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Lattice Vibrations in Trigonal HgS
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Trigonal HgS (cinnabar) possesses a twofold-coordinated low-symmetry structure highly unusual among
A "8' " crystals. The cinnabar structure is based on close-packed helical chains, with six atoms per unit
cell and D3 symmetry. We have investigated the long-wavelength optical phonons in HgS via their inter-
action with light: reQectivity in the far infrared and Raman scattering in the visible. Classical-oscillator
analysis of the complex reststrahlen spectra has been carried out to obtain frequencies, infrared strengths,
dielectric dispersion properties, and, in addition, polariton dispersion curves for the A2 and E modes. The
Raman scattering is dominated by the A & lines, and the relative magnitude of the TO and LO E lines indicate
that the atomic-displacement contribution to the polarizability modulation exceeds the electro-optic.
Marked complementarity between Raman and infrared intensities is noted and connected to a view of the
HgS lattice as a geometric perturbation on the rocksalt structure. The frequencies (given as P in cm ') of
the observed lattice fundamentals and their symmetry assignments are: 29(39), A2, 45, A&, 87(91), L";
108(147),E; 110(141),A s, 256, A i, 280 (288), E; 333(357), A &, and 342 (350), E. (Frequencies in parentheses
refer to the longitudinal representatives of the infrared-active modes. ) A simple model and the observed
frequencies are used to derive approximate vibrational eigenvectors for the symmetric A& modes, and, on
the basis of electrostatic (TO-LO) and anisotropy (As-E) splittings as well as Raman and infrared in-

tensities, the three eigenvectors corresponding to 108—110cm ' are taken to consist largely of rigid-sublattice
motions analogous to the optical modes in simple diatomic crystals such as NaC1. The effective charge of
these latter vibrations is estimated as e*/e=0.4.

r. INTRODUCTION

A MONG the simplest and best understood solids
are the insulating crystals formed by AB binary

compounds with eight valence electrons per atom pair.
This large class includes the alkali halides, the alkaline-
earth salts, the III-V and II-VI semiconductors iso-
electronic to the diamond-structure elemental crystals,
and the noble-metal halides. Almost all of these crystals
possess structures, at low pressure and temperature,
belonging to one or the other of two types: the "ionic"
octahedrally and cubically coordinated NaCl and CsC1
structures, and the "covalent" tetrahedrally coordi-
nated zinc-blende and wurtzite structures. (An in-

ventory of 80 such crystals reveals but five exceptions. ')
The chalcogenides of mercury are unique in that, in
addition to displaying a zinc-blende modification, they
crystallize in a dihedrally coordinated low-symmetry
structure, the cinnabar structure. HgS possesses this
structure under normal conditions while HgSe and

HgTe, zinc blende at atmospheric pressure, transform
to cinnabar structure at modest pressures.

In this paper we describe an experimental investi-
gation of the lattice vibrations of trigonal cinnabar-
structure HgS. T'he long-wavelength optical phonons
have been studied by means of their interaction with
light: reflectivity in the far infrared and II'aman
scattering of visible light (HgS is a semiconductor with
a band gap of 2 eV).' A discussion of the cinnabar
structure is given in Sec. 2, and a group-theoretical
analysis of the zone-center phonons is presented in
Sec. 3. Experimental aspects are discussed in Sec. 4,
and the observed spectra are displayed in Sec. 5. A
classical-oscillator analysis of the complex reststrahlen
spectra is carried out to obtain frequencies, infrared
strengths, and dielectric dispersion properties in Sec. 6,
and polariton dispersion curves in Sec. 7. An inventory
of the observed lattice fundamentals is given in Sec. 8,
and implications of the Raman intensities are discussed
in Sec. 9. In Sec. 10 we derive information about the
vibrational eigenvectors from our experimental results
in conjunction with some simple models. Effective
charges are discussed in Sec. 11, and our principal
findings are summarized in Sec. 12.

* Present address: Natural Philosophy Department, University
of Edinburgh, Scotland.

t Supported in part by the U. S. Army Research Once (Dur-
ham) and the Advanced Research Projects Agency.' R. %. G. Wycko8, Crystal Structures (Wiley, New York,
1963), Vol. 1. The Ave are HgS, HgO, BN, AuI, and InBi. AuI
and InBi possess complex structures. BN, isoelectronic to C,
possesses a layer structure akin to graphite. HgO, in addition to a
cinnabar form, displays an orthorhombic modification, also
dihedrally coordinated. Several other materials, such as SiC and
ZnS, exhibit stacking polytypes which are intermediate between
zinc blende and wurtzite.

2. CINNABAR STRUCTURE

As we are concerned with the vibrations of atoms
about their equilibrium positions, we must first con-
sider the crystal lattice itself. The unit cell, containing
three HgS molecules, is shown in Fig. 1. The structure

'R. Zallen, in II-VI Semiconducting Compounds, edited by
D. G. Thomas (Benjamin, New York, 1967), p. 877.
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TABLE I. Symmetry analysis and selection rules for the zone-center phonons in HgS.

Representation

Class
characters

38

Zone-center modes
All Acoust. Opt.
F P F-P

Selection rules
Infrared Raman

Irred. A I
reps. A 2

Unit-cell F
rep.
Vector P
rep.

1

0

~ ~ ~

P,
PQ Py

~z)t) &xx+&yy
~ ~ ~

nay) 0!ag) &yz)

0!aa O.'yy

terms of a dielectric definition of ionicity. ' Their
fractional ionicity f; is given by E,'/(Es'+EP), where

Eq and E, are empirically obtained homopolar and
ionic energy gaps. Applying the PVV prescriptions for E&
a,nd E; to HgS, we calculate Eq =3.9 eV and E,=6.7 eV,
yielding f, =0.75, very close to their critical value
of 0.78. The two characteristic energies place HgS
squarely within the narrow ionic-covalent borderline
area of Ez—E; space outlined by PVV. We obtain similar
results for HgSe and HgTe. Thus the empirical PVV
theory successfully "predicts" the borderline position
of the Hg chalcogenides which is reflected experi-
mentally in the observations of the preceding
paragraph.

3. SYMMETRY AND SELECTIOÃ RULES

The HgS crystal of Fig. 1 belongs to space group
P3i21 (Ds').' ' The six operations of the factor group
are" 1, 3~, 3~X3~, 2, 3~)C2, and 2X3~, where 1 denotes
the identity; 3& denotes a threefold rotation about the
t,- axis, followed by a ~c translation parallel to the axis;
and 2 denotes a twofold rotation about an axis per-
pendicular to c. This symmetry is the same as that of
quartz and the trigonal elemental semiconductors Se
and Te, and the factor group has been discussed by
several authors. "" It is simply isomorphic to the
familiar group 3m (Cs,) of the equilateral triangle and
possesses three irreducible representations (I.R.'s),
A ~, A2, and E, where A i and A~ are one-dimensional
symmetric and antisymmetric (with respect to the
twofold rotations) representations, and E is a two-

dimensional representation. The character table is
contained in Table I.

J. C. Phillips and J. A. Van Vechten, Phys. Rev. Letters 22,
705 (1969).

This is for the right-handed form; for the enantiomorphic
left-handed form, the space group is P3221 (D3').

' International Tables for X-Ray Crystallogra phy, Synzrnetry
Groups (Kynoch Press, Birmingham, England, 1952), Vol. 1,
p. 257.' R. H. Asendorf J. Chem. Phys. 2'f, 11 (1957);M. Hulin, Ann.
Phys. (Paris) 8, 64/ (1963);A. Nussbaum, in Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic, New York, 1966),
Vol. 18, p. 225.

I Chen and R Zallen) Phys Rev 1V3) 833 (1968)

The symmetries of the long-wavelength (q=0)"
phonons are determined by F,"" the factor-group
representation generated by the displacements of the
atoms in the unit cell. For HgS, F is 18-dimensional and
is, of course, reducible. The characters for F are shown
in the fourth row of Table I, and its reduction into I.R..'s
is given in the fourth column: I'= 22 i+43,+6E. Also
listed in the table is the three-dimensional polar-vector
representation P. The three zone-center acoustical
phonons (rigid translations of the crystal) comprise
such a representation, so that the I.R.'s of the optical
phonons are contained in I' P: 2Ai+3As—+SE.There
are thus ten optical-mode eigenfrequencies (ignoring
for the moment the transverse-longitudinal splitting
of the infrared-a. ctive modes), five nondegenerate 2
modes (2A i+32 &), and five doubly degenera, te F.
modes.

Symmetry-determined selection rules governing the
interaction of these vibrations with light are presented
in the last two columns of Table I. For one-phonon
optical absorption the mode induces a first-order
electric moment p, so that it necessarily transforms as a
vector. The infrared-active modes are therefore labelled

by the I.R.'s common to F-P and P; these are A& and
E. The A~ modes interact with light polarized parallel
to the c axis (= the s axis of Table I), the E modes with
light polarized perpendicular to c. The symmetric A&

vibrations do not interact with light in first order.
The two A ~ phonons, absent in the infrared spectrum,

can be acquired in Raman scattering. A Raman-active
vibration induces a erst-order modulation in the di-

"We specify q= 0 rather than q =0 because of the complication,
for infrared-active phonons, of photon-phonon interaction for q's
of the order of ~/c. By q=0 we mean wave vectors small compared
to the Brillouin-zone dimensions q«w/a) but large compared to
the range of polariton eRects q))co/c. The symmetries (I.R.'s) and
degeneracies determined by the full crystal symmetry strictly
apply only at q =0, where the infrared-active phonons are repre-
sented by the LO modes. We ignore the lowered symmetry away
from q=0 and assume that the same I.R.'s and degeneracies
apply, aside from TO-LO splittings, to q=0 phonons. Finite
wave-vector asymmetry splittings of E modes in quartz have been
observed by A. S. Pine and G. Dresselhaus LPhys. Rev. (to be
published) j, and are extremely small ( 0.1 cm ').

~4A. S. Barker, Jr., Phys. Rev. 132, 1474 (1963); 135, A742
(1964); S. H. Chen, ibid. 163, 532 (1967).

"R.Zallen, Phys. Rev. 1'73, 824 (1968).
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electric polarizability, so that it must transform as a
component of a symmetric second-rank tensor. The
selection rules for D3 symmetry are given in the last
column of Table I."The E modes, as well as the A~,
are permitted in Raman scattering. The presence of
vibrations entitled to appear in both Raman and
infrared spectra, the E modes, is permitted by the
absence of inversion symmetry. We return to this point
in Sec. 9 in a discussion of pseudocentrosymmetric
aspects of the observed spectra.

The analysis of Table I indicates that there are ten
optical-phonon eigenfrequencies to be anticipated
(ignoring the TO-LO splittings of the infrared-active
modes, which increases the number to 18); eight of
them (3A,+SE) expected in reststrahlen, seven
(2A t+5E) in Raman scattering. Our experiments
uncover nine (to be given in Table IV), one E mode
being missing.

4. EXPERIMENTAL TECHNIQUES

Far-infrared refl. ectivity was measured with a Perkin-
Elmer 301 spectrometer, an instrument employing
grating dispersion and an optical path purged with N~
gas. The light source was a globar or a Hg arc, the
detector a thermocouple or a Golay cell, depending
upon spectral region. The spectrometer was operated
single beam, refl.ected light intensity being measured
in alternate scans of the sample and an Al mirror.
Refl.ectivity was measured at an angle of incidence of
9', and a wire grid was used to obtain polarized light.
Phase detection at 13 cps was employed.

Raman scattering was excited with a 20-mW He-Ne
gas laser and observed with a double-grating mono-
chromator using photomultiplier detection, the output
being presented in digital form through photon-
counting circuitry. A colddnger arrangement using a
metal cryostat was employed for the measurement at
liquid-nitrogen temperature. The He-Xe lasing photon
energy of 1.96 eU is exceptionally fortunate for HgS,
since it just slips under the fundamental absorption
edge of the crystal. "~The absorption coeKcient crosses
the 1-cm ' level at the beginning of the edge at 1.98 eU
for EJ c, 2.00 eV for E~~c. The proximity to the elec-
tronic interband threshold results in strong scattering
intensities due to resonance enhancement.

Natural crystals of trigonal HgS were employed in
this study. The best samples obtained, from the
vicinity of San Luis Potosi, Mexico, were large isolated
crystals embedded in limestone. " The single crystals
used in the experiments were about 0.1 cm thick and
0.2 cm' in area. In addition, a large ()1 cm'), poly-

"V. Heine, Group Theory in Quantum Mechanics (Pergamon9
London, 1960), p. 452.

'VThe values quoted for hv(o. =1 cm ') apply to room tem-
perature; at 80'K they have blue shifted by about 0.2 eV."Cinnabar samples were obtained from %lard's Natural
Science Establishment, Rochester, N. Y., and Burnham Mineral
Co., Monrovia, Calif.

crystalline sample from Idria, Yugoslavia, was used
for some refl.ectivity measurements at the longest
wavelengths where sensitivity is poorest. Analysis for
impurities yielded concentrations below 0.01%. The
optical quality of the crystals was quite good, residual
absorption in the transparent region being less than
1cm '

After verifying that the refl. ectivity of carefully
polished surfaces exhibited spectral structure as sharp
as that of cleaved (but uneven) surfaces, detailed data
were obtained on samples polished in several stages
ending with a 0.05-p particle-size alumina grit. The
acceptability of polished surfaces for far-infrared re-
flectivity measurements, where the optical penetration
depth is 10 p, is in contrast to the situation in the
ultraviolet, where the penetration depth of 0.1 p is
comparable to the surface damage layer produced by
polishing.

5. OBSERVED SPECTRA

In this section we display the experimental results.
The reststrahlen spectra are shown in Fig. 3. The points
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FIG. 3. Reststrahlen spectra of trigonal HgS. The points are the
experimental results, the fitted curves correspond to the oscillator
analysis. The experimental uncertainty in A is about &0.04 over
most of the range somewhat more for E~~c below 50 cm '. Points
are omitted for L'~)c in two regions where the measured refiectivity
was upset, by a few percent, due to a small admixture of EJ q
structure introduced by low-angle twinning in the crystal.
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represent the experimental data; the curves are theo-
retical fits discussed in Sec. 6. The data for EJ c were
obtained with unpolarized light incident on a (0001)
surface, a surface normal to the c axis. The same
spectrum, within experimental error, was observed
using polarized light with EJ c incident on a (1010)
surface, a surface containing the c axis and an u axis.
The data for E~~c shown in Fig. 3 were determined with
polarized. light incident on a (1010) surface, and is
less accurate than that shown for EJ c due to the
necessity for the polarizer. Below 50 cm ', the signal
was too small to allow a reasonable direct measure of
E for E~~c, and in this region the points shown were
obtained indirectly by combining results for EJ c with
results obtained on a large polycrystalline sample in
unpolarized light.

Three reststrahlen bands are observed for E~~c, four
for EJ c. The dielectric dispersion properties as well as
the TO and LO frequencies deduced from these re-
Qectivity results are discussed in following sections.

The Raman spectra at 300 and 90'K are presented
in Fig. 4. Scattered light was observed at right angles
to the incident beam, with the crystal's c axis perpen-
dicular to the plane of scattering. The spectra shown are
Stokes spectra taken with circularly polarized incident
light and no analyzer in the scattered beam. All of the
Raman-active vibrations should be present for this
geometry. The scattering is dominated by the two A&

lines, the four TO-LO E doublets are weaker by one or
two orders of magnitude. Detailed discussion of the
Raman results is deferred until Sec. 9.

6. DIELECTRIC DISPERSION PROPERTIES

In this section we deduce the optical properties from
the experimental results of Fig. 3. Our procedure is to

synthesize the observed reAectivity with a complex
dielectric constant e=e~ —i&~ constructed as a super-
position of Lorentzians:

.-.2Sg' Vg'

e(v) =e„+P —v''+v, +iy;v, v

TABLE II. Oscillator parameters Gtted to R(v).

Vg

(cm i)

333
110
29

S=ACI

e = 9.9
1.3
7.1

14.2

0.022
0.11
0.11

338
277
iii
86

~p
——32.5

q„= 8.25
0.27
0.57
6.5
2.4

ep
——18.0

0.031
0.035
0.14
0.029

v;,s, , and p; are the oscillator frequency (in wave-
number units), oscillator strength (contribution to the
sta, tic dielectric constant), and dimensionless damping
constant, respectively, for oscillator j, and e is the
high-frequency dielectric constant. The final reRectivity
fits are the curves of Fig. 3; the corresponding e's are
displayed on Fig. 5. The two e's correspond to the two
independent elements of the dielectric-function tensor
for trigonal crystals: e„=e» = e(EJ c); e..= e(E~~ c).
The oscillator parameters, which epitomize our experi-
mental findings in the infrared, are contained in Table
II.

The oscillator fits were arrived at by means of a
computer program which performs an iterative search
in parameter space. The optimization criterion was the
minimization of the rms deviation of the fitted from the
experimental reQectivity. For the final parameters of
Table II, AR, ,=0.019 for EJ c, 0.034 for E~~c. Initial
parameters for beginning the search were chosen by
examining the results of a Kramers-Kronig (KK)
analysis of the data. The advantages of oscillator
analysis over KK analysis have been well documented
by A. S. Barker. "

The positions of the peaks in e~ locate the frequencies
of the q=0 TO phonons. Also plotted in Fig. 5 is the
energy-loss function —Im(e '), which peaks at the
LO phonon frequencies. (The zeros of et cannot be used
to determine the LO frequencies because of the finite
damping. For example, the two weaker bands for EJ c
have no &~=0 intercepts whatever; damping prevents
the weak oscillator strength from driving et negative. )
TO and LO frequencies are indicated by the bars on
Fig. 5. The shaded regions between bars signify for-
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bidden zones for long-wavelength phonons, frequency
regimes in which there are no propagating waves. These
are treated further in Sec. 7.

The complex refractive index e'= e—ik is com-
putationally intermediate between e and R:For c ~ e',

for e'~ E

n2 lcd+ 2
(E 2+ c 2)1/2

P2 2
~ + 2

(~ 2+ ~ 2)1/2 .
(6 2)

(6 3)

R= L(n —1)2+k2)L(n+1)2+42] '. (6.4)

Our results for e and k are shown in Fig. 6. At high
frequencies our values for n (e„'/2) are 10% higher than
precise reported values" (at 1000 cm ') of 2.85 for
E~~c and 2.60 for EJ c, indicating that our E„'s are

~~,W. L. Bond, G. D. Boyd, and H. L. Carter, Jr., J. Appl.
Phys. 38, 4090 (1967).

overestimated by 0.03—0.04. In the near-infrared
transparent region, the index parallel to the optic axis
exceeds the perpendicular index, n(~~))n(J ), so that
HgS is uniaxial positive, like u —Sio, , Se, and Te. Dn
the language of classical optics, n(~~) is the extraordinary
index, n(J ) the ordinary index. ] The magnitude of
n(~~)-n(J ) places HgS among the most highly bire-
fringent crystals.

The oscillator strengths s; specify the increments in
eI on passing through each reststrahlen band F;. Table
II reveals that the lattice (infrared) contribution to
the static dielectric constant ~p is greater than the
electronic (ultraviolet) contribution. The phonon con-
tribution to Ep is 6p—~ the interband contribution is
e„—1. For E~~c, eo—I„=23 and e„—1=9; for FJ c,
eo—e„=10 and e„—1=7. The anisotropy (e(~~)—e(J ))
is larger for ep than for e„, due primarily to the lowest-
frequency resonance at 29 cm '.
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7. POLARITON DISPERSION CURVES

The strong photon-phonon interaction in the rest-
strahlen region means that the correct elementary
excitations of the system are coupled electromagnetic-
lattice waves. '0 The results described in Sec. 6 enable
us to determine dispersion curves for the polaritons
(coupled photon-phonons). Using a complex propa-
gation vector q=g~+ig2 to describe the coupled wave,
then g= (&u/c)e', so that the wave-number dependence
of q is given by

q(r)=2m' e'(v).

Using (7.1) and the m"s of Fig. 6 we obtain q(v) and,

K. Huang, Proc. Roy. Soc. (London) A208, 352 (1951);J. J.
Hopleld, Phys. Rev. 112, 1555 (1968); E. Burstein, Comments
Solid State Phys. 1, 202 (1969).

thereby, P(q) The dispersi. on curves are presented in
Figs. 7 and 8, for EJ c (with q~~c) and E~~c (with qJ c),
respectively.

The solid curves in Figs. 7 and 8 are the experi-
mentally defined polariton dispersion curves; they
correspond to the fitted oscillator parameters of Table
II. Letting the damping constants go to zero we obtain
the dashed curves shown in the figures, which display
the classical coupled-wave form. The q=0 intercepts
of the zero-damping curves locate the LO frequencies;
the q~ ~ asymptotes determine the TO frequencies.
For these curves, the regions in which g is purely
imaginary (bounded above and below by LO and TO
frequencies, respectively) correspond to the stopping
bands which were indicated by the shaded frequency
regimes on Fig. 5.



LATT I CE V I 8 RATIONS I N TR I GONA L H IS 4065

500

400—
EJ.c

300—

FIG. 7. Polariton dispersion curves
for the 8 modes.

(cm-t)

200—

IOO—

0 r

4

(t0~ cm t)

l

4
q)

The long and short straight lines shown on Figs. 7
and 8 have slopes of (2n.e„"') ' and (2ntp'~') ', i.n'versely
proportional to the optical and static refractive indices,
respectively. The decrease in slope between high and
low frequencies rejects the increase in e on passing
through the reststrahlen bands. With no photon-phonon
interaction the dispersion curves would reduce to
horizontal lines at the frequencies of the pure lattice
waves, and to the long line representing the undisturbed
light wave.

8. TO AND LO FREQUENCIES

At this juncture we take inventory of,the q=0 phonon
frequencies and their symmetry assignments, as re-
vealed by our experiments. The resulting catalog
constitutes Table III. The experimental frequencies,
derived as described below, appear in the last four
columns of the table; the first three columns contain
the mode symmetry, the polarization (transverse or
longitudinal) of the infrared-active modes, and the
composite estimate for f.

The reststrahlen spectra of Fig. 3 have been sub-

jected to the extensive dispersion analyses of Secs. 6

and 7, and the deduced frequencies are listed in the
fourth and 6fth columns of Table III. The symmetry
assignments follow from the selection rules of Sec. 3.
The To frequencies are determined by the fitted oscil-
lators of Table II; these are the positions of the e2

maxima of Fig. 5 and of the q
—& ~ intercepts of Figs.

7 and 8. The I.Q frequencies are determined by the
q=0 intercepts of the zero-damping curves of Figs. 7
and 8"; these are also the positions of the —Im(e ')
maxima of Fig. 5.

For the moment we treat the Raman spectra of Fig.
4 as line spectra, deferring a full discussion to Sec. 9.
The peaks are sharp enough, especially at 90'K, to
locate P s to within a few cm '. The lattice funda-
mentals expected in first-order scattering are the fully
symmetric A & modes, Raman-active only, and the
infrared-active E modes. By far the strongest Raman
lines are the two at 45 and 256 cm ', frequencies dif-
ferent from any seen in the infrared; these necessarily
correspond to the A~ vibrations. The remaining Raman
lines, weaker by one or two orders of magnitude, can
all be placed in TO-I.O pairs corresponding to the four

"This is also equivalent to finding the zeros of the zero-
damping eI(F).
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FIG. 8. Polariton dispersion curves for the A2 modes.

E modes observed in the EJ c reQectivity spectrum.
The 87—91-cm ' pair is not quite resolved in Raman
scattering.

TABLE III. Long-wavelength optical-phonon frequencies
( in cm ') of HgS.

Mode t or l

Infrared v Raman 7

Eddic EJ c 300'K 90'K

A2

Ag
E

E
A2

Ag
E

A2
E

t
l
t

l
l

l

t
l
l

29 29
39 39 ~ ~ ~

45 ~ ~ ~ ~ ~ ~

87 86
91 ~ ~ o 90

108 ~ 111
110 110
141 141
147 149
256 ~ ~ ~ ~ ~ ~

280 277
288 287
333 333
342 338
350 ~ ~ 346
357 357

~ ~ ~

45
88
91

106

~ ~ ~

146
256
283
290
~ ~ ~

345
353

~ ~ ~

~ ~ ~

42
85
88

106

~ ~ ~

146
254
282
289
~ ~ ~

341
349

~ ~ ~

9. RAMAN INTENSITIES

The scattering spectra of Fig. 4 were taken with the
wave vectors of the incident and scattered photons
perpendicular to each other and to c, so that the
scattering vector lies in the a-a plane. For propagation
in this plane the E vibrations are pure transverse or

longitudinal. For right-angle scattering, the polariton
wave vector lies well off to the right of the range con-
tained in Fig. 7, so that the transverse 8 modes occur
very close to the TO frequencies, negligibly shifted by
polariton effects. Polariton considerations do not enter,
of course, for the longitudinal E modes and the polar-
izationless A& modes; near g=0, rs(q) is constant for
these waves.

With the incident beam circularly polarized and no
analyzer in the scattered beam, the components of the
polarizability-modulation tensor which contribute for
this scattering configuration are n,„, e „o.„„and n„.
The n„component is generated by the 3& modes, the
others by the E modes. To check that the two strongest
lines in Fig. 4 are indeed the 2 ~ fundamentals, polarizers
passing E~~c were inserted in the incident and scattered
beams to isolate o.„.This resulted in an order-of-
magnitude reduction in the relative strength of the
remaining (E) lines; it was not possible to achieve more
complete polarization extinction with the samples
studied.

The A&, E(TO), and E(LO) frequencies obtained
from the Raman spectra are listed in Table III. No
appreciable frequency shift occurs between 90 and
300'K. The E values are in quite reasonable agreement
with the results deduced from the infrared dispersion
analysis.

While our primary interest in the Raman emission is
in the phonon frequencies derived, there are two inter-
esting features of the observed intensities which we
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discuss below: the relationship between Raman and
infrared intensities, and the relative intensities of
TO-I.O doublets.

In crystals with inversion symmetry, there is mutual
exclusion between infrared and Raman activity. While
HgS lacks a center of symmetry and mutual exclusion
does not hold, a striking feature of our data is the
marked inverse correlation between Raman and infrared
strength. While this complementarity is automatic for
the A~ and A& modes, it applies in more detail as well.
The eo—e„ infrared contribution of the A2 modes is
more than twice that of the E modes, which are also
overshadowed in Raman scattering by the dominant
A~ lines. However, the Raman-infrared complemen-
tarity is most clearly demonstrated among the E modes
as, for example, the strongest and second-strongest E.
Raman lines correspond to the weakest and second-
weakest E reststrahlen bands. If we list the normalized
square roots of the observed E-mode intensities, we
obtain a clear indication of the inverse correlation.

87
108
280
342

Ii&'iRatnl

0.4
0.4
0.6
1.0

11/2 iin f)
0.6
1.0
0.3
0.2

The complementarity noted above is reasonably
associated with the rocksalt parentage of the cinnabar
structure, i.e., the view of HgS as a geometric per-
turbation on a rocksalt structure. (The NaC1-HgS
relationship is quite different than the Ge-GaAs rela-
tionship, which involves a chemical, or substitutional,
perturbation. ) Complementarity may then be regarded
as a residual of the mutual exclusion exhibited by
rocksalt. Note that for O, -quartz, which has the same
crystal symmetry as HgS but which is not a perturbed-
centrosymmetric structure, the statements of the pre-
ceding paragraph do not hold. Thus in quartz, ~0—e„
is the same (to within 10%) for both As- and 8-mode
contributions, " while about half of the E modes are
simultaneously strong or weak in both Raman23 and
infrared, in contradiction of complementarity.

Besides the explicit dependence of the polarizability
on the atomic displacements, don = (cjn/ciQ) Q, the
Raman scattering intensity for LO modes (with their
attendant macroscopic field) also contains a contri-
bution from the electro-optic effect, Asn= (Bn/BE)E.
For modes both infrared- and Raman-active, the
relative intensities of the I.O and TO Raman lines,
S(LO)/S(TO), provides information on the relative
importance of electro-optic and atomic-displacement
(or deformation potential) scattering mechanisms. This
sort of analysis has been treated by several authors, '4"

"W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324
(1961).

~ R. S. Krishnan, Nature 155, 452 (1945).
24 R. Loudon, Advan. Phys. 13, 423 (1964).
"W. L. Faust and C. H. Henry, Phys. Rev. Letters 1'7, 1265

(1966); S. Ushioda, A. Pinczuk, W. Taylor, and E. Burstein, in
II-VI Semiconducting Compounds, edited by D. G. Thomas
(Benjamin, New York, 1967), p. 1185.

(a)

Fxc. 9. Symmetrized coordinates for the 2& vibrations, viewed
along the c axis: ial corresponds to v+, ibl to v .

most recently and extensively by Ushioda. "Denoting
the intensity ratio S,(LO)/S(TO) by p and the polar-
izability-modulation ratio d,zn/don by y, the relation
between the experimental and deduced ratios is approxi-
mately given by p= ~1 —y~s. From Fig. 4, p=0.3 for
the HgS E modes, yielding y=+0.5; the atomic-
displacement contribution is about twice the electro-
optic.

Finally, we point out several subsidiary aspects of
the scattering spectra of Fig. 4. The room-temperature
spectrum exhibits a weak threshold at 65 cm ' and a
small peak at 167 cm '. Both features, verified by
observation in anti-Stokes scattering, are reduced in
intensity at 90'K and are thus ascribable to second-
order scattering.

10. VIBRATIONAL EIGENVECTORS

For Se and Te, the simplest helical-structure Ds'-
symmetry crystals, the A& and A2 eigenvectors are
determined by symmetry. For HgS, with twice as
many unit-cell atoms, none of the optical-mode eigen-
vectors are symmetry determined; a specific model
must be invoked for their calculation. In this section
we present a rudimentary discussion of the eigenvectors
of the nondegenerate A modes. Atomic displacements
in the two chain-breathing A ~ vibrations are derived
from a very simple valence force model and the observed
eigenfrequency ratio, while the As (and, to a lesser
extent, the E) vibrations are discussed in terms of
rigid-ion and dynamic-charge contributions to the
infrared intensities.

Figures 9 and 10 display orthogonal synunetrized
displacements for the A~ and A~ optical modes. The
actual eigenvectors may be any linear orthogonal com-
binations of Figs. 9(a) and 9(b) for the Ai modes, and
of Figs. 10(a), 10(b), and 10(c) for the As modes. The
particular symmetrized coordinates (SC's) shown were
chosen to elucidate the discussion given below.

In the A ~ vibrations the atoms move along the twofold

~6 S. Ushioda, thesis, University of Pennsylvania, 1969 (un-
published); S. Ushioda, A. Pinczuk, E. Burstein, and D. L. Mi]ls
in Light Scattering Spectra of Solids, edited by G. B. Wright
(Springer, New York, 1969), p. 347.
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(a) (b}

FIG. 10. Symmetrized coordinates for the A2 vibrations,
viewed along the c axis.

axes, with one amplitude for the sulfurs and another for
the mercuries. The simplest model for these vibrations
includes only NN intr achain interactions. Let us
assume bond-stretching and bond-bending forces which
contribute terms to the potential energy of —,'k(b —bo)'
and i~k'bo'(0 —Hp)', respectively. Here k and $0 are the
instantaneous and equilibrium bond lengths, 0 and 00
are the instantaneous and equilibrium bond angles,
and k and k' are the bond-stretching and bond-bending
force constants (k'«k). We include both Hg-S-Hg and
S-Hg-S bond bending, assuming, for simplicity, equal
force constants k' for the two types of intrachain angle.
Denoting the Ai amplitudes by u(S) and u(Hg) and
the corresponding atomic masses by m and pm (the
mass ratio p=m(Hg)/m(S) is 6.26), the assumed
interactions along with the crystal geometry determine
the following eigenvalue problem:

!

(0.736k+3.71k' —mes'

(0.080k —4.33k'

0.080k-4.33k'
!

0.009k+5.83k' —pnuu'I

X! !
=0. (10.1)

u(S) )'

&u(Hg))

%e now require that the ratio of the eigenvalues
co+I/~ s agree with the experimental value of (256
cm '/45 cm ')'=32. This determines k'/k as 0.026
and, for the eigenvectors (which are schematically
represented in Fig. 9),

i+ 256 cm ', ——u(Hg)/u(S) = —0.007; (10.2)

= 45 cm ', u(S)/u(Hg) =+0.04. (10.3)

These results indicate that the high- and low-frequency
A& phonons correspond to nearly pure sulfur and
mercury motions, respectively. LFor (10.2), over 99%
of the kinetic energy resides with the sulfurs; for (10.3)
a like fraction resides with the mercuries. ) This con-
clusion appears to be insensitive to details of the model;
a similar result is obtained if, for example, we include
only the bond-bending contribution of the Hg-S-Hg
angles.

An examination of the coefficients of k in (10.1)
suggests that the disparity between v+(Ai) and i (Ai)
is due to the circumstance that r depends almost
entirely upon bond bending for its restoring force.

Since the two A& modes exhibit comparable Raman
intensities although v involves very little NN bond
stretching, the polarizability modulation cannot be
simply accounted for on the basis of isotropic atomic
polarizabilities dependent only on NN bond lengths. '~ "

The SC's of Fig. 10 have been chosen for convenience
in discussing the A2 modes. Figure 10(a) displays a
rigid rotation of the helical chain about the threefold
axis. Since XX bond lengths and angles are preserved
in this motion, it evidently corresponds to a true mode
of zero frequency in the limit of noninteracting chains.
The SC of Fig. 10(b) is a purely axial motion, with
s(S)/s(Hg)= —p= —6.26 by orthogonality to the s
translation of the crystal (the A2 acoustic mode).
Figure 10(c) shows a counter rotation of the S and Hg
helices, the amplitudes 6xed by orthogonality to the
chain-rotation SC of Fig. 10(a). We shall refer to the
displacement of Fig. 10(b) as a rigid-sublattice SC
since the S and Hg sublattices each undergo a rigid
translation (i.e., all S-S and Hg-Hg spacings are pre-
served) during this motion. The rigid-sublattice SC
corresponds to an optical-mode eigenvector in rocksalt.

A glance at Fig. 3 reveals that in the rigid-ion model, "
in which each ion is assigned a point charge regarded to
reside on and to move with the ion, only the rigid-
sublattice SC would generate a first-order electric
moment. Since all three A2 fundamentals are observed
in the infrared, the rigid-ion model would demand that
the actual eigenvectors all contain a substantial ad-
mixture of the rigid-sublattice SC. However, the
rigid-ion model fails to adequately account for infrared
intensities even for the highly ionic alkali halides, in
which e*/e diA'ers substantially from 1. More dramati-
cally, it predicts zero infrared intensity for all elemental
crystals, yet Se and Te, Aster alia, " exhibit strongly
infrared-active fundamentals. 'o The mechanism for the
electric moment in elemental crystals, and for the
deviation from the rigid-ion expectation in ionic
crystals, is the deformation or rearrangement of the
electronic charge distribution induced by the atomic
displacements during vibration. The effective charge
associated with displacement-induced charge redistri-
bution is referred to as dynamic charge. ""Discussions

"Such a simple model has been successfully applied (Ref. 28)
to the relative Raman intensities of the four A& modes of quartz.
However these authors point out that an analogous simple model
based on bond bending only yields results almost as good as those
based on bond stretching only. Our results indicate that for HgS,
polarizability-modulation contributions from bond bending and/or
XNN bond stretching are comparable in importance to that from
NN bond stretching.

D. A. Kleinman and W. G. Spitzer, Phys. Rev. 125, 16 (1962).
'9 M. Born and K. Huang, Dynamica/ Theory of Crysta/ Lattices

(Oxford U. P., London, 1954).
"P. Grosse, M. Lutz, and W. Richter, Solid State Commun. 5,

99 (1967); G. Lucovsky, R. C. Keezer, and E. Burstein, ibid. 5,
439 (1967); R. Geick, U. Schroder, and J. Stuke, Phys. Status
Solidi 24, 99 (1967).

8'E. Burstein, M. H. Brodsky, and G. Lucovsky, Intern. J.
Quantum Chem. IS, 759 (1967); W. Cochran, Nature 191, 60
(1961).
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of the origin of dynamic charge in terms of bond
deformation have been given by Kleinman and Spitzer"
for n-SiO& and by Chen and Zallen" for Se and Te.
Dynamic charge allows infrared intensity to each of the
A~ modes in HgS even in the absence of an admixture
of rigid-sublattice component.

In addition to the rigid-sublattice SC of Fig. 10(b),
there are two others with the atomic motions along the
x and y axes; these constitute a degenerate pair of SC's
of E symmetry. The three rigid-sublattice SC's are
closely analogous to the optical-mode eigenvectors in
rocksalt. It is natural to investigate the possibility that
three vibrational eigenvectors of HgS consist predomi-
nantly of rigid-sublattice motions. We shall refer to
this hypothetical A&+E triplet as the pseudocubic
modes. Such modes would be expected to exhibit strong
infrared intensity, very weak Raman intensity, low

anisotropy, and the predominance of electrostatic over
anisotropic interatomic forces. The 6rst two of these
criteria follow by analogy to NaC1, and the last two
may be expressed by stating that the A2-E splitting
be much smaller than the TO-LO splitting'4:

)v, (A,)—v, (E)~ and ~v((As) —v((E)[
«) vi(As) —v~(As) I

»d
) vi(E) —vt, (E) I

(104)

An examination of Tables III and IV (or of the
forbidden frequency regimes shown shaded on Fig. 4)
with respect to (10.4) reveals two As-E frequency pairs
as possibilities: at 108—110 cm ' and at 333—342 cm '.
The 108—110-cm ' modes possess large, comparable
TO-LO splittings, while the TO-LO splittings of the
333—342-cm ' modes are smaller and differ from each
other by a factor of 3. Moreover, the 108-cm ' vibration
exhibits the weakest Raman intensity among the
observed E modes, while the 342-cm ' mode gives rise

to the strongest of the E Raman lines. These con-

siderations strongly favor the 108—110-cm ' eigen-

frequencies as those appropriately assigned as pseudo-

cubic vibrations, with eigenvectors possessing the
largest admixture of rigid-sublattice displacements. In
this frequency region the crystal behaves approximately
isotropically, with a TO frequency'at about 110 cm '

(108, 108, 110 for E~~x,y,s) and an I-O frequency at
about 145 cm ' (147, 147, 141 for E~~x,y,z).

11. EFFECTIUE CHARGES

Table IV summarizes much of our data and includes

some additional information on the infrared strengths.
The TO-LO splitting listed in the third column is the
measure of infrared intensity which most clearly dis-.
tinguishes the pseudocubic vibrations. (Zeros are

entered for the A I phonons which are not polarization
waves and which have no transverse or longitudinal
character. ) In column 4 we have tabulated the ionic

Plasma frequencies vv defined by v„'= svts/«„. In terms

of the plasma frequencies, the zero-damping dielectric

TABLE IV. TO-LO splittings and ionic plasma frequencies (y in
cm '), and effective charges, of the zone-center modes.

Mode Vg Vl —Vt y~ (y&2+y 2) 1I2 g+/P

A2
A1

A2
A1
jV

A2
E

29
45
87

108
110
256
280
333
342

10
0

39
31

0
8

24
8

35
0

47
96
93
0

74
121
62

—6
0—8

+3—3
0—2

+3
+2

0.41
0.38
0

constant takes on the form

This function can also be written directly in terms of
transverse and longitudinal frequencies in a form which

displays the P&'s as the poles and the v~'s as the zeros
of e

e P e~= Pi~ —P P~i —p (11.2)

3' T. Kurosawa, J, Phys. Soc. Japan 16, 1298 (1961).
3' M. Lax and E. Burstein, Phys. Rev. 9'7, 39 (1955).

LSetting v=0 in (11.2) yields the generalized I.yddane-
Sachs-Teller relation for a complex reststrahlen spec-
trum. $ For the case of a single reststrahlen band, the
TO, LO, and ionic plasma frequencies are simply
related by vp=v, s+v„' With sev. eral bands present,
the contributions to e superimpose to shift the locations
of the zeros; the LO frequencies are downshifted for the
low-frequency bands and upshifted for the high-

frequency bands. The quantity vt (vP+vv')'~', —which

is a measure of this shift in p~ due to the presence of
other polarization waves of the same symmetry, is

given in column 5 of Table IV.
KGective charge is a tensor quantity governing the

linear relation between the macroscopic polarization p
and the atomic displacements u: p=Bu."33 For HgS,
symmetry permits eight independent nonvanishing
elements in the 3&&18 rectangular matrix comprising
B.For a complex crystal, the problem of determining B
from the experimental reststrahlen strengths requires a
prior determination of the infrared-active vibrational
eigenvectors. Although this information is largely
lacking here, we shall invoke assumptions sufficient to
allow an estimate of the two matrix elements corre-

sponding to the pseudocubic vibrations discussed above.
For a cubic diatomic crystal, the total macroscopic

polarization produced by the interionic displacement
u=u+ —u is Ls(«„+2)] ne*u, where n is the number
of ion pairs per unit volume, e*u is the unit-cell dipole
moment set up directly by the atomic displacements
(with e*/e an integer in the rigid-ion model), and

s(«„+2) is the enhancement factor due to the addi-
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tional action of the resultant local electric field on the
electronic polarization. 2' '4 The single parameter ap-
pearing in the eRective charge tensor is then propor-
tional to the ionic plasma frequency:

s.l/2g~l( 6 it2~—1/2L3/(~ +2)].p (1] 3)

where nz is the reduced. mass m+m /(m++m ).
There is no simple generalization of (11.3) to apply

to complex, anisotropic crystals. Not only does the
reduced mass depend on the vibrational eigenvector,
but, in the absence of the tetrahedral site symmetry
needed for the derivation of (11.3), the local-field factor
given by the term in square brackets must also be
determined for each mode from the detailed crystal
geometry. An example of a calculation of electrostatic
forces in low-symmetry crystals is given in Ref. 12 for
Se and Te. Lacking, at present, such a calculation for
HgS, we proceed by naively applying (11.3) to the
pseudocubic vibrations. We estimate m by assuming
the eigenvectors to be pure rigid-sublattice displace-
ments. More drastic is the necessity, in the absence of
better information, of using the cubic-symmetry local-
field correction factor 3/(e„+2). The results are listed
in Table IV: e*/e=0.4 for these vibrations.

The observed spectra of Figs. 3 and 4 have been
analyzed to obtain the 16 zone-center optical-phonon
frequencies listed in Table III. In addition to the
standard dielectric dispersion properties, the infrared
data have provided the polariton dispersion curves of
Figs. 7 and 8 for the E and A2 modes. The Raman
scattering is dominated by the A & lines, and the relative
magnitudes of the TO and LO components of the E
doublets indicate that the atomic-displacement con-
tribution to the polarizability modulation exceeds the
electro-optic contribution. Marked complementarity
between Raman and infrared intensity is noted and
connected to a view of the HgS lattice as a geometric
perturbation on the rocksalt structure. A simple NN
valence-force model of the symmetric A~ vibrations,
taken together with the observed eigenfrequency ratio,
indicates that the high- and low-frequency A~ eigen-
vectors correspond to nearly pure sulfur and mercury
motions, respectively. A discussion of the infrared-
active modes suggests that the TO and LO modes at
about 110 and II45 cm ' correspond to eigenvectors
consisting largely of rigid-sublattice displacements such
as shown in Fig. 10(b). With several assumptions, the
eRective charge of these pseudocubic vibrations is
estimated.

C2. SUMMARY

An experimental investigation of the long-wavelength
lattice vibrations of trigonal HgS has been carried out.

'4 B. Szigeti, Trans. Faraday Soc. 45, 155 (1949).
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