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From (1.4) and (1.4)t the volume integral in (1.9)
vanishes, and, if the components of SE„~ and SE„
tangential to the surface are zero, (1.9) gives

(~oX@(d)7 = —2 Lx.p'8p(o)+I'. p'8p(d)7 (2 8)

L~oX@(d)7.= 2 LX.p'8p(0)+I' p'8p(d)] . (2 9)
8I„=O. (1.10)

2. REFLECTION AND TRANSMISSION TENSORS
IN TERMS OF GENERALIZED

ADMITTANCE TENSORS

For the case where V is the region between the planes
z=0 and z=d (x, y, z being rectangular Cartesian
coordinates), (1.4) is slightly modified by carrying out
a partial Fourier transformation F(r) —& F(s,z), where
s= (sg, sII), and X'&=Xt y&= y$ (2 11)

Using (2.3) d may now be written

a = g 8.t(d) V p'8p(d)+8. t(d)X.p'hp(0)
0;,P=z, y

+8 t(0)X p8p(d)+8 t(0) Y p8p(0). (2.10)

Since, as is apparent from (1.6)—(1.8) and (2.4), 0 is
symmetric in 8~ and 8, it follows that

F(r) =(1/2m) F(s,z)e—'~'**+'»'ds.

Equations (1.10) and (1.4) now give

Se„=O,

For the case of a semi-infinite medium 8t(d), h(d) ~ 0,
and then Y is just the surface admittance tensor; (2.10)
provides a generalization of that case in a form con-
venient for obtaining the reAection and transmission

(2 2) tensors R and T defined by
with

~- ={@-'(d)XL~o X@-(d)7—@-(0)XL~oX@-(0)7)
(2.3)

r=R ), (2.12)

(2.13)

where

L~oX@-(z) ~oX@-'(z)+i~t o@-'(z) 3-(z)

@„(z)=g„(s,z), @„t=@„t(—s,z),

where re'I'"' 'i' & and te'&"I 'I'x& with q'= (q„q„—q.)
are, respectively, the reQected and transmitted electric

~~&,@ t(z). p (z)]dz (2 4) fields. Since the boundary conditions at the surfaces are

i.+r =8 (0), (2.14)

and
V', = (is, B/Bz), V', t= ( is, 8/—Bz) .

For the case where the 6eld in the medium is produced
by a monochromatic plane wave incident on the surface
s=O, and with electric held ie'&"' &'

&, then s=q where
q= (q„q„).The boundary condition on GE, 5E" requires

88.(0)= 88.(d) —88nt(0) = 88.t(d) = 0 (n= x,y) . (2.5)

q i=q r=q t=0,I (2.18)

q r q,r, =q. t+ q,t,=—0. (2.19)

t =8 (d), (2.15)

—igqXi+q'Xr] = L&OXS(0)7, (2.16)

—iLqXt]-=L~oX@(d)7-, ( =*,y) (217)

and also

Equation (2.5) indicates that 8, given by (2.3), (2.4),
is a quadratic function of 8(0) and 8(d). This may be
seen explicitly by defining tensors X, X', Y, Y' by
the equations

[&oXS(0)].= P LI', 8 (0)+&, 8 (d)],

Equations (2.6)—(2.9) together with (2.12), (2.13) give

(I+Q) T= (i/q. )(X' (I+ R)+ Y' T7 (2.20)

L&oXS(0)],= —P L &.p8p(0)+X.p8p(d)],

(2 6) (I+ Q) (I —R)= (—i/q, )[Y (I+ R)+X T], (2.21)

(2.7) where Q p=q qp/q, '. Solving (2.20) and (2.21) for T
and R,

i )
—1

T= —X' I+Q ——Y' —I+Q ——Y —X
i

I+ I+@——Y
I

gz gz g'z q. q, ) q. )
(2.22)

R=
l

—X) (I+@——Y)—(I+Q ——Y') (
—X')

(i
X I+Q ——Y' —X' ~+I —X

~
I+Q+ —Y . (2.23)

&q gz
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Once X, X', Y, Y' are known, (2.22) and (2.23) allow
all the properties of the reRected and transmitted waves
to be found. In the following sections it is shown how
the variational principle may be used to obtain ap-
proximate expressions for these.

3. CURRENT-FIELD RELATION FROM
BOLTZMANN EQUATION

In order to apply the variational principle, specihc
forms for the nonlocal tensor L(x,x') appearing in (1.6)
are required. In the simple case of a degenerate quasi-
free-electron gas with a constant lattice permittivity 8
is considered, the current density can be found by
solving the Boltzmann equation. Jones and Sondheimer'
found a general solution to this for an arbitrarily shaped
medium and their solution gives the following results
for a film of thickness d with a constant magnetic field

Bo parallel to its surfaces.
The distribution function f= fp+g(k, s), where fp is

the equilibrium (Fermi) distribution function. Co-
ordinates hp, kp, and g are used in k space where

hp ——(k'/2m*)k', k p is the component of k parallel to the
magnetic field, and g is the azimuthal angle about the
field direction. The cyclotron frequency eBp/m* is
denoted by oro, and a constant time of relaxation 7- is
assumed. For (2v/ppp) sin8&d, and

3(z) =
4m'A'

sin8d8 n(8,y) g(z, 8,y) dP, (3.6)

cos '(1—cops/v sin8) (P(2v
—cos '(—1+ppp(d —z)/v sin87;

Pp= —cos 'Pcosg —~p(d —z)/v sin87, if g(pr
Pp= 2pr —cos '$cosP —~p(d —z)/v sin87, if P) v (3.5)

for

(2v/&op) sin8&d and cos$) —1+ppp(d —z)/v sin8,

or for

(2v/cup) sin8) d and 0(g(cos '(1—&ops/v sin8),
2v. —cos 't —1+&up(d —z)/v sin87&g&2pr.

It can be seen from these expressions that there are two
distinct cases: (a) d) 2v/ppp and (b) d(2v/cop. In case
(a) complete electron orbits are possible in the bulk of
the medium, giving rise to a solution of the form (3.1).
Although case (b) can be treated by the same methods
used here for case (a), it is even more laborious and only
the latter case will be considered here.

For d) 2v/cop then, the current density is given by

gm2p2 1l

ppp(d —z)—1+ —)cosP) 1—
v sin8 v sine

g being given by (3.1) or (3.2) in the appropriate region
and n being a unit vector normal to v. Since 3(s)
appears only in a scalar product with St(s) which is
integrated LEq. (2.4)7, there is no need to display 9
explicitly; it can, however, be shown to satisfy condi-
tions corresponding to (1.7).

g(% z+ —sin8(cosg —cosQ') v(P')dP', (3.1)
Mo

otherwise,

4

g(z y) = ev(p' —p)

070 yp

)&@ s+ —sin8(cosp —cosp') v(g') dP', (3.2)

for

or for

@p= cos (cosg+tups/v sin8),

(2v/a&p) sin@(d and cosg(1 —pppz/v sin8,

(2v/cop) sin8&d

(3 4)

where gp is the greatest value of P((p) satisfying

z+ (v/~p) sin8(cosg —cosf) =z, (3.3)

with s,=0 or d. In these expressions v is the electron
velocity on the Fermi surface which is given by k'= ko',.

kg = kp cos8; p = (1+&or)/(ppps) ' in deriving (3.2) diffuse
surface scattering has been assumed. Equation (3.3)
gives

4. EVALUATION OF VARIATION INTEGRAL WITH
EXPONENTIALLY VARYING FIELD

Before proceeding to evaluate the variational integral
or a specific form of trial 6eld, it may be noted that, if
the z axis is a twofold axis of symmetry (a condition
certainly satisfied for quasifree electrons), the varia-
tional integral can be simplihed for the case where Bo is
parallel to the surfaces of the slab. In this case

h t=B (n=x,y), B,t= —h„
and consequently St ~~=8.g —h, g, . This is valid for
arbitrary angles of incidence, and allows 0 to be varied
by varying @.The fact that variations in St and @ are
no longer independent does not affect the validity of
(2.2) as may easily be seen from (1.9).

Considering, then, the case in which Bo is parallel to
the surfaces of the slab,

((&.')+(h.')' —2~(C.@.'+V.h.')~.
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For simplicity, only the case of normal incidence will
be considered here, and then the x and y axes will be
principal axes for the generalized admittance tensors
introduced in Sec. 2, and the two cases, where the
electric field is parallel to Bo and where it is perpen-
dicular to Bo, can be considered separately. These two
cases will be referred to as longitudinal and transverse,
respectively, and subscripts I. and T will be used to
distinguish quantities where necessary.

The variational method consists of taking a trial
function for $(s) which is linear in h(0) and h(d), and
involves a number of parameters, say, X&, . . ., X&. On
substitution into (4.1), 8 becomes quadratic in h(0) and
h(d), and depends on lii, . . . , Xz. Equation (2.2) now
gives the best values of Xl, . . . , X~ as the solutions to

h (s) =ne "+pe '&" 'i (4.3)

where the boundary condition gives, in a self-explana-
tory notation,

80—e- "Bg
]

20'8

Bd—Spe
—"

—20'd
(4.4)

For the transverse case, h„(s) is represented in the form
found'in (4.3) and the Hall field h, (s) by

here also. However, the results thus obtained in this
section and Sec. 5 suggest that these trial functions may
not be good enough when the film thickness is of the
same order as the cyclotron diameter. This will be
discussed further in Sec. 5.

For the longitudinal case the trial function is

=0(i=1,. . . ,1V) . (4.2)
h.(s) = (xihp+Xphj)e "+(Xphp+X4ho)e '" '&. (4.5)

These values are then replaced in (4.1) and approxima-
tions for X,X',Y,Y' obtained by comparing co-
eKcients between the resulting expression and (2.10).
The classical (constant local conductivity) theory has
exact solutions in which the fields vary exponentially
with s. Jones and Sondheimer4 found that an exponential
trial function was adequate for the semi-infinite case,
and it seems reasonable to use similar trial functions

In these expressions 0 and xl, . . . , x4 are to be varied.
For the longitudinal case immediately, and for the
transverse case on eliminating Xl, . . . , X4 and using
(4.2) and (4.1), gives

la(n2+p2)(1 e
—2ed) 2npapde ltd-
+c[(n'+P')A(o)+2nPB(o)], (4.6)

where c=1Ve'pp/m and

A (o)=G(o)+e ""G(—o), B (o) =e ~"[H(a)+H( —o)], (4 7)

A (a)=L(a)+ e "~L(—o) '{[1V(a)+—e—""N( o)]' e"—"[R(o—)+R( a))')—
X {[1V(a)+e-"'1V(—a))[(3f(o)+e-""3I(—o ))'+e-"'(Q(a)+ Q( —o ))']

—2e ""[M(a)+e "oM(—o)][Q(o)+Q(—o)][R(o)+R(—a)]),
B (o)=e '"P'(a)+e ""I'(—o)]—-{e—"'[R(o)+R(—o)]'—[$(a)+e ""1V(—a)]') ' (4.8)

X{e ~"[R(a)4-R( a)][(3—f(a)+e & 3E( a)) +—e &"( Q( a)+ Q(
—a)) ]

"Pf(o)+e 'I"3E(—a)][Q(o)+Q(—o)][1V(a)+e ~"1V(—o)])
In (4.7) and (4.8) G, H, I., M, 1V, I', Q, and R are given by

L(o)

M(a)

1V(a).

zoo 3

04 0

d8 cos'8 sin8 dP

(v/cop) sin8(l —cos$)

cos (cosP+cepz/ v sin8)

d4' exp[7(4' —4)]

Xexp —o—sin8(cosg —cosQ')
cos$ cosQ'

.—sing sing'.

qh+2v'

+
sin(p' —p) 2o.

&v(@'—e)
dpi

$21l 7

Xexp —o.—sin8(2 —cosP —cosP')
cosQ cosQ'

sin

.—sing sing'. .

M 1 1
(4.9)

co„220. 0
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H(a)

Q(a)

.R(o).

ZM 3
d8 cos 28sine

(v/oi0) sin0(1—cos$)

cos (cosg+~pz/ v sin8)

'V cosp cosp ~+o~

)&exp'(g' —P)] exp —a—sino(cosg —cosP') +
COO sin(@' —P)

.—sing sing'.

fd a 'e"~
dg'~ ———sine -—

(2 aio go~& —1

Xexp —a—sin8(cosg —cosP')

where n„ is the plasma frequency given by ai„'= 2Vt, '/me.

cosQ cosP'

sin(P' —g)

.—sing sing'.

GO

(4.10)
Go~ 2 0

5. EVALUATION OF GENERALIZED
ADMITTANCES AT OPTICAL

FREQUENCIES

At sufIiciently high frequencies the solution for 0-

obtained by making (4.6) stationary is such that the
exponentials in (4.9) and (4.10) can be expanded in
powers of a (o/aio); typically, this requires frequencies in
the infrared or higher. In carrying out such an expansion
there are two cases to be distinguished —(a) d))ro, (b)
d ro, where ro o/&uo. In the——first case the exponentials
e " are not expanded, while in case (b) a consistent
treatment requires them to be expanded also. For case
(a) the absorption is much the same as that for the
semi-infinite case considered by Jones and Sond-
heimer4 '~ but slightly modified by factors arising from
terms involving e "; in particular, the zeroth-order

approximation for cr is just the classical value in both
cases. For case (b), however, the lowest-order terms in
the expansion of 8 are independent of 0- and the next-
higher-order terms give rise to an approximation for 0-

which is not independent of bo and Bq. This latter effect
is presumably due to the inadequacy of the exponential
(4.3) and (4.5) and suggests that some improvement of
the results obtained here could be obtained by use of an
improved trial function. Nevertheless, as the results
shown here are derived from. the zeroth-order term and
so do not involve 0-, it is reasonable to suppose that even
if their exact form is incorrect their order of magnitude
is probably right, and they are used to illustrate the
method which, clearly, can be equally well applied to
improved results.

For the case d))ro, it may first be noted that if G(a)
is expanded in the form

G(a) =go/2a+glpo+ g2(Tro '+ ' ' ',
and H(a)in the form.

(5.1)

then
H(a) =ho+bio ro+ho(o. ro) '+

ho= odgo+gii'o,

(5.2)

(5.3)

0 = Cgo. (5.5)

On evaluating go, lo,neo, n, o, Eq. (5.5) is found to be just
the classical result,

~ ~ P, O iCOT CO

2

m ]. i~T

for the longitudinal case, and

iVe2p, p i COT

(5.6)

with similar relations between corresponding terms for
I', I.; Q, 3/I; 8, E. Expanding the terms in the square
bracket in (4.6) in powers of o.ro, and treating a.d as of
order (o.ro)o, keeping terms up to order (o.ro)' gives

(n'+ n') A (a)+ 2nPB (a.)
,'cr(n'+P-') (1 e"")—2nPIT'd—e '

+aL(n'+P')(go/2n)(1 e"")+2nP—&g« '"
+(n'+P')giro(1+e '~")+2nP 2giroe "j. (5.4)

In the transverse case go and g& are replaced by
lo —

~anno /no and /i 2wi/(neo/no)+ ini(neo/no)', respec-
tively. Differentiating (5.4) gives, in the lowest order,

6 M. C. Jones and E. H. Sondheimer, Phys. Rev. Letters 14,
643 (1965).

'M. C. Jones and E. H. Sondheimer, in Proceedings of the
International Colloquium on Optical Properties and Electronic
Structure of Jr/Ietals and A lloys, Paris, 1965 (North-Holland
Publishing Co., Amsterdam, 1966).

m —1+zoiT 1+'r

+
~~ ~

ZEST P ZOOT P M

&+~ &+y' &+~ &yp' ')- (5.7)
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X=X'= 2(—re '"j(1 e—' ") (5.8)

I'= P=o(1+e "")/(1—e '")+cg,ro, (5.9)

for the transverse case. Resubstituting into (5.4) from
(5.5) gives additional nonclassical terms arising from
surface collisions. In order to calculate the effect of these
on the reQection and transmission of the slab, the
components of the (diagonal) generalized admittances
are found by comparing coefficients in (5.4) and (2.10).
Thus,

where X, Y are either X„,Y, or X», Y», and g~ is
taken accordingly. In the limit d —+ ~ Eqs. (5.8), and

(2.23) just give the result of Jones and Sondheimer. s

Further discussion of the effects of the additional non-
classical term in (5.9) will be left until Sec. 6.

In the case d rp, it is no longer possible to treat 0-d

as of order (oro)o, and so terms involving e " in (5.4)
must also be expanded as power series. Equation (4.6)
now gives

1 (o.d)'
(s '+su') 1+ + ~+2s Ba( —1+

45
(od) + +& (ho +he ) —god+gi's

360 3

ro rp fo 2 1 2 ro' ro' rp4 ro' ro'
+g —+gs——Iss—+ ——god+ —

gizmo+
—

gs
—+4 +gs—+gs——hs—(od) +

d d' d' 45 3 3 d' d' d' d4 d'

1 rp' rq' rP f' 7—1 ro' 1 ros 1 ro'
+2@~s —god —gs——

gs
—+hs—+ I god — gs—+ gs———4—

6 d ds ds (180 6 d 6 d 6 d'

&o' rg' rg')
+g4—+gs——h4—~(~d)'+

d' d' ds)
(5.10)

where again, as in (5.4), this expression is valid for the
transverse case as well as the longitudinal, provided
that gp and g&, etc., are suitably redefined. Differentiat-
ing (5.10) with respect to o. and setting the resulting
expression equal to zero gives o=but this is found to
depend on Bp and E~. This indicates that the exponential
form for the fields is inadequate when d rp, but,
nevertheless, because the leading terms are inde-
pendent of o, Eq. (5.10) can be used to give approxima-
tions for X and Y which go beyond the classical results.
To fully assess the reliability of these requires finding

a better trial function for the 6eld, but this is not
attempted here. The functions gp and g~, etc. , appearing
in (5.10), are of considerable length and will not be
displayed here explicitly; they can be obtained from
(4.9) and (4.10).

6. RESULTS

To illustrate the eGect of size and surfaces the trans-
mittivity (tT('), reflectivity ((E('), and absorptivity
(1—

[ E [
'—

(
T j

') have been computed for a model of a
degenerate semiconductor. This has been chosen so that
it is possible to satisfy cop= co„at values of the magnetic

.8

1.C

.9

.8

nr &"&'

.7

.e

p.4

.3

.2

0.5
V

«4

.3

3 Uu. .., .,

- log d

FIG. 1. The variation of classical longitudinal transmittivity
with 61m thickness d (measured in meters). In this 6gure and
Figs. 2 and 3 co = I.S~„and the other parameters have the values
given in the text.

FIG. 2. The variation of classical longitudinal reRectivity
with Glm thickness d.
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Fxo. 3. The variation of classical longitudinal absorptivity
with film thickness d. O.S I'0 I.5

field which are attainable in practice. In addition to the
quantities mentioned above, the Voigt angl" the angle
between the incident direction of polarization and the
major axis of the elliptically polarized transmitted
wave —has been computed.

In the model used, X= 10'4' ', m"=O. in', and
h= 16hp. Since rp=l/(dpT, where 1 is the mean free path,
the exact classical results are obtained from (5.8) and
(5.9) by putting i=0 In orde.r to check the validity of
the expansion used in (5.10), values for /=0 are com-

pared with the corresponding exact classical values.

8

70

Fro 5. T.he classical (a), approximate classical (b), and non-
classical (c) absorptivity and transmittivity in both the longi-
tudinal (solid) and transverse (dashed) directions plotted against
field for &o/ca~=1, d=10 ' m.

The figures show that there are pronounced size
effects even in the classical case (Figs; 1—3) and that
the surface effects can produce changes of the order of
10% or more (Figs. 5 and 6). The effects of a magnetic
field are also considerable and, as Fig. 4 indicates, quite
complicated behavior can result from varying, say, both
frequency and film thickness even in the classical case.
Figures 5—7 indicate that, apart from fields close to the
bulk resonance at happ/&p=1, the expansion in (5.10) is
valid, though for co((~„"close to" covers a considerably
wider range of fields than for larger values of co. An exact
physical description of the processes which give rise to

6CP

40

200.

o
~&'a%~&%~~

30 60 3.CP 6CP

I.O
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t Jl \ J~~~e ~

J
\ /
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I fl II I
II I I II

,'l a
)\
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FIG. 4. The classical Voigt rotation. On the left of the figure 6tlo
is fixed (=0.1 co„) and on the right is fixed (=co~). The broken
curves are for d =10 ' m the solid ones for d =10 ' m. In curves
(a) ~=co„and in curves (b) co=0.2 co„; in curves (c) ppp=0. 3 py&,
and in curve (d) &up ——p„.

0 0.5

t ~ames
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FIG. 6. The same curves as Fig. 6 for the absorptivity and
refiectivity for pp/cu„=0. 1, d = 10 ' m.
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The reQectivity and absorptivity do not—except in a
manner to be expected —diBer appreciably qualitatively
from the results of Jones and Sondheimer, 4 but as they
considered the semi-inGnite case they were unable to
consider the transmissive Voigt effect. As remarked
above, in the absence of an improved solution for the
Geld, the results probably only indicate the order of
magnitude of the effects and are not to be taken as
exact. The formalism introduced in Sec. 2, however, can
be useful even in the classical theory. Donovan and
Medcalf' have considered size effects in the classical
case, as have Ramey et al." and others, but such
treatments are not always easy to compare. Because the
results of Sec. 2 can be easily extended to a series of
parallel slabs by using the relations

Yt~s ——Yt—Xt(Yt'+ Ys) 'Xt',
X,~s

— X,(Y,'+ Y,)- Xs,
Yt+s'= Ys' —Xs'(Yt'+ Ys)—'Xs,
Xt~,' ———Xs'(Yt'+ Ys) 'Xt',

Pro. 7. Variation of Voigt rotation with field for co/ou„=1,
d=10 ' tn (upper), and ~/ca~=0. 1 (lower). The labeling oi the
curves corresponds to that of Figs. 5 and 6.

in a self-explanatory notation, the results obtained here
can be extended to an arbitrary arrangement of such
slabs. Further effort will be directed towards the evalua-
tion of the generalized admittances for other systems,
for example, magnetic materials, and to more exact
treatment of the surface terms.

the departures from classical behavior, because of the
complicated expressions involved, offers some difficulty.
A simple method of deriving the results of Jones and
Sondheimer' has been given by D'Haennens and Carter'
but this method cannot be used to give the results ob-
tained in Sec. 5, although it throws some light on the
processes involved.

' J. P. D'Haennens and D. L. Carter, Phys. Rev. 140, A1992
(1965).
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