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For S=SR„=50004 and the same values of D and
M„ it can be shown that AH~4m M,e2 for a small range
of e around e—15.The mode e scatters only into modes
nearby in k space in this case, and the factor e' k '
is the usual density-of-states factor.

In order to determine if the present model is valid,
it would be necessary to inspect the film to determine
the size 2R„of the scattering centers and the packing
factor f In .the absence of this information, it can be
stated only that the results aGord a possible explana-
tion of several experimental results, For example,
Phillips and Rosenberg" and Wigen" have reported

"T. G. Phillips and H. M. Rosenberg, Phys. Letters 8, 298
(1964)."P.E. Wigen, Phys. Rev. 133, A1557 (1964).

AH e' for modes with 11~m~21 in a Co film and for
4~e~9 in a permalloy 61m, respectively. Two of

the cases above give AH e' with the correct order of

magnitude (DH 100 Oe for the large-zz modes). Weber,
Tannenwald, and Bajorek" have observed linewidths
independent of rz for large values of zt (9~zz~rt
where rt, ranged from 15 to 31). For rt= 9, the value
of Dk„,' is 1600 Oe, which is considerably smaller
than 2m', =5500 Oe. Although the present results
predict that AH is independent of m for large e, they
cannot explain the fact that AH is independent of e
for the smaller values of e.

R. Webber, P. K. Tannenwald, and C. Bajorek (un-
published).
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A theory of surface-spin pinning and its eBects on the ferromagnetic-resonance mode intensities is pre-
sented. The pinning by a surface inhomogeneity (e.g. , a demagnetization field from surface imperfections
or an inhomogeneous saturation magnetization) of thickness ~ is considered. Roughly speaking, the modes
are nearly unpinned for a thin-surface inhomogeneity (es«A/ir, where it is the exchange constant in the
exchange field AVsM), while the low-order modes are pinned by a thick-surface inhomogeneity (e «A/z. riot
satisfied). The theory indicates that the low-order modes should be pinned unless great care is exercied in
the film preparation. In 80% Ni —20% Fe permalloy, (A/v)'" —90'; thus, the surface region would have
to be only a few lattice constants thick in order for there to be no pinning. These results are obtained by
considering the equation of motion of the magnetization in the surface region as well as the bulk region.
The intensities and frequencies of magnetostatic modes (negligible exchange energy) are relatively inde-
pendent of surface-spin pinning, in contrast to the result for exchange modes (negligible microwave de-
magnetization energy) that pinning the surface spins gives rise to large intensities of even modes.

I. INTRODUCTION

INCE Kittel's suggestion' in 1958 that the exchange

~

~

~

~

~

~ ~

~

integral in ferromagnetic materials could be ob-
tained by ferromagnetic-resonance measurements in
thin 61ms, interest in this 6eld has increased steadily. ' 5

* Present address: The RAND Corp. , Santa Monica, Calif.
' C. Kittel, Phys. Rev. 110, 1295 (1958);C. F. Kooi, Phys. Rev.

Letters 20, 450 (1968); G. I. Lykken, ibid. 19, 1431 (1967);T. G.
Phillips, Proc. Roy. Soc. (London), A292, 224 (1966); R. F. Soo-
hoo, Jtt/Iagnetic Thin Films (Harper and Row, New York, 1965);
R. Weber and P. E. Tannenwald, Phys. Rev. 140, A498 (1965);
P. Pincus, ibid. 118, 658 (1960); M. H. Seavey, Jr., and P. E.
Tannenwald, Phys. Rev. Letters, 1, 168 (1958); H. S. Jarrett and
R. K. Waring, Phys. Rev. 111, 1223 (1958); Z. Frait and
M. Ondris, Czech. J. Phys. Bll, 463 (1961); L. Neel, J. Phys.
Radium 15, 15 (1954); M. Nisenoff and R. W. Terhune, J. Appl.
Phys. 36, 732 (1965).

' G. T. Rado and J. R. Weertman, J. Phys. Chem. Solids 11,
315 (1959).' A. M. Portis, Appl. Phys. Letters 2, 69 (1963).

4 C. F. Kooi, P. E. Wigen, M. R. Shanabarger, and J. V. Kerri-
gan, J. Appl. Phys. 35, 791 (1964); P. E. Wigen, C. F. Kooi, and
M. R. Shanabarger, ibid 35, 3302 (1964);. E. Hirota, J. Phys.
Soc. Japan 19, 1 (1964).

Interpretation of experimental results has been obscured

by a lack of understanding of the boundary conditions'
at the 61m surfaces. The theories of Wigen, Kooi, and
co-workers' (saturation magnetization M, of surface
layer different from that of the bulk} and Portis'
(parabolic M,) explain the positions and critical-angle
depinning, but not the intensities, of exchange modes. "
Rado and Weertman' have shown that in the absence
of a specific mechanism to pin' the surface spins, the
exchange interaction makes the normal derivative of
the magnetization zero for the long-wavelength modes.
Thus, the intensities of all long-wavelength modes
except the main-branch modes' are zero in this case.

' P. E. Wigen, C. F. Kooi, M. R. Shanabarger, and T. D. Ross-
ing, Phys. Rev. Letters 9, 206 (1962).

' The surface spins are said to be pinned (or unpinned) if the
microwave magnetization m is zero [or dm/ds' =Oj at the surface.
See the discussion of (1.4) in the text.

6' Exchange modes have negligible microwave demagnetization
energy, and magnetostatic modes have negligible exchange energy.
The main-branch modes have the smallest value of k, , where z'

is the film normal.
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Portis' considered the case of f(s') = (2s'/5)' and per-
pendicular resonance. ' His theory applies to the fre-
quencies and intensities of the low-order modes (with
exchange energy &2m. A

~ y~ AM), which are said to be
"in the Portis well. "We shall restrict our attention to
the modes out of the Portis well (exchange energy)2~6

~ y ~

AM).
The saturation magnetization and internal field H;

may have the same spatial variation across the thickness
of the sample; however, this is not the case, in general.
For example, the demagnetization field from a rough
sample surface can cause M, and H, to have quite
different spatial dependences. ' In the bulk region,

H;= H, p+2 H,g(s') .

Possible sources of the inhomogeneities in M, and H; are
surface imperfections, ' a fractional density of oxide

We make the linearization approximation that the s component
M, of M is approximately equal to the saturation magnetization.
In the present paper, the saturation magnetization is written as 3/I, .' Perpendicular (or parallel) resonance denotes that the applied
field is perpendicular (or parallel) to the film surface.

'M. Sparks, Part IV of the present series of papers (unpub-
lished),

A theory of surface-spin pinning' is developed to ex-
plain the mode intensities. The theory, which applies to
exchange and magnetostatic modes, both bulk and
surface types, is based on a physical model which is
essentially a composite of the Wigen-Kooi and Portis'
models. The magnetization can be written asI=i3II,+m,
where the transverse microwave magnetization m is
orthogonal to the unit vector z. The saturation mag-
netization7 M, is assumed to vary across the thickness
of the film as illustrated in Fig. 1. Note that the s' axis
is perpendicular to the plane of the film, while the
equilibrium position of M is along 9.

In the surface region of thickness e, which is assumed
to be much smaller than the film thickness 5, M, drops
oR from its bulk value to zero, and, in the bulk region,
M, is a function of 8':

which increases as the surface is approached, ' inhomo-
geneous local strains, ' or perhaps other sources. Note
that a constant stress at the film-substrate interface
gives an extremely small gradation in the strain across
the thickness of a thin film. "

By considering the equations of motion of the micro-
wave magnetization m in the surface region as well as in
the bulk region, the following results are obtained:
Roughly speaking the exchange interaction tries to
make dm/ds'= 0, while a surface layer of different M, or
H; tries to make m=0. If e= AM = 0, the surface spins
are unpinned for the long-wavelength modes. This
result, ' which is derived from the equations of motion
in the Appendix, also can be obtained. by considering
the torques on the spins in the neighborhood of the
sharp surface. A spin at the surface and one directly in
from the surface must have the same value of m, since
all spins must precess at the same frequency in a normal
mode and a nonzero slope of m would give an extra
torque on the surface spin because of the missing
neighbors. The short-wavelength modes are unpinned
for some crystals and surfaces, but not for others.
Changing an exchange integral or anisotropy energy at
the surface can give modes which are not unpinned.

For AM = 0 and a& 0, it will be shown that the surface
spins will remain unpinned for e'«e„'. The value of the
critical thickness e„ is typically of the order of (4/m)'~'
for perpendicular resonance, where A. is the exchange
constant [see Eq. (2.1)j. For 80% Ni—20% Fe perm-
alloy, QA= 160 A, and for yttrium iron garnet (YIG),
g~= S68 A.

If e'«e„' is not satisfied, the surface exchange cannot
hold dm/ds'= 0 at the surface. The low-order modes are
then pinned since the spins in the surface region are
"off resonance" when the spins in the bulk region are
"on resonance" and the surface spins are exchange and
dipole coupled to the bulk spins. However, the higher-
order modes are only partially pinned, as will be shown.
In order to satisfy e'«e„' with e„=(A/vr) '~'—90 A, the
surface region would have to be only a few lattice con-
stants thick in permalloy films. Since extreme care
would be required to fabricate such films, it is expected
"B.J. Aleck, J. Appl. Mechanics 16, 118 (1949).
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that there will be pinning in these films unless great
care is exercised in the film preparation.

In the past, the mode intensities have been related to
a fixed pinning condition at the film surface, such as'

dm
am+9 =0.

4z
(1.4)

"M. Sparks, second preceding paper, Phys. Rev. B 1, 3831
(1970)."H. Benson and D. L. Mills, Phys. Rev. 188, 849 (1969).

"V.V. Gann, Soviet Phys. —Solid State 8, 2537 (1967).

This concept of pinning is not valid, strictly speaking,
for several reasons. "First, the true boundary conditions
are those which the field must satisfy at infinity; certain
continuity conditions must be satisfied at the sample
surfaces. Here, the condition (1.4) will be called a
pinning condition, to distinguish it from the usual
boundary conditions. Second, the pinning condition is a
dynamic one, which varies with mode number, fre-
quency, etc. , as discussed below, not a fixed one such as
(1.4). Third, the surface of the sample cannot be con-
sidered as a mathematical plane, but must be considered
as a region of finite thickness, in general, and the
intensities depend upon the value of m in the surface
region as well as in the bulk region. Fourth, even if the
pinning conditions (1.4) were known for a given case,
the intensity of the mode could not be determined unless
m were a single cosine function, which is not true in
general for two reasons: When H; is not constant, m
will not be a cosine function. Even when H; is constant,
a single cosine function is not sufficient to describe m
properly when both exchange and demagnetization
energies are included. Benson and Mills" have shown
that a rounding of m near the surface to make the
normal derivative zero is important. It is easy to show
that this rounding can be accomplished by adding a
rapidly decaying exponential function to m (as well as
by the "1—x"'-type rounding used by Benson and
Mills), thus, giving a two-wave-vector expression for m.
Gann" has shown that three wave vectors are required
in the long-wavelength limit, in general, when both ex-
change and demagnetization are included.

As discussed in Sec. 9 of Paper I in the present series, "
an important consequence of including the exchange
interaction in the calculation of or and m for magneto-
static modes is that the frequencies and intensities of
magnetostatic modes are relatively insensitive to the
amount of explicit surface-spin pinning. The reason is
as follows: Typically one of the three waves of Gann"
is negligible, and one is approximately the same as the
wave for a pure magnetostatic mode (A=O and no
explicit pinning mecha, nism). The third wave is either
rapidly oscillating or rapidly decaying. Waves two and
three are added together. to satisfy the given pinning
condition. The addition of the third wave does not
change the intensity since it integrates to zero approxi-

mately, and it does not change the frequency since it
has the same frequency as the second wave.

The intensities of the exchange modes are of course
closely related to the pinning. The ieteesity calculations
in Secs. 4—8 apply to exchange modes since they are
essentially single-wave calculations. The considerations
of the pinning by the surface layer can be applied to
the magnetostatic modes with very little modification.
A surface layer is expected to pin both the exchange
and magnetostatic modes, but the pinning effects the
intensities of the exchange modes but not of the mag-
netostatic modes.

The following assumptions will be made. The effects
of eddy currents are neglected. If the skin depth is less
than the film thickness, then Eq. (4.1) for the intensities
must be modified. A shape factor describing the penetra-
tion of the microwave field could be added to (4.1).The
wave-vector components in the plane of the film are
neglected (V'm —d'm/ds"). These assumptions are
satisfied in experiments reported to date. Only the case
of M, and H; even in z is considered explicitly, although
the formalism is valid for odd 3II, and H;. Adding an
odd term in M, or H; will give nonzero intensities for
the odd modes.

In Sec. II, the equation of motion of the magnetiza-
tion is cast into a form appropriate for the present
investigation. In Sec. III, some general information
about the surface pinning is extracted from these
equations without having to consider the specific
functional forms of M, and H, in the surface region. In
Secs. IV and V, two specific models for the functional
form of M, in the surface region are considered.

Portis' has considered the eBect of the variation of
the saturation magnetization in the bulk region on the
low-order modes. In Sec. VI, the effect on the intensities
of the high-order modes (out of the Portis well) is
considered. Wigen, Kooi, and Shanabarger4 have inade
numerical calculations of intensities for the case of M,
given by (1.2) with f=(2s'/S)' and with m=0 at
s' = &2S or dm/ds' = 0 at s' = &~iS. Hirota' numerically
calculated intensities for the same M, for the case of
m=0 at z'= &-,'S.

In Sec. VII, the effect of an inhomogeneous II; (and
constant 3II,) is considered. In Sec. VIII, the pinning of
the modes in parallel resonance is considered, and in the
Appendix, the pinning conditions of m and its normal
derivative at a relatively sharp discontinuity of 3f, are
considered. Important results are denoted by boldface
parentheses around the equation number.

A preliminary report of the present investigation,
which includes a brief discussion of the agreement of the
theoretical results with published experimental data,
has been given elsewhere. "A more detailed report of
experimental results will be given in Part V" of the
present series of papers.

"M. Sparks, Phys. Rev. Letters 22, 1111 (1969).
5 P. Besser and M. Sparks, Paper V of the present series of

papers (unpublished).
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rzt." Hz+4rrM, sin. '8 —eto trt, —

JJ/I,A (2 4)

where co—=to/~y~, the double prime denotes d'/ds",
and"~

Hz= H;+A—M,". (2 3)

For simplicity, it is assumed that the direction of H,
is the same as that of H; and that H,„has been absorbed
into H;. Diagonalizing the matrix in (2.4) gives

M,Ant" +«'rtt = 0, (2.6)

FIG. 2. Schematic illustration showing fields, angles, and coord-
inate systems used in the text. The axis of quantization is s, and
the g' axis is normal to the film surface (H p =H pp).

II. EQUATIONS OF MOTION

The equation of motion of the magnetization M is

where m is the linear combination of rrt, and rrt„(e.g. ,
ett = crt,+snt„ in the circular precession approximation")
obtained in the diagonalization, and

«'= )co'+ (2rrM, sin'8 )'7't' —Hz —2irM, sin'8 (2.7)

is the positive root of the secular equation.
This result (2.6) is the equation which will be used

in the pinning study. For perpendicular resonance,
sin'8 = 0 and (2.7) reduces to

(2.8)
= —

~ y ~
M X(H;+he+A. VsM) (2.1) For parallel resonance, sin'8 =—1, and (2.6) reduces to

«t, '= Lou'+ (2irM, ) '7't' —Ht —2irM, —h M.". (2.9)
where y is the gyroznagnetic ratio, H; is the internal
(demagnetized) Geld, he is the microwave demag-
netization Geld, and A is the exchange constant. Follow-
ing Portis, ' it is assumed that A is independent of
position r. The random-phase approximation gives this
result. For the case of an inhomogeneous H; and con-
stant 3f„the results are not affected by the assumption.
For an inhomogeneous M„ the qualitative features of
the results are not effected by the assumption, but a
spatia1 variation in h. would affect the quantitative
features. The geometries of the Glm and the Gelds are
shown in Fig. 2.

The microwave demagnetization field h~ was con-
sidered in detail in Part I of the present series of
papers. "For the purpose of studying the pinning of the
exchange modes, it is sufficient to use

hg =9'4xns, sino, (2.2)

which gives the correct frequencies for exchange modes
in perpendicular and parallel resonance when M, is
constant. As illustrated in I ig. 2, 0 is the angle between
zM, and the film normal z'. The internal field H, is

H;=H» —z'4zrM, cos8 +H, , (2 3)

where H,» is the applied Geld, 9'AM, cos8 is the static
demagnetization Geld, and H, represents the effect of
anisotropy, magnetostriction, and possibly other effects.

Substituting (2.2) and (2.3) into (2.1), linearizing by
neglecting the small terms mghg and m&AV'm, re-
placing V'm by d'm/ds", using zXz'= —g sin8 and
zXm=gm, —Lrl„, and assuming e' ' time dependence

3f,m" =m3E,". (3.1)

Integrating once with nt=M, =O at z'=&-,'(5+e)
(see Fig. 1) gives

3f,m'= m3f, '.
"' In Paper I, III was defined di6erently.
"M. Sparks, Ferromagnetic Relaxation Th-eory (McGraw-Hill

Book Co., New York, 1964), Sec. 3.3, p. 69.

(3.2)

The effect of the volume microwave demagnetization
could be included formally by solving

tos= (Hz+«') (Hi+«'+2toe) (2.10)

for «'. Equation (2.10) is the well-known spin-wave
dispersion relation with H, replaced by H;+AM, "=Irz
and with Dk'—Dk '=a' This gives

«'= Lco'+coo']'"—H AM "—coe-
which reduces to (2.7) when toe= 2orM, sin'8 .

III. GENERAL CONSIDERATIONS OF
SURFACE-LAYER THICKNESS

The thickness e of the surface region is the most
important single feature in determining the pinning, as
discussed in the Introduction. The case of a surface
layer of different M, is particularly simple because
arguments which are independent of the specific form
of M, in the surface region can be given to establish
general results as follows: The thinner the boundary
region, i.e., the smaller e, the larger will be the exchange
term AM," in (2.7). For a suKciently small e, AM,"
will be larger than the sum of the other terms in (2.7),
and (2.6) reduces to
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Since the equation holds everywhere in the boundary
region including s'=+p~(5 —p) and m and m' are con-
tinuous, since 3E, and M, ' are assumed to be continuous,
(3.2) is valid at the edge of the bulk region (denoted by
8), i.e.,

me'/me Mg——'/Me, (3 3)

where M,e has been written as M~. Thus, (2.6) can be
solved in the bulk region with the boundary condition
(3.3) at the ends of the bulk region [at s'= %p(S—p)j.
Note in particular that 3II~'= 0 if M, is constant in the
bulk region, and (3.3) shows that m' = 0 at the boundary
of the bulk region, i.e., the surface spins are unpinned.

The effect of the sharp surface region is to establish
this boundary condition (3.3) for the bulk region. This
result can be obtained also quite simply by requiring
that the net additional torque on a surface spin caused
by the missing neighboring spins be equal to zero for a
perfectly sharp boundary (e =0). The equation-of-
motion method shows that the result is also valid for
e/0 as long as e is sufFiciently small for AM," to be
larger than the sum of the other terms in (2.7) and it
lifts the restriction M~' ——0.

The size of e below which the boundary condition
(3.3) can be used in perpendicular resonance can be
estimated is as follows: From (2.8) with ~—H, p+Dk P,

where Dk ' (with D =AMe) is the exchange contribution
to the frequency for modes out of the Portis well,

r.,'= Dk„'-+H; p H; AM,". — —(3.4)

The maximum value of H;—H;0 in the surface region is
=4xM~. For the first case of D& '((4+M~, the term
AM.", which is of the order of 4D/p' in the surface
region, is larger than the other terms on the right-hand
side of (3.4) when

FxG. 3. Sketches of the two sides of (4.9) illustrating the numerical
solution for the roots k„of (4.9). Here, g=—-', k„S.

to calculate the pinning for the thick-surface-layer case
and demonstrate the transition to the thin-surface-layer
case, we consider the simple surface-layer model of a
step in M, . In the bulk region %,=35~ and in the
surface region of thickness —,'e, M, =Sf', where M~ and
Ms are constants (see Fig. 1).The first-order effect that
the modes are unpinned for a thin surface layer and that
the low-order modes are pinned by a thick. surface layer
is independent of the specific model used. Another model
for 3E, will be considered in Sec. V.

The relative intensities I of the modes for constant
or are given by the expression"

"&&h./~, for Dk„'&&4~M . (3.5)

For the second case of Dk„'»4aM~, the corresponding
result is (with k„=—2~/X )

.«P,„/), forDl„»4 M. .
An expression which is valid in both limits is

(3.6)

p'&(p„, ', e„,'= (h/7r) (1+Dk„'/47rM g) '. (3.7)-
More specific information on the effect of the size of

~ on the mode intensities is given in subsequent. sections
where specific models of 3I/, and H, are considered. The
case of parallel resonance is considered in Sec. VIII.

IV. STEP-FUNCTION M, MODEL

The case of e'((e.,' satisfied will be called the thin-
smrface layer case, that of p-'((p„' not satisfied will be
called the thick surface layer case, and that o-f p'))A-/m.
will be called the very thick surface layer-case-. In ord-er

I = ds m(s)
~&+~J" -)(s+.)

)(s+~)
r ds m(s)',

~ ~(8+.)

(4.1)

where AH„ is the linewidth of the nth resonance line.
This result is valid in the circular-precession approxima-
tion. " In general,

-
the intensity depends upon the

polarization of the microwave field used to excite the
mode. For example, for a microwave field polarized
along the x axis, m in (4.1) must be replaced by m, . In
the circular-precession approximation, the ratio of m,
to m is the same for all modes; thus, (4.1) gives the
correct intensities. In perpendicular resonance in metal-
lic balms, the exchange modes have k along the s axis,
and the precession is circular. In VIG, which has a
relatively small value of 47rM &=1750 Oe (at room'
temperature), the precession is very nearly circular
except at low frequencies (below X band).
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In parallel resonance in metallic films, m, /nz can vary
substantially from mode to mode, but this effect is not
important in experiments performed to date, since only
the first few modes are usually observed, as discussed
in Sec. VIII. Thus, (4.1) is a good approximation for all

modes which mill be considered here. However, it should
be kept in mind that the ellipticity correction, which

depends on the polarization of the microwave drive
field, is required, in general. For example, surface waves
can have highly elliptical precession. It is possible that
the coupling to both surface waves and bulk waves
could give a nonsymmetrical line shape near parallel
resonance.

For the odd modes, the integral in (4.1) vanishes by
symmetry. In order to evaluate the integral for even
modes, the functional form of m in the bulk and surface
regions must be found. The solution to (2.6) in the
surface region with dm/df'=0 at |=0 Drom (3.2)j,
where f= s' —p(S—+p), is (for perpendicular resonance)

m=msp coskisf',

tan-,'k„S=A,
~—= (lkisl/k. )(Ms/Ma)' tanhp Ik„l p.

Substituting (4.9) and the identity

sin'(I = tan'(t/(1+ tan'(t)

into (4.6) gives

(4.9)

(4.10)

(Ms/Ma)'(lkis I/O„)' tanh'p
I
k, s I

p

X (4.11)
1+(Ms/Ma)'(Ikisl/k )' tanh'2 Ikis

I
p

and the logarithmic derivative of m in (4.4) evaluated
at s= —2$ is

ma'/nba k„ t——an-,'k„S. (4.8)

In (4.7), the subscript S denotes the limit f' ~ ipp and,
in (4.8), the subscript 8 denotes the limit s' —+ —-', S.
Substituting (4.7) and (4.8) into (A5) gives

4z H;a —H's D
kls +

For kis' negative, (4.2) gives

ni=ms, coshlkislt'.

In the bulk region,

2 1/2

yg = — cosk~a.
S

Substituting (4.2) and (4.4) into (4.1) gives

(4.12)tanhplkisl'=plkisl '
(4.4)

Equation (4.12) is valid if 2lkisl«1, or

(I1—k'I)"'&» (4.13)

where we have introduced the convenient dimensionless
parameters

for Ak„'/2~(1 and the step-function M„with k,s'
defined in (4.5). For positive k&s, it is easy to show that
(4.11) is valid if tanh is replaced by tan, which is not
surprising since

I
tan'ix

I

= tanh'x.
The most interesting limiting case of (4.11) is that of

(4.3) Ms ———,'Ma and

p'—= harp'/A, O':—Ak„'/2)r. (4.14)~S 2 1/2 2

Then, with Ms ——piMa, (4.11) reduces to

I = SIJk$2 ] —g2

df msp coskist +
SI,

I:/ ~ (-)jl:( )+ ( /)j ( )
Evaluating the integrals, eliininating msp sinkisl by

using (A4) at the interface t =
2 p, and using for this case in which (4.13) is satisfied. From (4.15), it

is seen that

k„'—kgg2 ——
Ma —Ms 4

s A
(4.5) I„—

(k S)'I;
(4.16)

gives

( ) ( ) sir' —'4 5 (4.4)

nis'/ms= lkisl tanh lkisl p (4.7)

for the step function M, . It is easy to show that this
result (4.6) is also valid for negative kis', i.e., for m

given by (4.4) in the surface region. The value of I...
defined in (4.1), is typically of the order of unity.

For negative kis', an alternative form of (4.6) can be
obtained as follows: The logarithmic derivative of m in

(4.3) evaluated at l' -,'p is=

for Dk„'« i'p p'47rMa, Dk„«2mMa& and p I
k&s

I
p &1, and

2$2

I„=2w2
A' (k S)'I;

(4»)

for ipp 47IMa«Dk '(27rMa plkisl p(1, Ms=-,'M,
and t.2(1. It is easy to show that the restriction on
Dk„' in (4.16) can be written as

n(n2 4 np —4= ( S/2')+ 2. (4.18)

For p = 1, (4.18) reduces to the result quoted previously"

n2 4
——(1/2+)r)(S/gA)+-', . (4.19)
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For e suKciently small, only the first mode is strongly
pinned. This value of ~ corresponds to m~ 4

—2 in
(4.18) i.e.,

Buik
Suface region region

c (Sm'I'A/5, no pinning. (4.20)

The values of k„are determined by the roots of Eq.
(4.9). These values can be obtained by sketching the
functions on the two sides of (4.9).The roots correspond
to the crossings of the two sets of curves. This is illus-
trated schematically in Fig. 3, where the crossings are
denoted by circles. The resulting values of k„are

where n=1, 2, 3 and 0(p„(1.Figure 3 gives the
value of k„ for the even modes (odd n) only. A similar
figure gives values of k„ for the odd modes.

The central result of the present section, that the
low-order modes are pinned by a thick surface layer, are
independent of exact shape of 3E„as will be illustrated
in Sec. V. For the very-thick-surface-layer case of e') 1,
I„drops below the fully-pinned value given in (4.16)
for the step-function M, model with M8 ———,'M~. This
reduction is model-dependent and does not occur for
other shapes of M„as will be seen in Sec. V.

The results for large Dk„' Darger than the value
given for (4.17)7 are model-dependent. In this case,
there are many oscillations of m within the surface
region. The result quoted previously" (I„1/k„') for
very large Dk„' were obtained by neglecting the con-
tribution to I„from the surface region. In the present
more complete treatment, there is no apparent reason
for neglecting the surface-region contribution to I„.
Even though agreement with the one existing experi-
ment can be obtained in this way, it should be em-
phasized that the model-dependent results indicate that
the shape of M, must be known before the pinning of
the higher-order modes can be determined. Several
models could be studied in detail to illuminate this
point if other experimental results appear.

All of the results of this section, such as (4.11), (4.16),
and (4.17), can be understood physically by sketching
m in the surface and bulk regions. For example, Fig. 4

l

2

FH".. 5. Quadratic 3E, in the surface region used in Sec. V as a
model of M, for which an exact solution of the equation of motion
can be obtained.

is sketched for the case in which the inequalities in
(4.18) and (4.13) are satis6ed. The condition (4.12)
means that m is rather flat in the surface region (solid
curve in Fig. 4) rather than rising sharply (dashed
curve). The inequality in (4.18) means that the log-
arithmic derivative at point B in Fig. 4 is large (heavy
curve) rather than small (light curve).

In (4.1), the integral from s = 0 to the last maximum
of nI, (at s=sLM in Fig. 4) is zero since the positive and
negative quarter cycles of cosk„s integrate to zero. Thus,
the net value of the integral

is represented by the shaded area in Fig. 4, which is
very nearly equal to the area of one-quarter of a
cycle of cosh„s (corresponding to full pinning, i.e.,
I„=8/(k 5)'j. For a very small logarithmic derivative
(light line in Fig. 4), the last maximum would be at
s'———,'5 (corresponding to an essentially unpinned
mode).

In passing, note that for small e the hyperbolic cosine
in (4.3) is approximately constant. The results (A1) and
(A4) show that tet and 3I, have the same functional form
(step functions) to the left of point B in Fig. 4, in
agreement with the general result of Sec. III that m has
the same functional form as 3f, in the surface region
for a sufficiently small e.

LM

Pro. 4. Sketches of nz in the surface region and adjoining portion
of the bulk region used in an intuitive explanation of the results.
The heavy curve is for a mode which is essentially pinned, and the
light curve is for a mode which is essentially unpinned.

V. SMOOTHLY INCREASING M, MODEL

In order to demonstrate explicitly which features of
the step-function-M, model of Sec. IV are model-
dependent, we now consider another form for 3f, in the
surface region for which (2.6) can be solved analytically.
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Consider the smoothly increasing function

3E,„,z= Mzz(f/ 22&') 2, (5 1)

which is illustrated in Fig. 5. Substituting (5.1) into the
equation of motion (2.6) and using a& II,»—47'—fa
+AMak„2 gives (for perpendicular resonance)

m"+LP' —(4l2 —1)/4/7m = 0, P'=—42r/A ) (5.2)

where
l2 l 2+—(2)2 lk 2~r2 l 2 2r~~2/A (5 3)

in the surface region. The solution to (5.2) for m in the
surface region is (with —2,Pe'= l„)

= .(~/-: ')"'J (Pr)/J (l.) (54)

where
1

— Ji„,(l„) 3-
tan-', k„s= —l —l„—— . (5.13)

—,'k„e' Jt(l„) 2

Equation (5.13) can be simplified as follows. From (5.3)
and (5.6),

(5.14)

In (5.11), the following result is needed:

l-J2z2(l-)/J2z2(l )=2l ', (5 15)

for l„&2. Substituting (5.14), (5.15), and (5.3) into
(5.13) gives

At the surface-bulk interface, 3I, is continuous, but
M, ' is discontinuous; thus, (A1) and (A2) give where

tan-,'k„s=(1/+8) (~/k) (1—k'), (5.16)

ma = mz, ma' ——mz' (4/2')m—z, (5.5)

where the subscripts 8 and I denote the limits s' ~ —~~S

and f —+ 22', respectively. For

l„'—-', k V2= (2re"/A) (1—Ak„2/42r)«9/4, (5.6)

Eq. (5.3) gives l——', . And for 2re"/A& —',, J2~2 can be
approximated by

J z (P~)=-(lPf)'"/I'-,', (5.7)

where the gamma function I' —,
' = 15(+2r)/8. Equations

(5.7) and (5.4) give

m= mao/2e')' (5.8)

I„= (26k„e'+sin22k„S)'. (5.9)
(k„S)'I;

As in Sec. IV, the factor sin2k S can be simplified as
follows: From (5.4), (5.5), and

d(pf)"'J (pi-)
Ji(pf) pJ-~i(pt )—

P 1/2

X(Pf)"'+2 — J~(Pf), (5.10)

in the surface region, and (5.5) gives ma' ——0. Thus, m

and M, have the same shape in the surface region when

(5.7) is satis6ed. This is another example of the general
result of Sec. III that m and iV, must have the same
shape in the surface region when the surface region is
sufficiently thin.

Substituting (5.8) and (4.4) into (4.1) and evaluating
the integrals gives

8 ke f (1—k)'
-+i

(k.S)'I; +8 &(1—k2)2+8(k2/~2)i
(5.18)

It is easy to show that (5.18) reduces to (4.16) and
(4.17) if e and k are replaced by ~ and k everywhere
except in the factor 8/(k„s)' in (4.16) and (4.17).Thus,
the two models of Secs. IV and V give the same results
in the thin-surface-layer case and in the thick-surface-
layer case, but not necessarily in the very-thick-surface-
layer case.

Next, consider the very-thick-surface-layer case itself.
FOr l„'=7re"/A~ 9/4—and 22k2&&1, it iS Seen frOm (5.3)
that l& (2)K2; thus, the small-argument expansion of Ji
can be used, giving

m—ma(t /-'e')'+'" (5.19)

in the surface region. Substituting (5.19) and (4.4) into
(4.1), evaluating the integrals, and" eliminating ma
by using

gives

2) '~' sin —', k„S
ma =

i

—
i

cos-', k„s=
~Si Si tan-', k„S

I =
(k„S)'I;

1k -2
n&

sin'-,'k„S +1 . (5.20)
(l+-,') tan-,'k„S

F«m (4.8), (5.5), and (5.19), it follows that

k'= (5/4)Ak 2/22r, ~2= (16/45)7re"/A (5.17)

Substituting (5.16) and (5.17) into (5.12) gives

it is easy to show that tan-', k„S= (l——',)/-,'k e'. (5.21)

1 J~yi(l ) 3
lpp

-', e' Ji(l„) 2
(5.11)

Substituting (5.11), (4.8), and (4.10) into (5.9) gives

8 1 ( tan' —'k„S
I = —k e'+i, (5.12)

(k„S)'I, 6 k1+tan22'k„S

Substituting (5.21) and (4.10) into (5.20) gives

(l—2)'I =
(k„s)'I, (2'k„e')2+(l —2)'

(—'k e')2
X +1, (5.22)

-(l+ )(l ')
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which reduces to

I„=8/(k 5)'I;, for —',k„o'«1——,'.
From oro"/A&)(oo)', l=(x./A)'~'o', and (5.23) gives

I =8/(k„S)'I. , for 7ro"/A&)(-o)'

Dk„'«4'.

can be written as

(Zp+P)m =Am, X = (oi —H, o,+ 4orMp) /AMp,
d' AM d' 4or 1

+ f+— (63)
dr 2 Mp ds2 g 2S~

(6 2)

The term 1/2S' in (P is negligible since 5'&)A. The
first-order perturbation theory result for the nth
eigenmode is

and
I„=UL8/(k„S)'I. .7, for ~."/X&&(o)'

Dk„'&4zM gg

(5.25)

It is not difFicult to show that (5.24) is approximately
valid for Dk„2~4+&~. En particular,

&sl )=&sino)+2 &sl~)«ln),
lan

where (s
~
no) = (2/5)'t' cosk„s.

The value of the coefFicient &1
~ n) is

& 1
I n) = &1 I

6'
I n)/(li o

—

lucio),

(6.4)

(6.5)

I„=
SJ,

lis+'& 2 'i'(sink„i
dl —

i cosk„f—
5 k kl-

(k„S)'I,

slnx
dx

8= p7r)'
(k„S)'

This gives the stated result that U= (-,'o-)'.

VI. PINNING OF MODES OUT OF PORTIS WELL

Now consider the pinning of the modes out of the
Portis well in perpendicular resonance by a surface
layer having M, given by (1.2) with f= (2s'/5)'. With
6M= 0 in (1.2), the even solutions to (2.6) are

where U increases from U = 1 for Dk„'«47'-M~ to
U= (floor)' for Dk„'=47rMii.

For example, for Dk„'=47rMs, (5.3) gives f= o and
l„=- -', Po'))1. Thus,

m- cos(Pt +~) (5.26)

in the surface region near the surface-bulk interface, and
it is easy to show that the term —(4/o)mr in (5.5) is
negligible. Thus, m and m' are continuous at the
interface. The wave vector in the bulk region is
k„= (4m./A)'", and the wave vector P in (5.26) in the
surface region is also equal to (4or/A) '". Thus,
m (k„f)'"Jo)o(k„f), or

m= (2/S)'i'(sink„i/k„l —cosk„f), for 0(f(o(S+o') .

The intensity is

where X„p and X~p are the unperturbed values of X for
modes n and 1, respectively. For the odd modes out of
the Portis well,

X„p—Rip—'A„p ——Dk '/AMp=k '. (6.6)

Evaluating the integral in (6.5) and using (6.6) gives

aM A (4~
&& l~) =Kz

I

——&.') cos-', a„s. (o.7)
M, (k„S)'kil.

Substituting (6.4) into (4.1) and evaluating the integrals
gives

8 1 aM) 4~
taniok„S+4 . (6 8)

(k„S)'I,. (k„s) M, 4k„o
From (4.8), (3.3), and (1.1) with f= (2s'/S)', it is easy
to show that

tan-,'k„S= (4/k S)AM/Mo.

Substituting (6.9) into (6.8) gives

aM 254
I„=8(16or)'

Mo A' (k„S)'I;

(6.9)

(6.10)

This central result shows that the intensities of the
modes out of the Portis well drop off very rapidly
(I„1/k„o) in the absence of a surface-layer mechanism.
Wigen, Kooi, and Shanabarger' also found rapidly
decreasing intensities for the modes outside the well in
their computer calculations for the case of dm/ds=0
at 5= &—',S.

m cosk s, k„= (n —1)or/5, (6 1) VII. INHOMOGENEOUS INTERNAL FIELD
where n== 1, 3, 5, . . . . With AM&0, the slope of m at
the surface is no longer zero, and the shape of m differs
from the pure cosine form of the unperturbed (B,M=0)
function in (6.1). The two effects will cause a shift in
the value of k„ from the unperturbed va, lues in (6.1) and
an admixture of other modes into a given mode.

In order to calculate the intensities, only the admix-
ture of the first mode

~
1) —+ (5) '" need be considered

since all other modes integrate to zero. With 3f, given
by (1.2) with f= (2s'/5)', the equation of motion (2.6)

Next, consider the effect of an inhomogeneous H; for
the case in which 3f, is a constant. Examples of sources
of an inhomogeneous H; are the demagnetization field
from an imperfect surface and inhomogeneous local-
strain fields. '

The calculations of Sec. IV still apply with only minor
changes: The demagnetization field near a rough sur-
face differs from that far away from the surface by

2m.Ms. o Thus, H, B H, ii 27rMs in (4.2). Th—e fact—or
(Mii —M8)/Ms in (4.6), therefore, is replaced by 1, and
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(4.5) is replaced by

k„=k. —(2 /~). (7 1)

The corresponding changes in the values of J„ in
(4.16) and (4.17) are

(7.2)I =
(k„S)'I;

for Dk„2«~e24lrMil, Dk„'(2lrMil, and ~ ~
kis

~

e (1, and

e'S'
I =8m' (7.3)

h. ' (k„S)'I;
for -', e'4lrMa((Dkn'(2lrMa, and P kia~ c Z1.

The general eRect of an inhomogeneous layer of H; is
the same as that of an inhomogeneous layer of M„ that
is, the low-order modes are pinned. Comparing (7.2)
with (4.16) shows that the H; layer pins more modes
than does an 3f, layer of equal thickness. That is, an
inhomogeneous H; layer is somewhat more eRective
than an inhomogeneous M, layer in pinning the sur-
face spins.

VIII. PARALLEL RESONANCE

The central feature of the experimental results for
parallel resonance is that only a few, typically 1, 2, or
3 modes, are excited. This result can be understood
from the step-function M, model as follows: From (2.9)
with Ma= ~3fg,

2 B.»
kiia' ——— 1+i i

—1+ . (8.1)
h. ilrMill xMgg

Since eo)B,», kI~8 is positive. Therefore, the replace-
ments tanh ~ tan,

~
kis~ ~ kll8, and. Lsee (4.5)]

3IIg Ma —MB 4~
&~8'= — — —~2k ' —0 8

M8 Ma

can be made in (4.11), which gives

8 [1—2(k '/k„s')]'

I„(k„S)'1+16(k„'/k~~s') cot'-,'kllBE

It is easy to show from (8.1) that k„a')2k ', thus,
I„(8(k S) '. In metallic films with large values of
4aM&, the circular-precession approximation" is usually
a very poor approximation in parallel resonance.

In the extreme of very large 4lrM&, (8.1) gives

2'll H~pp+2coe~g) 21l

kris'= — ~((—,
A lrMll ) h.

for 4(H pp+(o. ,)((lrMll. (8.3)
Here co, , is the exchange field. For example, co, ,= Dk„'
for M, = const. Then for g'))1 not satisfied, (8.2) gives

8 L1—2(k '/k„a')]'
I„=

(k S)2I 1+4(16)k 2/k&l84e2

The denominator in the second factor is ~ 2 for

Dk '~ (~mls'/4~)' —'~'4~Ms. (8.4)

(8.8)co H,p, +Dk„'—+2lrMs,
substituting (8.8) into (2.9) gives

k) l s'=2k „'+2lr/h. . (8.9)

Comparison of (8.9) with (4.5) shows that (4.11) is valid
if we make the replacement kiack, l8, (Mll —M8)/
Ms —& i„and tanh-+ tan. Thus, (4.6) is valid if the
factor of —,', is replaced by 64, and the modes become
unpinned at a value of Dk„', which is one-fourth as
large as the corresponding value for perpendicular
resonance.

The results of the present section can be summarized
as follows: In parallel resonance in metallic films,
typically only one or two modes are strongly excited.
At very high frequencies where the circular-precession
approximation is more nearly satisfied, more modes

may become excited. But even in the extreme limit in
which the circular-precession approximation is well
satisfied, fewer modes are pinned than in perpendicular
resonance.

APPENDIX: CONTINUITY CONDITIONS FOR m
AND ITS NORMAL DERIVATIVE AT A

RELATIVELY SHARP DISCON-
TINUITY OF Mz

By considering the torques on the spins at a sharp
interface between regions 8 and 5 having spins of

Since (Ak~~8'/2lr)'((1 from (8.3), comparing (8.4) with
the inequality in (4.16) shows that I„drops below the
fully-pinned value of 8/(k„S)' at a much smaller value
of Dk„' in parallel resonance than in perpendicular
resonance. In other words, many fewer modes are pinned
in parallel resonance than in perpendicular resonance.
Although the extreme inequality in (8.3) is not well
satisfied in general, it is clear that fewer modes are
excited in parallel resonance than in perpendicular
resonance.

This can be demonstrated explicitly for specific cases.
As an example, for 80% Ni—20% Fe permalloy,
AM~ —10 kG, and at X band co—3570 k.ae. From

H„,= H2lrM Jl)'+~')"' cu, —2lrMll— (8.5)

it follows that
H,»—1.144 Oe —(o, „ (8.6)

and, from (8.1), the value of k»8' is

k„, = (0.286)2~/~. (8 7)

For a relatively small value of Dk„2= 375 Oe Larbi-
trarily chosen to make the numerator of the second
factor in (8.2) equal to (i~)'], (8.3) gives

I„=(0.05)8/(k„S) 'I; .
Thus, even the modes with the small value of Dk„'= 375
Oe are essentially unpinned. Further reasons for the
smaller pinning of exchange modes in parallel resonance
than in perpendicular resonance have been discussed
elsewhere. '4

Finally, in the circular-precession approximation in
which
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Pre. 6. Sketch of 3f, and its first two derivatives showing the b functions used in studying the continuity of m

and m' at a discontinuity of N, and/or 3f,'. '
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M ggms=3f smyth, (A1)

Mg'mph' —Ms'ms =3f/mal' —Mams'. (A2)

These results (A1) and (A2) can be obtained from the
macroscopic equations of motion as follows: The deriva-
tive of a discontinuous function contains a 8 function,
and the second derivative of a function whose slope is
discontinuous contains a 6 function. The continuity
conditions of a function can be studied by considering
the 6 functions and the derivatives of 6 functions in the
differential equation for the function. The terms in (2.6)
which contain derivatives are

M,m" = msM, "+other terms. (A3)

Consider the case of 3f, and 3f,' discontinuous at some

~7 M. &parks (unpublished).

different lengths (corresponding to different values cVB
and 3IIs of M,), it is simple to show'i in the long-
wavelength limit ku((1, where u is the lattice spacing,
that

~s
m~ = ms

Mg
(A4)

(AS)

value 2'0 of s'. In order to simplify the mathematics, we
let M, be continuous, but change rapidly and linearly
in s', as illustrated in Fig. 6(a). The function 3I."
contains two 6 functions, as illustrated schemetically in
the figure. Integrating (A3) from sp —p to sp, i.e., inte-
grating across the first 5 function in Fig. 6(c), and using
the fact that m" contains a 8 function also gives

~st( B s)p s 1 sH~B iM s)+ il-'Is 3 '

The leading terms as y ~ 0 give (A1).
Integrating (A3) from sp —p to sp+ii i.e., integrating

across both 8 functions, gives (A2). Note that all terms
containing the factor 1/p cancelled identically

Two results which are needed in Sec. IV are obtained
from (A1) and (A2) with Ms'=Mii'=0:


