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A simple phenomenological theory of the elastic constants of sphalerite structure crystals is presented
and shown to apply within reasonable errors to the known experimental constants. The theory utilizes a
form for bond-stretching (n) and bending (p) forces first used by Keating, to which are added effective
point-ion Coulombic forces. Also it is pointed out that regularities in the experimental elastic constants of
these crystals are readily explained in terms of the ionicity f, defined by Phillips and Van Vechten. Of
particular note are the shear constants which decrease markedly with ionicity. It is found that this decrease
is described quantitatively by p/o ~ (1—f,), which confirms the interpretation of p, since bond-bending
forces should vanish in the ionic limit f;~ 1. Other equally simple formulas for the forces in terms of only
the bond length and f, are shown to predict all the constants with a rms accuracy of 10o/~.

I. INTRODUCTION

'HE most useful phenomenological description of
the short-range valence forces in the tetrahedrally

coordinated crystals is the valence-force-field (VFF)
approach, ' in which all interatomic forces are resolved
into bond-stretching and bond-bending forces. A de-
scription of the VFF method has been given by Mus-
grave and Pople, ' where explicit formulas for the elastic
constants are given. Also the method has been applied
with much success to the calculation of the entire
dispersion curves by McMurry et al. , Xusimovici and
Sirman, ' and others. A similar derivation by Keating4
is here shown to be a useful special case of the VFF
model.

There are two primary virtues of the UFF model.
First, because all distortions are described in terms of
bond lengths and angles, the model is automatically
rotationally invariant so that serious errors that may
arise in the ordinary force-constant approach are
avoided. 4 Second, in crystals in which atom pair bonds
play an essential role, the VFF model is the most
natural description of interatomic forces. Thus one
expects the VFF model to involve the smallest possible
number of parameters.

In the first part of this paper the VFF approach is
extended to the heteropolar cubic ZnS Lsphalerite or
zinc-blende (ZB)j structure crystals by adding Cou-
lombic forces assumed to be described by rigid point
charges at the atom sites. The approach is essentially
the same as that of Nusimovici and Birman, ' but here
special attention is paid to the long-wavelength limit
and only the sphalerite structure is considered.

In the second part of the paper the regularities in the
elastic properties of the ZB structure crystals are
examined. We show that the trends, first pointed out by

~ M. J. P. Musgrave and J. A. Pople, Proc. Roy. Soc. (London)
A268, 474 (1962).

'H. L. McMurry, A. W. Solbrig, Jr., J. K. Boyter, and C.
Noble, J. Phys. Chem. Solids 28, 2359 (1967).

3 M. A. Xusimovici and J. L. Birman, Phys. Rev. 156, 925
( 967); M. A. Nusimovici, M. Balkanski, and J. L. Birman, Phys.
Rev. B1, 595 (1970).

4 P. N. Keating, Phys. Rev. 145, 637 (1966).

Keyes, ' are understandable in terms of the formulas of
Sec. II and the qualitative eBects of the changes in the
ionicity' 7 of the various compounds.

lr. THEORY

The VFF model for diamond-structure crystals has
been described by Musgrave and Pople. ' For the pur-
pose of this paper we simplify their expressions omitting
the less important forces. The simplified expression for
the VFF part of the distortion energy of each unit cell is

U=-,' P k„(hr;)'+P L-', P ks'(rLN, ,')'
s=l

+ Q k„,"(ar,')(roe;,")+ Q k,„(ar,')(ar;)j,

in the notation of Musgrave and Pople. ' In (1) we have
allowed the force constants kg', etc. , to differ for the two
atoms in the unit cell denoted by s=1, 2. The bonds
about each atom are denoted by i, j=1, . . . , 4, r is the
equilibrium bond length, Dr is the scalar change in
length of bond i about atom s, and lS; is the change in
angle formed by bonds i and j about s, as shown in
Fig. 1. Only the bonds about one atom are included in
the first term in (1) to avoid double counting in the sum
over unit cells.

In the present paper we deal only with long-wave-
length acoustic or optic modes in which case the force
constants for the two atoms in the unit cell always enter
the relevant quantities in the form k=k'+k'. Thus in
the remainder of the paper we need only deal with the
smaller set of independent constants, k„, ks =-,'(ks'+kg'),
k„s'=-', (k„s"+k,s"), etc

For the Coulomb part of the energy, we assume rigid
point ions with charges ~Z* which interact via the
screened coulomb potential &Z*'e'/eE, where R is the

' R. W. Keyes, J. Appl. Phys. 33, 3371 (1962).
6 J. C. Phillips, Phys. Rev. Letters 20, 550 (1968);Chem. Phys.

Letters 3, 286 (1969);J. C. Phillips and J. A. Van Vechten, Phys.
Rev. Letters 22, 705 (1969).

7 J. A. Van Vechten, Phys. Rev. 187, 1007 (1969).
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f = —$(v3/12r) (k„—2k„„—4kg —4k„g ) —0.2945Cp].
C

Here we have defined k,g" =k.,g'/v2,

5=Z*'/p,

(4f)

Cp ——e'/r4,

which has the dimensions of an elastic constant. Note
that f is the internal-strain parameter defined by
Kleinman' which is related to the internal-strain
tensor' "by

I'ro. 1. Cubic ZnS (ZB or sphalerite) structure. The bonds
shown are considered to belong to the unit cell containing atoms
1 and 2, and a typical angle 014' is shown.

separation and e is the electronic dielectric constant.
The contribution of the Coulomb forces to the elastic
constants has been given by Blackman. In addition to
the purely Coulombic forces, one must also include the
eRects of the linea, r repulsive term which must be
present for the crystal to be stable. In the simple bond
picture, this means that there must be a linear bond-
stretching term in addition to (1),

4

U=P f„44ir;+second-order terms. (2)

The condition that the crystal be in equilibrium
requires

f,= „'n~Z*'e'/pr'—- (3)

where n~ ——1.6381 is the Madelung constant. Since this
term is also proportional to Z*'/p, it is conveniently
included with the Coulomb terms. (We note that only
if the effects of f„are included in the force constants
do the resulting elastic constants have the proper
symmetry. )

The expressions for the elastic constants are most
straightforwardly derived by directly expanding U in

(1) in the manner described by Keating. 4 Using Black-
man' and Eq. (3), the results are

Cii= (V3/12r) (k +6k„„+12kg)—0.08295Cp, (4a)

Cip= (V3/12 )(kr„+6k„—6kg) —0.1365Cp, (4b)

The derivation of the formulas (4) explicitly em-

ployed the rigid point-ion approximation. Xo polariza-
bility of the "effective" ions has been taken into account
and the same eRective charge was assumed to apply for
all modes, optic and acoustic, and to the linear term
(2). This is a convenient assumption that reduces the
number of parameters. The justification is that no
quantity considered is critically dependent on the
eRective charge so that even such a simple approxi-
mation can aid our quantitative understanding of the
elastic properties. In the numerical results, Z* will be
taken to be the dynamic eRective charge defined by the
optic-mode splitting

S=Z*'/p = (fl/44re')ggg(cp ' —4p ') (8)

3 4

U=-', n —g [A(r, 'r, ')1'
4r2

One may readily show by expressing (9) in terms of
changes in bond lengths and angles that Keating's
approximation is realized in the VFF model by re-
quiring

where 0 is the unit cell volume, m the reduced mass, and
co the optic frequency.

The formulas for the elastic constants can be further
simplified by an approximation suggested by Keating. '
Assume that the expansion of the VFF energy (1)
involves only the squares of the scalar variations
A(r, 'r, '), where r, ' and r,' are bond vectors about atom
s. Then in Keating's notation, we have

where
C44= C44' —C|P, (4c)

k, =3n+ ,'P, kg =-,'P, —

k„,'= (3&2)-P, k,„=—,',P,

(10)

C44' ——(v3/12r) (k„—2k„„+2kg+8k„g")—0.1365Cp, (4d)

C = (v3/12r) (k,—2k,„+8kg—16k„g")—0.2665Cp, (4e)

' M. Blackman, Phil. Mag. 3, 831 (1959).

where, as before, P =-,'(P'+P').
' L. Kleinman, Phys. Rev. 128, 2614 (1962).' J. L. Birman, Phys. Rev. 111, 1510 (1958).
"A. Segmuller and H. R. Neyer, Physik Kondsierten Materie

4, 63 (1965).
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From Eqs. (4) and (10), one may easily show that
the elastic constants have the simple form

Cgg+2Cgg ——(W3/4r) (3n+P) —0.3555CO, (11a)

Cll C12 (~3/r) p+0.053SCO, (11b) l = (2C» —C')/(Cl~+C» —C'),
where

(12a)

In particular, note that Eqs. (11a), (11b), and (11e)
may be used to derive a simple expression for the
internal-strain parameter

C44 = (43/4r) (n+P) —0.136SCp C' =0.314SCp. (12b)

where
(11c)

C = (K3/4r) (n+P) —0.2665CO (11d)

t =C 'L(v3/4r) (n —p) —0.2945Coj. (11e)

The formulas for the elastic constants now involve
only three parameters of which one, 5, is fixed by the
optic mode data. Thus the Eqs. (11) predict a relation
among the elastic constants which may be checked
experimentally. The relation may be written

2C44(Cgg+Cj2 —C')

(Cgg —Ci~) (Cgg+3Cg2 —2C')+0.831C'(Cii+Cg2 —C')
(13)

TABLE I. Experimental bond lengths, elastic constants, and
effective charge parameter S for the diamond or sphalerite struc-
ture materials. The elastic constants and effective charge param-
eters are for room temperature for each case in which that data
was available.

Material
r

(a.u, )
Co C44

(10"dyn/cm'l
C12

C
Si
Ge
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
ZnTe
CdTe
CUC1

2.919 40.523
4.444 7.538
4.629 6.401
5.020 4.630
4.460 7.430
4.626 6.418
5.006 4.681
4.802 5.529
4.939 4.941
5.301 3.723
4.426 7.660
4.638 6.356
4.984 4.765
5.303 3.718
4.423 7.681

107.6 57.68
16.57 7.96
12.89 6.71
8.94 4.16

14.12 7.05
11.81 5.92
8.84 4.32

10.22 4.60
8.33 3.96
6.67 3.02

10,40 4.62
8.10 4.41
7.13 3 ~ 12
5.35 1.99
2.72 1.57

12.50'
6.39b
4.83b
4 43'
6.25'
5.32c
4.03g
5.761

53c
3.65c
6.50&

4.88~

4 07'
3.68c
1.87'

0
0
0
0.364'
0.514'
0.441~
0.331h
0.682~
0 579"
0.369"
0.887"
0.688"
0.539~
0 838h
0.266

a H. J. McSkimin and W. L. Bond, Phys. Rev. 105, 116 (1957).
b H, B. Huntington, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic, New York, 1958), Vol. 7.' Londolt-Bornstein Numerical Data and Functional Relationships in
Science and Technology, New Series, edited by K. H. Hellewege (Spinger,
Berlin, 1966), Group 3, Band 5.

d A. Mooradian and G. B. Wright, , Solid State Commun. 4, 431 (1966).
e R. Weil and W. O. Groves, J. Appl. Phys. 39, 4049 (1968).
f A. S. Barker, Phys. Rev. 165, 917 (1968).
I H. J. McSkimin, A. Jayaraman, P. Andreatch, and T. B. Bateman,

J. Appl. Phys. 39, 4127 (1968)."D. H. Martin, Advan. Phys. 14, 39 (1965).
' F. S. Hickernell and W. R. Gayton, J. Appl. Phys. 37, 462 (1966).
l Reference 16.
l' W. G. Nilsen, in Light Scattering Spectra of Solids, edited by G. B.

Wright (Springer, New York, 1969), p. 129.
1 Reference 15.
m A. Hadni, F. Brehat, J. Claudel, and P. Strimer, J.Chem. Phys. 49, 471

(1968).

which reduces to the form given by Keating4 if we set
C'=0.

In Table I are listed the experimental elastic con-
stants of the ZB crystals, the parameter S derived via
Eq. (8), and the constant Co. From the experimenta, l

values the parameters for @eating's approximation are
derived and shown in Table II. The first two columns
contain n and p ca,lculated from (11a) and (11b) and in
the third column the ratio on the left-hand side of (13)

TABLE II. Theoretical quantities derived from the data of
Table I. n and P are the short-range force parameters and f is
Kleinman's internal displacement parameter.

Material

Optic-
mode

p/e Ratio~ g checkb

C
Si
Ge
Alsb
GaP
GaA~
GaSb
InP
InAs
InSb
ZnS
ZnSe
ZnTe
CdTe
Cucl

129.33 84.76
48.50 13.81
38.67 11.35
35.35 6.77
47.32 10.44
41.19 8.95
33.16 7.22
43.04 6.24
35.18 5.50
29.61 4.77
44.92 4.78
35.24 4.23
31.35 4.45
29.02 2.43
12.60 1.00

0.655 1.002
0.285 1.005
0.294 1.081
0.192 1.056
0.221 1.044
0.217 1.068
0.218 1.059
0.145 1.075
0.156 1.109
0.161 1.103
0.107 1.082
0.120 1.319
.142 1.059

0.084 1.045
0.079 1.532

0.208 1.159
0.557 1.044
0.546 1.019
0.649 1.083
0.589 1.105
0.600 1.085
0.612 1.039
0.699 1.136
0.682 1.054
0.695 1.029
0.736 1.300
0.723 1.210
0.706 1,250
0.793 1.220
0.785 0.978

a Left-hand side of Eq. (13).
b ~&(model)/ayi(expt. ). See Eq. (16).

W. Cady, Piezoelectricity (McGraw-Hill, New York, 1946).

is given. Note that with the exception of CuCl and ZnSe
(more is said about these crystals in Sec. III), relation
(13) is satisfied to within 10'Po. In contrast to the
original relation given by Keating, 4 the ratio is as well
satisfied for the ionic crystals as it is for the homopolar
diamond-type crystals.

Of particular importance is the present calculation of
the internal-strain parameter l, the values of which are
derived from (12) and given in Table II. The internal
strain is, for example, essential for understanding the
piezoelectric effect."However, it has been pointed out'
that a direct x-ray measurement of t' in the sphalerite
structure crystals would be extremely difFicult so that
we must rely on derived values of l The onl. y experi-
mentally measured values" are for the homopolar
crystals Si and Ge, both of which have t 0.63 or about
15% greater than the derived value. The accuracy with
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k„„=-,kg. (14)

We might compare this approximation with one which
appears more obvious in the VFF approach —setting
the smaller constants k„g' ——k„„=0.The force constants
have been determined in only a limited range of
examples, notably diamond, ' Si," and many hydro-
carbons. " In none of the cases is (14) well satisfied;
however, the force constants do fall off with ko&k, o'

&k„„.The latter constants k,z' and k,„are by no means
negligible, and it appears that (14) is a better choice
than neglecting k„&' and k„„entirely.

It may also be noted that the alternative approxi-
mation with k„e' ——k„„=oleads to a relation among the
elastic constants similar to (13). Even for the homo-
polar case, for which one finds

7 2C44t Cll+(2/7)C12) =1
(Cl1+2C12) (Cl1 C12)

which relation (13) (which is strongly dependent upon
f) is satisfied suggests that the values of|in the hetero-
polar compounds should not be in error by much
greater amounts.

Let us now discuss the approximations made in more
detail. From (10) we see that Keating's approximation
is equivalent to taking k„and k& as independent param-
eters in the VFF model but requiring

k„g'= (1/+8)1~4,

TABLE III. Fractional ionic character f; from Ref. 7 and the
reduced elastic constants derived from Table I.

Material

C
Si
Ge
AlSb
GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
ZnTe
CdTe
CUCI

0
0
0
0.426
0.374
0.310
0.261
0.421
0.357
0.321
0.623
0.676
0.546
0.675
0.746

1.091
1.298
1.173
1.282
1.194
1.166
1 ~ 203
1.311
1 ~ 173
1.251
1.018
0.937
1.068
1.139
0.280

1.173
0.675
0.627
0.487
0.530
0.506
0.514
0.403
0.385
0.406
0.255
0.253
0.321
0.225
0.055

1.421
1.056
1.048
0.899
0.949
0.926
0.923
0.832
0.801
0.811
0.603
0.694
0.655
0.535
0.204

previously pointed out by Keyes. ' The purpose of the
remainder of the present paper is to put these regulari-
ties on a Inore quantitative basis and to discuss in a
simple way the physics underlying the trends.

Following Keyes we consider the reduced elastic
constants Cll* ——Cll/Co, etc., where Co is the norrnali-
zation modulus defined in Eq. (6) and listed in Table I.
This choice of the normalization modulus is suggested
by the fact that all forces in the crystal are basically

the relation is not well satisfied. The left-hand side of
(15) is 1.18, 1.14, and 1.23 for diamond, Si, and Ge,
respectively —greater deviations than was found for
(13) in any of the crystals except ZnSe and CuC1.

There is, however, a simple check which reveals
clearly the inadequacy of the simple model used in the
present work. One may show that the transverse optic-
mode frequency in the model is given by

o c)c
O

l.p—
II

Cn

oZnSe

InP
0C)$I o Atsb

Insbo
~ z ~Gasbo o(jop~oznAs

aaaa
oZnTe

oZn

cdi(model) = L(16r/arri)C)'" (16)

where C is given in (11d).The ratio ~, (m odel) /&v (ie xpt).
is listed in the last column of Table II. We see that in
general the deviations increase as the value of 5 in-
creases. The primary reason for the discrepancies is the
rigid point-ion approximation. In order to fit the optic
modes (and, of course, other modes at finite wave
vector), a more complex model with more parameters
must be used. This has not been done in the present
work.

CA

0.8—
C)
O

O
UJ
c3 04D
Cl
LLI

lL

0.2—
oCuCg

III. TRENDS IN ELASTIC CONSTANTS

Regularities in the elastic properties of the semi-
conductors with the sphalerite structure have been

I

0.2
I l

0.4 0.6
XONICITY f;

l

0.8
l

I.O

"A. W. Solbrig, Jr., and H. L. McMurry (private communi-
cation).

~4 J. H. Schachtschneider and R. G. Snyder, Spectrochim. Acta
19, 117 (1963).

FrG. 2. Reduced bulk modulus B*=I3/CO as a function of
ionicity f;. In Figs. 2—4 the solid line is the theoretical result
derived from Eqs. (11) and (18) and 6tted to the average value
for Si and Ge.
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FIG. 3. Reduced shear modulus C,*=(C» —C~2l/2Co as a func-
tion of f;. Note that the value for diamond (not shown) is much
larger than for the other crystals. See caption of Fig. 2.

electrostatic in origin. Since the crystals under con-
sideration all have the same symmetry, the same
number of electrons per atom pair, and thus similar
bonding, the dependence of the moduli on the bond
length is largely removed. The trends in the reduced
moduli thus should be directly correlated with the
character of the bond.

Here we examine the dependence of the reduced
moduli upon the most important characterization of the
bond, its ionicity. The scale of ionicity used is that
defined by Phillips and Van Vechten, 6 ~ which is the
best available scale for A~8' ~ heteropolar crystals.
It has already been demonstrated that the ionicity f;
correlates well with the crystal structure; that is, it is
found' r that those and only those crystals with f, less
than a critical value are stable in a tetrahedrally co-
ordinated structure.

It is most informative to examine the reduced bulk
and shear moduli

8*= (Cu+2Cts)/3Co )

C44 =C44/Co,
and

C,*=(Ctt —Cts)/2Co

The formulas given in Sec. II show that the reduced
shear moduli C44* and C,* should decrease as the
ionicity increases because C«* and C,~ are primarily

FIG. 4. Reduced shear modulus C44*= C44/Co as a
function of f; See caption o.f Fig. 3.

determined by P, the noncentral force constant, which
should decrease and tend to zero in the ionic limit
f'~1.

In Table III are listed the ionicity f,' and the reduced
elastic constants and in Figs. 2—4 are shown the reduced
moduli as functions of the ionicity. Ke see that the
reduced bulk moduli do not show a systematic variation
with f,, but rather reflect more strongly variations
between the diferent rows of the Periodic Table. These
variations are small and will not be discussed here. The
reduced shear moduli, on the other hand, decrease
markedly with increasing f, As was noted b.y Keyes, o

C,* decreases more rapidly than C44*. The behavior of
the elastic constants is best understood by examining
the derived parameters n, P, and 5 as functions of f,.
This is done below where it is shown that simple
approximations for the parameters in terms of f, lead
to the results displayed as the continuous lines in

Figs. 2—4.
The reduced moduli of only one compound CuC1 are

in great disagreement with the trends. The measured
elastic constants" are very low considering the small
lattice constant. CuC1 is the only one of the compounds
(CuCI, Cu3r, AgI) found in the ZB structure which

have ionicity very near the critical value6 7 for which
measurements have been carried out. It would be useful

'5 T. Inoguchi, T. Okamoto, and M. Koba, Sharp Tech. J. 12,
59 (1969).
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to verify the results of CuCl and to obtain the moduli for
CuBr and AgI. It is possible that the low values for
CuCl herald an approaching acoustic instability for
crystals near the point of transition to the rock salt
structure.

Note that the shear moduli for'diamond are anomal-
ously large. Presumably this rejects a real difference in
the bonding caused by the fact that s-p hybridization, 'is
much more complete for first row atoms than for the
heavier elements. Thus we would not~expect/the
reduced moduli for compounds containing a 6rst row
element to be directly comparable with those from the
other rows.

Also, it was noted in the previous section that for
ZnSe the relation (13) is not well satisfied. The devi-
ation is caused by the large value of C44 as may be seen

by comparing the elastic constants of ZnSe with those
of CdTe which has essentially the same ionicity. Since
there is no a priori reason to suspect that ZnSe would be
different from the other similar crystals, this result
suggests that the experimental" elastic constants for
ZnSe, in particular C44, may be in error.

%e may utilize the results of Sec. II and examine the
derived parameters rr, P, and 5 as functions of f,. The
elastic constants are, of course, composite functions of
all the forces, whereas n, P, and 5 have simple inter-
pretations as bond-stretching, bond-bending (non-
central), and Coulombic force constants, respectively.
We note from Tables II and III that P decreases much
faster than n as the ionicity f, increases. Of particular
interest is the dimensionless ratio P/n, which is plotted
versus f, in Fig. 5. It was noted above that the non-
central force constant P should decrease and approach
zero for large ionicity. This is the result found experi-
mentally; in Fig. 5 we see that the values of P/n fall
close to the straight line drawn from the Si-Ge average
to P/cr=0 at f,=i. That is, the primary trends in the
elastic constants are described quantitatively by

P/u ~1 (18a)

4r (r'/e') =const, (18b)

S=f;. (18c)

Each of these relations is supported by the experimental
data. The left-hand side of (18b) is, apart from small
corrections, proportional to 8*, which was shown in
Fig. 2 to be approximately constant. The form (18c) for

'6 D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129,
1009 (1963).

which is the simplest possible form having the required
result P =0 for f;= 1. This result provides both a simple
picture of the experimental force constants as a function
of the ionicity and supports the approximations made
in the theoretical analysis of Sec. II.

The functional forms of the derived parameters are
completed by observing that to a first approximation

.3 -G

I-
K

Vlz .20
Ld

K
O

O

0
.I

CL'

0.2 0.4 0.6
IONIC IT Y f

i

0.8 I.0

Fio. 5, The ratio of the noncentral to the central force constants
p/n in Keating's approximation Lace Eqs. (11) and Table IIj as
a function of the ionicity f;. The straight line is drawn from the
Si-Ge average to the point P/n Oat f=; = 1, as anticipated by the
theoretical discussion of Sec. II.

5 is chosen because it is the linear interpolation between
the homopolar case where $=0 and the completely
ionic case where S=1, representing rigid ions of unit
charge.

The set of formulas (18) may now be combined with
Eqs. (11) to provide a useful prescription whereby the
elastic constant of any ZB crystal can be calculated
solely in terms of its bond length r and ionicity f,. The
only additional input required are the magnitudes of o.

and P for one crystal. The results are most clearly
presented in terms of the reduced elastic constants, the
predicted values of which are functions of f, alone. The
results for the three reduced constants are shown as the
solid lines in Figs. 2—4; the only adjustable parameters
have been chosen to fit the average values of 8* and
C,* for Si and Ge. The experimental points deviate
somewhat from the theoretical curves, for example, the
predicted constants for GaP and AlSb are too low, but
it is clear that the theory is in generally good agreement
with the trends in the experimental numbers. The rms
deviations from the theoretical curves (excluding
diamond and CuC1 for which there are large deviations)
are 8, 11, and 10%%u~, respectively, for 8, C„and C44.

The large bond-bending forces in the crystals which
have any row-I atoms require that they be considered
separately from crystals which do not contain row-I
atoms. The same equations (11) and (18) would be used
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Lexcept tha, t (18c) is badly violated in some cases
involving row-I atoms], but the parameters would be
chosen to fit n and p for a more appropriate crystal. For
example, the elastic constants of BE would be predicted
from those of diamond.

In summary, the elastic properties of the sphalerite
structure semiconductors, especially the shear moduli,
have been shown to follow simple trends as functions of
the ionicity f, , as defined by Phillips and Van Vechten.
These results (Figs. 2—4) give quantitative form to the
observations made by Keyes. ' Also the present work
has presented a simple theory of the elastic constants of
tetrahedrally coordinated crystals which involves only
two parameters fitted to the elastic data. The theoretical
formulation yielded four important results; (a) a
relation LEq. (13)]among the elastic constants and the
optical effective charge which was shown to be satisfied
to 10/o, (b) a calculation of the internal strain
parameter' "

t from the elastic data, (c) the trends (as
function of fr) in the fitted parameters n, P, and S which

supports the interpretation given them in the theory.
and (d) a set of formulas from which the elastic con-
stants of a ZB crystal can be predicted from its bond
length and ionicityr with an expected accuracy of 10jo.

Note added i' proof. The suggestion made in the
present paper that the experimental elastic constants
of ZnSe were erroneous has been verified. Recent mea-
surements reported by Lee" yield C» ——8.59, C44 ——4.06,
and Cts ——5.06. With the new constants Eq. (13) is
satisfied to 11%%uz in accord with similar compounds. No
other results for ZnSe are greatly changed. The author
is indebted to Dr. Y. S.Park for bringing to his attention
the work of Dr. Lee.
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F Center in Cesium Fluoride: Properties of the Optically Excited Center*
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Studies of the luminescence, photoconductivity, Schottky ionization, bleaching, and ground-state repopu-
lation oi the optically excited F center in CsF are reported, with these main results: (a) Excitation in the F
absorption band centered at 1.88 eV gives rise with high efficiency to a luminescence band (at 1.43 eV)
whose unusual properties include the small Stokes shift (0.45 eV), narrow low-temperature width (0.10 eV),
and short lifetime (50 nsec). (b) Photoconductivity, Schottky ionization, and optical bleaching show a
wavelength dependence in the F-band region. Thermal ionization of the optically excited center is found to
be more eKcient for excitation in the high-energy component of the triplet F absorption band, which corre-
sponds to the P112 level of the spin-orbit-split P-like excited states. This implies that the lattice relaxation
processes are influenced by the initial state. (c) The characteristic time for return to the ground state for an
optically excited F center is found to be 1.0 psec, much longer than the luminescence lifetime. This suggests
the occurrence of a bottleneck in the lattice relaxation following the emission.

I. INTRODUCTION

HE unusual properties of the optical absorption
of the Ii center in cesium fluoride have been

described in a previous paper, ' in which a number of

* Work at Cornell supported primarily by the U. S. Atomic
Energy Commission under Contract No. AT (30-1)-3464, Tech-
nical Report Xo. NYO-3464-15 and also the Alfred P. Sloan
Foundation. The Advanced Research Projects Agency is also
acknowledged for the use of the central facilities of the Materials
Science Center at Cornell University, MSC Report No. 1082.

t Based on a thesis submitted in partial fulfillment of the re-

phenomena not usually associated with F-center optical
properties were shown to be important. Among these
are a combina, tion of spin-orbit and Jahn-Teller inter-
actions of comparable strength in the I'-like excited
states, leading to an optical-absorption band (F band)
consisting of three narrow resolved components, on
which structure due to discrete optical-phonon transi-

quirements for the. Ph. D. degree at Cornell University, Ithaca,
N. Y.' T. A. Fulton and D. B. Fitchen Phys. Rev. 1/9, 846 (1969).


