
significant only where the helicon is already disappear-
ing because ~ a&i(H).

or not that point is a ~p, ~

endpoint. To demonstrate
this with speciac models, we can adjust the parameters
in (23), as well as removing certain portions of the re-
sultant Fermi surface. (This latter might correspond
to the occurrence of Brillouin-zone boundaries, or to
the interruption of one kind of orbit due to the presence
of other sections of the Fermi surface. Thus, the six
additional necks that copper has would interrupt some
of the orbits of the kind we have been studying. )

We will therefore consider, briefly, eight different
models. Five of these, labeled A —E, are derived from
(23). Two, D' and 8', are derived from a Fermi sphere
and are only included because they are more familiar,
not because they have any significant difference from
models D and K Finally, we include model Ii, previously
considered by Skobov, "which exhibits no branch point
and hence no GK oscillations.

Thus, models 2—8 all have the same surface equation
(23)

8=pi'/2m+ (2/ir)kv sin'(irp, /2k) . (11'7)

Model A is the basic model with p) 2@k/~ LFig. 15(a)g.
Model 8 is a truncated version of model A with
0&

~ p, ~

&-', k LFig. 15(b)j. Model C is the same as 8
except that the cross-section area at

~ p, ~

= —',k is ad-
justed to be zero, that is, p, = vk/s )Fig. 15(c)$. Model
D is the same as model 3 except that the regions around
the velocity extrerna have been symmetrically removed.
That is, the regions —', k(1 —28/vr)(

~ p. ~

& —,'k(1+26/~)
have been removed, where 8(-', m LFig. 15(d)j.Model 8
has p& vk/s. so that the cross-section area vanishes, and
the Fermi surface terminates at a value

~ P, ~

=hk/ir(-', k

LFig. 15(e)). (For h
= —',~ model E reduces to model C.)

Model E' is just the Fermi sphere with

Z= P,2/2m+I, '/2m

I' V. G. Skobov (private communication).
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'0

0

=Pz

which equals unity in the limit of model C. The co~ is
that appropriate to each model.

There are thus three kinds of branch points exhibited.
The strongest of these singularities is the square root
(models A and 8). This occurs when there is a concen-
tration of electron orbits with almost the same
(BA/Bp, )Iir L(B'A/Bp, ')I»=0) at a point of finite
cross section

I A(ps) &Oj, that is when there are enough
electrons with orbits in the vicinity of ps to give a large
contribution to the conductivity. If, however, there is
no concentration of electron orbits with the same
maximum (c(A/c(P, ) I @ or the point of maximum
j(c(A/Bp, )Ia( does not correspond to a finite cross
section, then fewer electrons will contribute at this
point and one only gets a logarithm (models D or C).
If there is neither a concentration of orbits nor a finite
cross section, there are only vanishingly few electrons
to contribute and the singularity is still weaker, cor-
responding to a logarithm whose coefficient vanishes
at the branch point. That is, there is no branch point in

o~, only in Bo+/c}s~. We have designated this kind of
singularity a weak log (model E). It is weakest of
all singularities, but it is the most familiar as it occurs
for the Fermi sphere (model E').

We note that the singularity always occurs at the
point of maximum ((8A/Bp, ) I

~(- I v, I. Thus, in model
D there is no singularity at s'+= &1, but rather at the
branch point of the inverse tangent at

Fio. 15. Variety of Fermi surfaces based on (23). Part A is the
basic model (p)2vk/7r) and is also depicted in Fig. 2. Part 8 is
truncated at ~p.

~

=ask. Part C has p=vk/~. Part D has the
regions k(1 2b/~) &2

~ p, ~
&—k(1+2h/s. ) removed. F- has p &vk/s. .

(1—s~') "' cot5= &i,
which can be written in the form

qv cosh=cd. (1&iii).

(122)

(123)

a= L1+sv.(orts/vk —1)j (121)

while Model D' is the same thing truncated so that
0& Ip, I &p«ps. Finally, Model Ii has

E=p, /2m+vI p. I. (119)

The significant aspects of these models are as follows:

(a) Is there a point ps where
I
v, I, or more precisely

I
c(A/Bp, I

(these are the same thing for all these models
because to, is independent of p,) has a local maximum'?

(b) Is the maximum
I
BA/Bp,

I
an extremum? That is,

does (r}'A/Bp, ') =0? (This is as opposed to
I
BA/Bp.

I

being maximal because it is increasing and p, termi-
nates at ps. )

(c) Does A(p, )=0?
(d) Does Ip I

terminate at ps?

In Table I, we summarize this information together
with the conductivity and the nature of the branch
point for each of these models. We let

(120)

with 0+ given by (29) and for models D' and E' we let
v = pr/m. For model 8, we introduce the parameter

Since v cosh is the maximum. value of
I
v.

I
for this sur-

face, (123) is seen to be the condition for Doppler-
shifted cyclotron resonance for the electrons with maxi-
mum v, . Similarly, the singularity for model E occurs
when

qv sinv= to, (1&ir() (»4)

and v sini is the maximum Iv, for this surface, while

for model D', the maximum v,
I

is vps/pr, and the
singularity is displaced accordingly.

This indicates that by having an even greater number
of electron orbits concentrated around the maximum
~„we should be able to get an even stronger singularity.
Model F has all electrons with the same

I v. I, and here
the singularity is so strong that it is a pole, and there is
no branch cut, and hence no GK oscillations. This
behavior will occur if there is a finite region of constant
BA/Bp, on the Fermi surface.

The surface impedance for model F can easily be
evaluated as there are only pole contributions. From
(34) and (49) one gets

Z~ ———(2~icov/c'tu, )(L1+(1&4j~') "'j(1/a~i)
Xt»(-,') s„)+L1—(1~4(',)-'i'j

X (1/S~s) tan(-', Xa~s) ), (125)
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TABLE I. Conductivities and branch points for various model Fermi surfaces.

O'A

Model 8p, ' „, A (pp)

terminates
at Pp? Conductivity o + Branch point

Qp

+p

+p

+p

gp

Yes

Yes

Yes

Yes

GO@
2——(1—s~') '"

4~ n,
'E

GO@ o t'1+st
(1—a)[1—z~'] '"+—1n~

2z~ k1 —z~

i (o„' 1 1+z~)———1n
4r n, 2z, 1 —z,j

2 [1 z 2]—1/2

tan '[(1—z ')'"cotb]
4~ n, l

1+8~ slnv—ln
47r O~ sinv —v cosv 2s~ 1—z~ sinv

—cosv(1 —zz') '" tan '[(1—z~')'" tang]

Square root

Square root
and log

log

log

Weak. log

Qp

+p Yes

Yes

z cop 1 1 1 Pp 1+s~Pp/Pp—+ 1—— ln
4~ 0 (1—Pp'/3Pp') z ' z~' 2s~Pp 1 —z~Pp/Pp

i (o„'3 1 f 1 1 1+z~

4r Q~ 2 z„' ( z~' 2zp 1 —z~

log

Weak log

All p, have same

( 0A

~P.

cop 1

4m Qg 1—sg'
None

where

&
'= (td stows/to, zc')(1aiti) ', (126)

and the s+, are the positions of the upper-half plane
poles for the & polarization. They are given by

s~t= (1&it))L-', ——,'(1&4) ')"'j"' (127)

sos ——~(1~is))Lts+st(1~4( z) ~ )~~s (128)

where the phases of the square roots must lie between
—~ and m. For the —polarization the situation is
familiar. The helicon root is s ~ and the DSCR root is
s 2. In the collisionless limit the helicon edge occurs as

where
(129)

For the + polarization, st is the usual damped helicon
root, but s2 is a new kind of root occurring because model
P has a pole singularity instead of a branch point. This
means that, in the collisionless limit, for s &1, Reo-+
remains zero, but Imcr+ becomes negative. There is
thus always a solution, denoted s&, to the dispersion
relation (35) for the + polarization, corresponding to
z') 1.We can understand this negative Ima.+ as follows.
Since half the electrons have the same velocity v in the
s direction (the others have n. = —n), we can use a frame
of reference moving with them. In this frame, the electro-
magnetic held appears to have a frequency approxi-
mately equal to qv. When qv)u„ the electrons cannot

keep up with the applied held, and thus find themselves
responding 180' out of phase. That is, they behave as
if they had the opposite charge, and hence the conduc-
tivity goes negative. For the usual Fermi surface, the
same situation would ensue for each value of v, on the
Fermi surface, and we would have a dense set of poles,
one for every v, at Ip, =u, . Thus, for a continuous range
of v, we get a branch cut. In model Ii, however, all the
electrons move together. Now, in the frame of these
electrons, large Ip corresponds to large co, and hence as

p gets very large, the conductivity must vanish, as the
electrons can not follow the applied field at all. This
means that the larger the q value of the applied held,
the smaller the interaction of it with the electrons. Now,
as the magnetic heM is increased, the propagating mode
s~ moves to lower q, approaching the resonance at
q=a&,/v. This mode will then interact more and more
with the electrons as the held is increased, and we expect
the surface impedance to decrease. This is seen from
(125), which implies that the sz contribution to Z+
diminishes for large H as co, 4. In Fig. 16, we have
plotted the magnetic held derivative of ImZ+ for model
P for the parameters (50) but with to,r= 5H, and this
phenomenon is clearly exhibited. The slight fall-off just
apparent at low helds is due to lifetime eRects becoming
important as (&o,r) ' becomes large. Finally, in Ap-
pendix 8, we examine the edge anomaly in Z for model
F for both specular and diffuse boundary conditions.
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The integral is over the Fermi surface. We note that,
by (22a) and (22b),

c BA BE

2treH BP, E 2s-eH BE „,BP, g
(131)

Thus, insofar as or, is constant over the Fermi surface,
as it is for all our models, we may discuss v, and
(BA/BP, ) l E interchangeably, as we have been doing. If
m, is not constant, then (130) indicates that the impor-
tant parameter is (BA/Bp, ) lE. Hence, for example,
conical surfaces of constant energy would give a con-
stant lv, l, but not a constant &d„so they would not
result in a simple pole singularity as model F does with
its constant ls, l and ar, .

We now expand A(P, ) and (BA/BP, ) l E about Po, a
point of maximum

l (BA/BP, ) l El. Then,

A(p, ) =A &'i+(p, —po) A &'&+-', (p.—po)'A &'&

+6(p. po)'A"'+, —(132)
BA =A &'i+ (p —po) A &'&+-;(p,—po) 'A &'&+

Bpz E (133)

The above discussion of branch points has been in
terms of specific models, but the results are model-
independent. We can see this by writing the conduc-
tivity (22), at zero frequency, for a general Fermi sur-
face having cylindrical symmetry about the direction of
the magnetic field. (the z direction)" '

2 SIC

~+(q) =~
(2s-)' H

A (p,)
(130)

1aitia(qc/2vreH)(BA/BP, ) ~
E

where

A(~)—
Bp& E yz=no

(134)

w(qc/27reH)A &'&= a(qt&, /&e, ) l„. (136)

Hence, for there to be a singularity at

(qe, /&e, ) l ~,= a1+iti, (137)

we must have A ('&/0. If one keeps the first nonvanish-
ing term in the numerator and the denominator of (135),
it is straightforward to get the leading singularity at the
point (137). Using the second, third, and fourth
columns of Table I in (135) one easily gets the branch
points given in. the last column. (Of course, for model 8,
only the leading square root is obtained. To get the
logarithm, one must also keep the A('& term in the
numerator. ) One can then go on to complete the hier-

archy of singularities.

The predominant contribution to o~ will be from p, near

Po Land near any other values at which I(BA/BP, ) l El
is a maximumj and that contribution is then (letting
k= p.—po)

2 zoic

50~(q) =a — dk
(2n.)' H

A &'&+kA &"+
X )

1&it/%(qc/2ÃeH)(A &'&+kA &'&+—'k'A &3&+ )
(135)

where dk is a region around k= 0. If
~ p, ~

terminates at
po, then one of the limits of integration in (135) will

be 0=0, otherwise Ak can be taken as a symmetric
region around k = 0. We note that by (131)
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and for large X, (142) gives

(144b)A(o)~0 A(')~0 A(')=A(')= - - - =A(n)=0

A ("+»~0, (138a)

I e/i'/(P )2—2/n n&2

then the leading singularity is given by

o~ (1+ii/a(qi/, /co ) ] ~" '&/"

The logarithmic and weak logarithmic singularities
must be treated separately. The use of (142) for the
logarithm requires some care (it involves Ramanujan's

(138b) integral" ), but ultimately one gets
and if

A(') =0, A(')WO,

A(')=A(') = ~ =A(")=0, A("+»/0, n&2

(139a)

Ii~ e'~'/X' 1n9,' logarithm. (145)

For the weak logarithm, it is the first term in the de-
nominator of (142) that dominates, and one gets

then the leading singularity is given by It~ e'"'/X" weak logarithm. (146)
o $1+it/& (qt/, /co, )„,] &" 'i/"— (139b)

where f(z) has the singularity of the conductivity
(138b), (139b), or the appropriate logarithmic singu-
larity for cases like models C through 8' (Table I). The
contour I' goes in a counterclockwise direction around
the branch cut, which has been rotated to lie along the
real axis between s= 1 and s= ~. We let

In (139b), if n=2, the power of zero in the singularity
is understood to imply a logarithm.

These differences in branch-point singularities are
rejected in the dependence of the amplitude of the GK
oscillations on the sample thickness. Thus, the fi.rst
re6ection of the GK contribution to the surface im-
pedance is proportional to t generalizing (73)] the
integral

(140)

This last result, as well as (143b) for n = 2, was obtained
by Gantmakher and Kaner in their original paper. '

As a final comment, we note that, in the entire hier-
archy of singularities given in Table I and (138) and
(139), only in the case of the weak logarithm does o.~
remain finite when the condition for Doppler-shifted
cyclotron resonance is satisfied. In all other cases, 0-+

diverges. '4 This means that when we consider the dis-
persion relation for the collective modes of the electro-
magnetic field (35), we shall find that the frequency co

will vanish (see Fig. 6) at (qi/, /&o, )»——1, in all cases
except that of the weak logarithm. Only for the weak
logy, rithm does the dispersion relation not bend over all
the way to zero. Thus, the Fermi sphere (which, because
there are vanishingly few electrons at the limiting point
to contribute, has a weak logarithmic singularity) can be
viewed as the most anomalous case.

Then,

f(z) = fi(z), above the cut

f(z) = fi(z), below the cut.
(141)
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APPENDIX A

We wish here to evaluate the integrals I„,Eq. (73), in
the limit X&)1.To do this, we distort the line of integra-
tion from the real axis to the line A as indicated. in Fig.
17. In doing this we will pickup the contribution of any
poles that lie between the original contour and line A,
as ~cell as the integral along line A, which we denote by
J„.Thus,

f(z) (1—z) '+&i/"&, n&2 (143a)

and for large X, (142) gives
(A1)I„=J„+(pole contributions)

li~eA'/(y~) 2 i/n n& 2— (143b)
Along line A, we can write

A special case of this is n= 2, where we have the familiar
square root. Equation (143b) then gives an amplitude
proportional to X' "' in agreement with (78). For the
case of (139), we have

(A2)z= 1+is/nZ',
i' Baieiaaw 3IIsegscrip/ Projec/, edited by A. Erddlyi (McGraw-

Hill Book Co., New York, 1953), Vol. III.
24 Note added in proof. Of course, for finite r the conductivity

o ~ remains finite for all models.(144a)f(z) (1—z) '+&""' n&2

For thicker samples (X sufficiently large), the dominant
contribution to (142) comes from z near unity. If f(z)
diverges at s= 1, as it does for all singularities except
the weak logarithm, the last term in the denominator
dominates.

If we consider the case of (138), then
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APPENDIX 8

Z& I+ nk(I+i')

Rcx

FIG. 17. Plot of the contours of integration used in evaluating
I„(73).The dotted line is the original contour of integration; line
A is the distorted contour. Any poles lying between these con-
tours will contribute.

where s is a real parameter. Then,

Z ~R
2&27&'GOD

c'(v, (1 ig)—

[1+(1—46-') '"]'"+L1—(1—46-') '"]"'
(x — — . (»)

6/6(1 4g 6)1/6

In the vicinity of the edge, we have

Ke wish here to compare the edge anomaly for model
J' (119), for the cases of specular and diffuse boundary
conditions. As in Sec. V, we evaluate the surface im-
pedance in the limit of an infinitely thick sample so
that the edge anomaly is not obscured by the geo-
metrical resonances. We look at the —polarization, as
that is the polarization for which the edge exists.
Evaluating the specular reflection result (125) in the
A.

—+~ limit gives

[(2is//6X') —(S'//69, ")]'"e—'
ds . (A3) so

[1+is/nA']6 —[1+is//6X']4+ $"

Mink'

J =—n

4V27l cov

(B3)g sa~ (1 4( 6)—//2

c'(v, (1—ig)

This has the same kind of behavior as model 3 had
[see Eq. (64) and Fig. 5].

For diffuse-reAection boundary conditions, the sur-
face impedance for an infinitely thick sample is given
by'

1/2e—ss
ds-

S+y
(A4)

(2i/6k') "'
where

y= ning/2i. (AS)
47jzco

dqln 1 — o. (q)
g2Q 2

Z DR (84)
The integral in (A4) is easily evaluated in terms of the
complementary error function' to give

For model F, this is easily evaluated to give

Retaining only the leading terms in inverse powers of
X', we have

) 1/6

""'+'"L1—( )"""-f( "')] (A6)
2eX'I Z DR {1+(1/V2)[1—(1 4( ')'"]'"—

co,c2(1 —ig)

Now, there will be a pole contribution if the magnetic
field is such that one of the roots of the denominator of
(73),

—(1/~2)[]+(1—4t 6)'/6]'/'} —', (Bg)

which, near the edge (B2), reduces to
s6 s4+ )~6—0 (A7) ~-' —[4~~/~.c'(1—iv)][1+ (1/~2) (1—4(-')"'] (B6)

giving the result (76).
I —J (AS)

lies to the right of line A in the upper-half plane. How-
ever, in order for this to occur, that root must be so far
from the real axis that the residue will be strongly
damped. Its contribution may therefore be neglected
and we may take

This has rather different behavior than the specular
case (B3), the square root appearing there in the de-
nominator and here linearly.

The anomalies in these two cases appear the same
as Alig" found for a Fermi sphere (weak logarithm),
and thus would seem to depend more on the boundary
conditions than on the shape of the Fermi surface.


