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Charge Density in Crystalline Anenicf
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The charge density in crystalline arsenic is calculated from orthogonalized-plane-wave wave functions
and compared with the covalent-bond models due to Pauling and to Cohen, Falicov, and Golin. There is
good qualitative agreement; arsenic clearly has covalent features.

INTRODUCTION

HERE are several theories of the covalent bond, ' '
including a discussion of the semimetals and related

compounds comparing the band and bond viewpoints. '
The atomic structure of arsenic, (4ss) (4Ps), gives us a

clue to its crystal structure. As the s electrons lie some
6 eV below the p electrons, we expect the latter to be
dominant in binding. Thus, we might expect the three
mutually perpendicular P orbitals to form a simple cubic
(SC) structure. But this would require each P electron
to be covalently bonded with two others on either side
of the atom, which is energetically unfavorable. Further,
according to Pauling, the bond strengths can be in-
creased by s-P hybridization. This changes the bond
angle and distorts the crystal from SC. The Pauling
model provides relationships between the binding
energy and bond angles in the crystal, and the excita-
tion energy in the atom.

Cohen, Falicov, and Golin' (CFG) have calculated
the band structure of As assuming a SC crystal and
found this structure unstable; in the actual crystal
structure of As, these instabilities disappear. They
have also determined the approximate atomic and
bonding character of many crystal wave functions at
points of high symmetry in the Brillouin zone (BZ).

The crystal structure' ' of As is in fact close to SC,
and can be obtained from it by applying two small and
independent distortions: a shear and an internal dis-
placement of atoms. The shear and the displacement are
along the same body diagonal of the initial unit cube;
this diagonal retains its threefold symmetry and is
called the trigonal axis. In the resulting arsenic (A7)
structure, two atoms are associated with each lattice
point, and each atom has three nearest and three next-
nearest neighbors. The crystal structure is illustrated
in Fig. 1.
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In this paper, we have calculated the charge density
of crystalline arsenic, p(r). The calculation illustrates
the covalent nature of As, a semimetal, and confirms
many qualitative ideas of Pauling' and CFG.' Also,
we have estimated the "bonding charge, " the charge
transferred to the bond from the two bonding atoms.
This charge is important in Phillips's' theory but is too
small in As to make an appreciable contribution to the
binding energy.

The Fourier coefFicients of the charge density (or
potential) are also very important in describing co-
valent bonds, ' and these have already been calculated
for As. r One of these coefficients, F(111), differs ap-
preciably from a superposition of atomic charge. Un-
fortunately, it is difficult to confirm the magnitude of
this coefficient from x-ray measurements. '

The calculations of this paper are based on the results
of a self-consistent orthogonalized-plane-wave (OPW)
calculation, ~ referred to here as I. Both the plane wave
and core parts of the wave functions were used.

In I, in the process of making the crystal potential
self-consistent, the equivalent of 64 points (actually
13 different points) in the BZ were sampled using the
Cohen and Eever' technique. To test convergence, one
can sample the equivalent of only 1 (I') or 8 (I', T,X,I.)
points. Here, I' is the center of BZ, T is on the trigonal
axis at the center of the regular hexagonal face, and I
and X are the centers of the other hexagonal faces and
of the rectangular faces, respectively. There are three
equivalent I.and X points, but only one I' point and one
T point. Further details of the crystal structure, BZ,
and group theory are given in Refs. 4-7.

The room-temperature crystal-structure parameters'
were used here and in I as the low-temperature param-
eters have just recently been measured.

Atomic units are used throughout: 1 a.u. (energy)
= 27.2 eV; 1 a.u. (charge density) = 1.08X10 ' Cicm';.
p= ~P ~' is positive for electrons.

RESULTS

In calculating the charge density, we can average
over the occupied levels at the equivalent of 1, 8, or
64 points in the BZ. The charge density so averaged is
plotted along a nearest-neighbor direction in Fig. 2.

' S. Golin, Phys. Rev. 140, A993 (1965)i referred to as I.
e C. S. Barrett (private communication).
v M. H. Cohen and F. Ketfer, Phys. Rev. 99, 1128 (1955).
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FIG. 2. Charge density averaged over the equivalent of 1, 8, and 64
points in the BZ is plotted along a nearest-neighbor direction.

DISCUSSION

A. CFG Model

In the simplest atomic description of the As band
structure, the bands are (in increasing energy): bonding
s, antibonding s, 3 bonding p, 3 antibonding p. The
Fermi energy (E&) should be between the bonding p
and antibonding p bands. This picture holds well at I',
where hybridization effects are minimal, as we see in
Table II. While the levels at 1, X, and I are not this
simple, there is a tendency for most of the charge at
0 to come from the lower-lying levels, and for the levels
above E~ to be antibonding or weakly bonding.

In interpreting the numbers in Table II, we compare
them with free-atom values based on Hartree-Fock
(HF) wave functions. "Then for a 4s orbital in a free
atom, p4, (0)= sp, i(0) = 12.4 a.u. (Table I). Thus,
if for some crystal level p(0)(&12.4 a.u. , we can con-
clude that the level has little s character (since each
band corresponds to one atomic orbital).

Hybridization between s and p (and d) orbitals occurs
for most of the levels; only in a few cases where sym-
metry requires p(0) =0 can we exclude s character.

"R. E. Watson and A. J.Freeman, Phys. Rev. 124, 1117 (1961).

Vet the atomic designations of CFG work well at F
and reasonably well at X (except for the lowest Xi
level). Hybridization is very strong at T and L, and
perhaps the best way to assign atomic character would
be based on the calculated charge density at the nucleus.

A measure of the degree of bonding is provided by
p, i(M), which is a superposition of free-atom charge
densities at M (see Table I). Since the 4s and 4p
orbitals in As have a similar radial dependence and
magnitude far from the nucleus, we can divide this
charge equally among the five orbitals: p„b(M)
=sip, &(M) =0.012 a.u. Thus, if for some crystal level

p(M)) 0.012 a.u. , the level may be considered bonding;
for the antibonding levels p(M) =0. In between, the
levels are nonbonding or weakly bonding.

The bonding and antibonding designations are seen
in Table II to hold well for most of the levels. As already
noted, at X and I., a level may be bonding at one mid-
point and antibonding at two others, or vice versa. This
complicates a chemical interpretation of these levels,
but poses no problems with a band view.

We can use the model to calculate the total charge
density at 0 and M, poFo(0) and poFo(M). From free-
atom wave functions, ' we form Bloch functions trans-
forming according to k=O(1') which are bonding s,
antibonding s, and bonding p. In normalizing these
functions, we allow for the appreciable overlap be-
tween nearest neighbors: (4s,4s) =0.17 and (4p, 4p)
=0.35 for p orbitals directed along the line of centers.
The results are given in Table I; compared with the
detailed calculation, they are accurate to about 7%%uq.

The errors in the nonbonding atomic calculation of p g

are about three times larger.

B. Pauling Model

According to Pauling, ' the strength of the covalent
bond is increased if the 4s'4p' configuration is hybridized
with one or more excited states. The lowest-lying
excited state" 4s'4p'Ss has an excitation energy 6=0.24
a.u. At slightly higher energies are" 4s4P4 and 4s'4Ps4d.
The 4p' configuration has bonds at right angles (SC),
and the three excited states mentioned lead to planar
bonds making angles of 120 with each other. Experi-
mentally, the bond angle is' 97.3', so that hybridiza-
tion is small. Thus, it is probably not too important
which excited state one chooses, and we have based our
calculations on the lowest one, 4p'5s, as it is the simplest
to work with. (This is actually a poor choice as the Ss
orbital has a node near M, making it ine6ective in
bonding; but most of the results apply also to the
4s4p4 configuration. ) Following Pauling we write

configuration =n (sp')+P (p')

and assume that the radial parts of the two configura-

C. E. Moore, Atomic Energy Levels, Natl. Bur. Std. (U. S.)
Circ. No. 467 (U. S. Government Printing Once, Washington,
D. C., 1952), Vol. II.
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tions are the same (poor for the Ss orbital). From the
experimental value of the bond angle, we find +=0.20,
which justifies our assertion that the hydridization is
small. We can now estimate the binding energy':
&E=3n&/(1 —n)=0.18 a.u. , about 60% above the
experimental value" of 0.11 a.u.

The model allows us to calculate the charge density
at M, pz(M). We find that hybridization increases the
bonding p charge density at M by the factor L(1—~s&')'~'

+sn]'=1.13. This does not allow for the change in
normalization resulting in the increase in overlap of the
wave functions caused by the hybridization. We expect
the overlap to increase by about this factor of (1.13)
to 0.39. We treat the 4s' electrons as in the CFG model.
The resulting charge density agrees with the detailed
OPW result (see Table I); the agreement is certainly
better than the approximations and uncertainties in
both calculations, and must be considered fortuitous.

C. Valence Charge Density at Nucleus

The various parts of the Fermi surface of As'4 ~"
are at I. and near T. From Table II, e see that the
charge density at the nucleus from states near the Fermi
surface is larger than one might expect on a simple
chemical picture, as the p electrons are dominant in
bonding. These numbers should be useful in interpret-
ing Knight shift measurements.

~ C. Kittel, Introductioe to SolM' State Physics (John Wiley 8z
Sons, Inc. , ¹wYork, 1966), 3rd ed. , p. 78."P.J. Lin and L. M. Falicov, Phys. Rev. 142, 441 (1966).

The total valence charge density at the nucleus
averaged over 64 points in the BZ, p(O) (Table I),
should be useful in interpreting isomer-shift ' measure-
ments. p(O) is about 30'Pq higher than the free-atom
value, and this difference appears to be much larger
than any convergence error. At first it might seem that
this implies hybridization: a 4p electron is excited into
a 5s state. But this, in fact, would make a contribution
to p(O) two orders of magnitude less than the observed
difference. This is because the admixture of the 5s
state is small, 0.2 at most, and because ps, (O) is small:
we have calculated it to be 0.93 a.u. (in the Hartree
approximation).

The increase in p(O) can be easily accounted for as a
normalization effect. In calculating poFo(O) for Table I,
we calculated p(O) for bonding s and antibonding s
orbitals, and found separate contributions of 8.3 and
25.1 a.u. , respectively. Note that the latter is about
twice the free-atom value. The difference is due en-
tirely to different normalization factors:

[1~3(4s,4s)] 'I'(+, bonding; —,antibonding) .

Incidently, these values of p(O) are very close to those
for F~ and I'&', respectively.

D. Bonding Charge and Binding Energy

The bonding charge, of interest in Phillips's' model,
is the additional charge in the region between first

' See, e.g., H. Frauenfelder, The 3fossbaler EIect (W. A.
Benjamin, Inc. , New York, 1962).
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nearest neighbors over that resulting from the super-
position of atomic charge. We may define it by

Q= Pp(r) —p. , (r)j d'r,

where the integration is limited to the region about M
in which the integrand is positive. We estimate
Q=0.03 a.u.

One can also estimate Q from the Fourier coefficients
of the self-consistent potential calculated in l. One of
these, F(111), differs appreciably from the free-atom
value and also leads to Q= 0.03 a.u. Thus, as anticipated
in I, the bonding charge is largely represented ~by this
Fourier coe%cient.

According to Phillips, ' the volume occupied by the
bonding charges should be very small. We estimate the

(total) volume occupied by the three bonding charges
in the primitive cell to be about 4% of the volume of
that cell.

The ionic binding energy per atom from this charge
is =0.002 a.u. , negligible compared with the experi-
mental value of 0.11 a.u. Actually, on an atomic
picture, most of the binding energy comes simply from
the (nonbonding) overlap of the spherical charge
distributions of nearest neighbors. Using HF wave
functions, ' we have calculated this energy to be
0.30 a.u. ; thus, the repulsive terms must contribute
at least —0.2 a.u. to the binding energy.
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The resistance and magnetoresistance of iron single crystals have been measured as a function of stress
at liquid-helium temperatures. For measuring currents above some critical value, a large transition in the
resistance of the sample is observed, and the critical current for this transition is a function of both the
applied longitudinal magnetic field and the applied axial stress. The results have been interpreted in terms
of inverse-magnetostriction and domain-reorientation eGects involving the self-field of the current. We have
developed a model for the (100)-axial crystals based on a sheath-core configuration with spina perpendicular
and parallel to the current in the sheath and core, respectively. Under favorable conditions the formation
of the sheath-core configuration simulates the behavior of thermodynamical variables in a first-order phase
transition. The analysis of the model can be used to predict the observed resistance transition quite ac-
curately and can also be used to obtain a value of the saturation rnagnetostriction constant ) &00. The value
obtained is X»o ——(25.0+1.0) &&10, which is in reasonable agreement with other measurements. Results
of stress experiments on (111)-axial crystals are consistent with a negative value of X~ib but indicate that
the field and current-induced resistance transitions are more complex than those in the (100)-axial crystals.
Discussion of possible mechanisms is included.

I. INTRODUCTION

'N previous papers, ' ' we have reported results of
- - electrical-resistance measurements in iron single
crystals, particularly in the low-temperature range
extending to 1'K. A striking characteristic has been
large negative magnetoresistance behavior observed in
the liquid-helium temperature range. In the case of
(100) specimens, this behavior was shown to be pri-

* Work supported in part by the U. S. Atomic Energy Com-
mission and the U. S. Army Research OfBce, Durham, N. C.

t Present address: Bell Telephone Laboratories, Murray Hill,
N. J.

A. Isin and R. V. Coleman, Phys. Rev. 142, 372 (1966).' R. V. Coleman and A. Isin, J. Appl. Phys. B7, 1028 (1966).' G. R. Taylor, A. Isin, and R. V. Coleman, Phys. Rev. 165, 621
(1968).

marily induced by the self-field of the measuring current
and was interpreted as a reverse galvanomagnetic
effect' connected with the formation of various domain
configurations.

In this paper, we report on a series of results obtained
by applying uniaxial stress to the crystal and measuring
resistance as a function of stress, magnetic field, and
measuring current. The use of uniaxial stress as an
additional variable has allowed a precise control of the
magnetic state of the crystal through inverse magneto-
striction. This has allowed us to make a more complete
interpretation of the resistance and magnetoresistance
behavior in the helium temperature range, and has also
provided a fairly accurate value of the magnetostriction
constant for iron at helium temperatures.


