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Ferromagnetic Resonance in Thin Films. I. Theory of Normal-Mode Frequencies
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A theory is developed for the frequencies of the general ferromagnetic normal modes of a sample of arbi-
trary shape and size with both exchange and demagnetization energies included. The frequencies of the
modes of rectangular and circular films are calculated by casting the linearized equation of motion of the
magnetization into the form of an eigenvalue equation, which is solved by a variational method. The results
explain the experiments of Dillon, Besser, Sparks et a/. , Freedman and Brundle, and Voltmer in detail
qualitatively and typically to within 5—10% quantitatively for the mode spacings, with possible excep-
tions for the first few low-order modes in some samples, for which several contributions to the line spacings
are diQicult to estimate accurately. Pinning the surface spins has little ef'feet on the frequencies and in-
tensities of magnetostatic modes (with negligible exchange energy). The theory has implications concerning
the main-resonance position in finite films, and together with experiments, further verifies Portis s mode-
spacing theory. A simple physical explanation of the results is given, and the relation of the results for
for finite films to those for infinite films is given.

I. INTRODUCTION
' 'N this first paper of a series on ferromagnetic reso-
~ - nance in thin films and disks, a theory is developed
for the frequencies of the ferromagnetic normal modes
of these systems. In Paper II, the linewidths of the
modes will be calculated, and in Paper III, a theory of
pinning' will be presented. The effect of an inhomoge-
neous internal field B;and saturation magnetization 3f,
on the frequencies of high-order modes and a source of
the inhomogeneous II; and M, will be considered in
Paper IV. Experimental results will be presented and
discussed in Paper V by P. Besser and M. Sparks.

The normal modes of an infinite ferromagnetic system
are ordinary spin waves having magnetization

M=M, s+m, (&)

where 9 is a unit vector along the s axis and the small
transverse microwave component m is a plane wave:
m~exp(ik r). For a finite sample, spin waves with
wavelengths X= 2sr/k short with respect to the sample
dimensions can be used as approximate normal modes,
but the approximation is poor when 'A is not small with
respect to the sample dimensions. The function m(r)
is then determined by the size and shape of the sample.
When the exchange energy is negligible, as it is for slow
variations of rn as a function of r, these modes are
called magnetostati c modes. When the microwave
demagnetization energy is negligible, the modes will
be called exchange modes. In both cases it is assumed
that the sample is suKciently small that electromagnetic
propagation is negligible.

Very briefiy, the state of the theoretical and experi-
mental results for magnetostatic and exchange modes
prior to the present series of papers and that of Sparks
et a/. ' was the following: Only exchange modes had been
observed in metallic films, ' the linewidths being too

* Present address: The RAND Corp. , Santa Monica, Calif.
See the discussion of pinning in Sec. 2.
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large for the magnetostatic modes to be resolved. The
frequencies of the exchange modes were fairly well
understood in terms of the theories of Kittel, ' Wigen,
Kooi, and co-workers, ' and Portis, ' but the intensities
were not understood.

Only magnetostatic modes had been observed in thin
disks of ferromagnetic insulators since the disks were
far too thick for the exchange modes to be resolved.
Dillon' had explained his observation of magnetostatic
modes in thin disks of yttrium iron garnet (YIG) and
manganese ferrite in terms of Walker's theory'for the
modes in spheroids. The major difficulty with the inter-
pretation was that the theoretical values of the mode
intensities were zero except for the Kittel uniform-
precession mode, whereas many strongly excited modes
were observed. As a result of the recent success of Mee
and co-workerss in growing single-crystal YIG films

having linewidths AII—j, Oe, the magnetostatic, ex-

change, and mixed modes can be observed in a single

thin film. No theories existed for the frequencies or

intensities of these modes in finite films.

White and Solt, ' Dillon, ' and others had studied the
magnetostatic modes experimentally. Walker 7 cal-
culated the frequencies of the magnetostatic modes in a
spheroid, and Fletcher and Kittel, "Damon and Esh-
bach, "and Akhiezer and co-workers" extended the cal-

20, 450 (1968). These two references should lead the reader into
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culations to an infinite circular cylinder, an infinite film
(infinite in two directions, but having a finite thickness)
in parallel resonance, " and an infinite film in perpen-
dicular resonance, respectively. Gann" and others" had
included exchange and demagnetization energies in
studies of the long-wavelength modes in infinite films.
Many investigators had studied exchange modes in
metallic films. '

In the present paper a theory is developed for the
frequencies of the general ferromagnetic normal modes
of a sample of arbitrary size and shape with both
demagnetization and exchange energies included. De-
tailed calculations are given for the frequencies of the
modes of rectangular and circular films, both thin and
thick. For the case of no explicit pinning of the spins on
the surface of a rectangular film, the present results are
simply related to those of an infinite film in perpen-
dicular and in parallel resonance (where the infinite-
film results are known). The infinite-film results there-
fore can be used to visualize the results for finite films

(Secs. 5 and 9). A simple physical model which explains
the result intuitively in given in Sec. 7.

The theoretical results for the frequencies explain
qualitatively the detailed experimental observations
by Besser, "Dillon, Sparks et at. ,

' Brundle and Freed-
man, " and Voltmer" of the ferromagnetic-resonance
frequencies in thin and thick films and disks. Quantita-
tively, the calculated spacings between modes agree
with the small amount of existing experimental data
for thick films (thickness S)3ii) within 5—10%,with
possible exceptions for the first few spacing of the low-
order modes, as discussed in Sec. 4. The qualitative
features of the results for thin films (5(3 p) are ex-
plained by the theory, but the quantitative agreement
for thin films of YIG is not expected to be good be-
cause the variation of H; across the thickness of the
film may be rather large, and the functional form of
H; is unknown.

According to Portis's theory of the low-order ex-
change modes, m is large only in the interior of the film,
rather than extending across the full thickness. This was
verified by measurements' of the magnetostatic splitting
of the first exchange mode in a film 1 p thick, which
were interpreted according to the present theory. The
spacing of these magnetostatic modes corresponded to a
thickness approximately one-half as large as that ob-
tained from optical measurements and from the spacing
of the high-order modes. Nonzero slopes of the disper-

"Perpendicular (or parallel) resonance indicates that the
applied 6eld H pp is perpendicular (or parallel) to the plane of the
61m.

'4 V. V. Gann, Soviet Phys. —Solid State 8, 2537 (1967);
P. H. Carr, A. J. Slobodnik, and James C. Sethares, 1969 Inter-
national Microwave Symposium, Dallas, Texas (unpublished);
T. Wolfram and R. E. De Wames (unpublished)."P. Besser (private communication). Also see Paper V of the
present series.' L. K. Brundle and N. J. Freedman, Electron. Letters 4, 132
(1968). Similar experiments on both surface and bulk modes
have been carried out by F. Voltmer (unpublished).

sion curves of the even, higher-order modes (Fig. 13)
observed by Besser" are further evidence for Portis-
type modes.

It is well known that the frequency of the main-
resonance mode in a finite film is shifted slightly from
that of the Kittel uniform-precession mode (k= 0) in an
infinite film. The present theory indicates that this
shift is a consequence of the microwave demagnetization
field (giving the &eq term to be discussed in detail) and
a shift in the weighted average of the static internal field
H;. See Sec. 6. Other factors such as anisotropy, strain,
etc. , could also effect the shift, of course.

The normal modes are quite sensitive to slight
changes in the sample shape. This was demonstrated
dramatically by Dillon' in experiments in which one or
both surfaces of a circular disk were ground to form
piano-convex or double-convex samples. Both of these
samples showed one large resonance line and three or
four smaller lines, in contrast to a series of 27 distin-
guishable lines in a well-defined series observed in a
double-piano sample. The piano-convex and double-
convex samples resemble a spheroid, for which only one
mod" the uniform precession —is excited by a uniform
microwave field. For the double-piano sample, formally
quantizing the radial wave vector in the infinite-circu-
lar-film results gives a series of modes with large inten-
sities, as observed. See the Appendix and Sec. 8. The
two sets of m for the spheroid and the circular disk are
quite diferent. For one set of modes in a spheroid,
m p"e'"& for the eth mode, where p' —=x'+y' and
p=—tan '(yjx). The most closely corresponding modes
for the circular disk have m J„(k,p)e'"& cosk, s, where
k,re is the first zero of J„and 0(k, (s-/5.

Similarly, the eigenfunction m and intensities for a
long rectangular cylinder are expected to be drastically
different from those of a long ellipsoidal cylinder. Thus
the suggestion of Wolfram and De Wames" that the
eigenvectors for a "Rat ellipse are possibly more realistic
than the plane-wave solutions. . ." for double-piano
samples is untenable. Wolfram and De Wames also
concluded that in finite samples, such as circular and
rectangular films, the main-resonance mode should be
the uniform precession and that previous considerations
of pinning4' were incorrect. Their conclusions were
based on the fact that the pure magnetostatic modes
(exchange constant D=O and no pinning mechanism)
in an infinite elliptical cylinder magnetized along its
axis had large precession amplitudes at the surface of
the cylinder. (This is true also for the case of a sphe-
roidal sample. r) The conclusions are incorrect because
no pinning mechanism was included in their model cal-
culation and the uniform-precession microwave de-
magnetization field and the internal field are constant
throughout the infinite elliptical cylinder. It is easy to
show by direct substitution into the equations of motion

(6) that the uniform precession is not a normal mode of
a finite disk or film, a result which is not surprising since
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the internal field and the microwave demagnetization
field are quite inhomogeneous near the edges of the disk
or film, thus making the precession amplitudes small
there since the edge spins are off resonance, roughly
speaking. The direct optical observation of magneto-
static modes by Dillon and co-workers" shows directly
that the uniform precession is not a normal mode of a
finite disk.

2. PINNING OF SURFACE SPINS

The common concept of surface-spin pinning is the
following: The variation of the transverse magnetiza-
tion m across the thickness of the film is described by a
single cosinusoidal function

m= mo cosk, s

(for the even modes), where the s' axis is perpendicular
to the plane of the film. The pinning conditions which m
satisfies at the surfaces of the film are assumed to be

dm
am+b =0.

ds'

The surface spins are said to be pinned if b=O, or
unpinned if a= 0.

Even though this concept of pinning can be quite
useful, it should be emphasized that there are cases in
which it can cause confusion. First of all, the true bound-
ary conditions are those which the potential satisfies at
s'= &~. The fields must satisfy continuity conditions
at the sample surfaces, but the problem of determining
m and the normal-mode frequencies cannot be solved
as a problem with fixed boundary conditions on m at the
film surfaces. Thus the name "pinning condition, "
rather than boundary condition, was used above.

Mathematically, for the magnetostatic-mode problem
(D=O), specifying the usual electromagnet "boundary
conditions" (the vanishing of the potential at infinity
and the continuity of normal B and tangential H) de-
termine the solutions to (2) and (3). For the exchange-
mode problem $1=0 in (2)), specifying a pinning con-
dition at each surface of an infinite film determines the
solutions. With both h and D included, specifying both
the electromagnetic boundary conditions and the pin-
ning conditions at each surface determines the solutions.
See Sec. 9.

Second, it is now apparent that in most thin films the
surface of the film cannot be considered as a mathe-
matical plane, but must be considered as a region of
finite thickness e. '~ For the large-k, modes having wave-
lengths approaching e the variation of m in the surface

6~ J. I'. Dillon, Jr., L. R. Walker, and J. P. Remeika, in Pro-
dings of the International Conference of Magnetism, Nottingham,
1964 (The Institute of Physics and The Physical Society, London,
1965), pp. 369—373.

'~ M. Sparks, Phys. Rev. Letters 22, 1111 (1969). See also III
of the present series: M. Sparks, second following paper, Phys.
Rev. 8 1, 3869 (1970).

where S is the film thickness. If k„&)x, then over most
of the volume of the sample m—mo cosmos', which is a
pinned mode. But the small decaying exponential term
rounds off m near the surface at z'= —~S and makes
dm/ds'=0 at s'= —i2S, which is the unpinned condi-
tion. The point is that specifying the degree of pinning
at the surfaces determines m everywhere when m is a
single cosinusoidal function, but not when it is the sum
of more than one function.

Fortunately, a large number of ferromagnetic-
resonance experiments in thin films can be explained in
terms of a single cosinusoidal or single decaying-
exponential function. However, this is not the case in

general, especially where intensities are concerned, and
it is important to distinguish between pinned modes and
modes with pinned intensities. The former have m=0
at the surfaces, and the latter have intensities cor-
responding to single cosinusoidal functions with m=0
at the surfaces. This will be discussed further in Sec. 9.

3. VARIATIONAL EXPRESSION FOR
FREQUENCIES

The equation of motion of the magnetization M is

dt
(2)

where M is given by (1), H=H, s+h+AV'M is the
total effective field, i is a unit vector along the s axis, A.

is the exchange constant, LI;=II »—AN, M, is the
internal field, II,» is the applied field, and N, is the
demagnetization factor for the s axis. The microwave
demagnetization field h is determined by the relations

V' b= V' (h+4mm) =0, 7'Xh=0. (3)

Walker~ and others" "studied magnetostatic modes by

"H, Benson and D. L. Mills, Phys. Rev. 188, 849 (1969).

layer becomes important in determining both the
intensities and frequencies of the modes, and the con-
cept of a sharp mathematical boundary surface be-
comes meaningless. In the present paper, only the case
of a perfectly sharp surface is considered. Effects of a
surface layer of nonzero thickness are considered in
subsequent papers in the present series. Third, for an
inhomogeneous internal field, m does not vary cosinus-
oidally, and the concept of a constant wave vector k,
loses meaning.

Finally, it is easy to show that the single cosine func-
tion considered above is not a solution to (6) when both
exchange and demagnetization energies are included.
In particular, Benson and Mills" suggested that a
rounding of m near the surface to make dm/ds' = 0 at the
surface is important in some cases. For example, con-
sider a wave of the form

m =mo(costs' —(ir b„) exp[ —k, (s'+-', 5)]),
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tion, and the variational characterization of the
eigen values.

In Sec. 4, the variational characterization (10) of the
eigenvalues will be used in a very simple way to obtain
the first-order approximation to the normal-mode fre-
quencies. Simple trial functions containing no adjust-
able parameters are used. The choice of the trial func-
tions is motivated by physical intuition, by general
considerations of the number of nodes in the function,
by analogy with infinite film results, and by the fact
that the solution should be a standing-type wave rather
than a travelling-type wave.

It should be mentioned that the general results of the
present section can be used as the starting point in more
sophisticated analyses. See the reference by Benson and
Mills for several examples. "Care should be exercised in
calculations involving adjustable parameters. For ex-
ample, for A=O the main-resonance Inode is not the
mode having the lowest value of co. Thus the best func-
tion in a class of trial functions cannot be obtained by
adjusting the parameters in the trial function to mini-
mize co„ in general. As another example, the best func-
tion in the set

m= cos(m —p)z/S

cannot be obtained by setting d~ /dp= 0 with ~. given
by (10). This is because sources of the surface spin
pinning, such as an inhomogeneous 3f„have not been
included in deriving (10), and these sources, rather than
d~„/dp=0, will determine the value of p.

Other standard precautions for variational character-
izations of eigenvalues should be observed. For example,
care must be exercised in the selection of the trial func-
tions. The choice of the trial functions was discussed in

the two previous paragraphs. As an example of a difB-
culty which could arise, in perpendicular resonance nz+

could be chosen as exp( —k,s), corresponding to a
surface mode. However, the infinite-film" and infinite-
cylinder" results for magnetostatic modes indicate that
if surface modes exist they are more likely to be asso-
ciated with the small edge of the sample than with the
large face.

4. FREQUENCIES FOR RECTANGULAR FILMS

Consider a thin rectangular film having width W
along the x' axis, length I. along the y' axis, and thick-
ness S along the 2' axis. Since the normal modes are
expected to have 0, 1, 2, . . . nodes along the x', y',
and s' axes, and m+ is sinusoidal for an infinite film, and
we want standing waves for a finite film, we choose the
trial function in (8)—(14) as

ns + =neo cos(k, x' —-', g. s.) cos(k„y' —-', q, s.)
Xcos(k, s' —-,'g, vr), (15)

where p=0 or 1 for modes even or odd in x', y', or s'.
Note that s' is normal to the plane of the film and s is
along the equilibrium position of M, as illustrated in
Fig. 1.

The values of the k's are chosen to give the appro-
priate number of nodes. It is assumed that the spins are
pinned at the edges of the sample (at x'=&-,'W and
y'=&-', I); thus 0,

=ne'er/W

and n„=cVz7r//-, where
m~, e1,=1, 2, 3 . The optical observation of magneto-
static modes by Dillon and coworkers"' and the ob-
servations' ' ""of large numbers of intense resonance
modes indicate that this assumption gives better agree-
ment with experiment than does the assumption that

g cos g

Fro. |.Schematic illustration show-
ing 6elds, angles, and coordinate
systems used in the text. The axis of
quantization is s, and the s' axis is
normal to the film surface.
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Izi—

G, —=

S/2

S —S/2

1t'sin2 (6—k, )L,

2~ —,'(q; —k;)L;

ds' cos2k, 's',

(—1)»'sin-', (q,+k,)L, '
(19)

', (q,+k,)L;-
for j=x', y', s', and L =8', L„=L, and L, =S. The
factor of qP=q '+q„' in (18) can be written in the
primed basis as q&2 ——q&2 —2q qz cos8 sin8m, where

qe'=q„'+q, 'cos'8 +q, 'sin'0 and 0 is the angle
between M, and the normal to the 61m surface, as
illustrated in Fig. 1. By using this expression for q,
and the fact that G; is an even function of q, , (18) can
be reduced to

l& lM.SWL qg
dq G. G„G, . (20)

247/ Iz all space

~ Note that "pinned modes" and "unpinned modes" refer to
the pinning of the spins at the large surfaces of the 6lms at
s'= &~S. For both the pinned and unpinned modes, the spins are
pinned at &he small edges of the film @t x'= &&5' and y'= &&I..

dm/ds'=0 at the small edges. Theoretically, it is ex-

pected that m will be small near the small edges because
the static and microwave demagnetization fields there
will be different from those in the bulk of the sample
away from the edges. Thus these edge spins are off reso-

nance, roughly speaking. This is analogous to the
Wigen-Kooi —type' " and Portis-type'" pinning of m
along the s' direction.

The intensities depend on the form of m„+ as well as
the pinning, as discussed in Sec. 2. For the higher-order
modes (large values of ns and er, ) the assumed sinus-

oidal variation is expected to be fairly accurate over a
large fraction of the sample volume, by analogy with
the results for an infinite film. For the low-order modes,
the deviation of m„+ from the assumed form probably is
not small. The resulting deviation in the frequency is
reduced by the variational characterization of the eigen-

frequencies, as already mentioned. The values of k, for
arbitrary pinning at s'= ~—,'S are

k, = (ns P)7r/S, — (16)

where ns 1, 2, 3, . . . —a—nd P ranges from 0 (pinned) to 1

(unpinned). The calculations will be carried out for

pinned modes (p= 0 and m+ coss/S, sin27r/S, cos3~/S,
. . .) and for unPinned modes" (p=1 and m+ 1,
sinn/S, cos2~/S, sin3n-/S, . . .). Comparing the two

results with experimental results gives information
about pinning, as discussed in Sec. 9.

Substituting (15) into (11) gives

ca.„,= lylDk', (1&)

where k'=—k '+k '+k ' and D=AM, . This result and
the value of (H, ) will be discussed in Sec. 6. Substituting

(15) and (14) and evaluating the integrals over r gives

lv IM.SWI, qg
Mg= dq—G, G„G, , (18)

2
~~~ Iz' all space

where

l~lM, SWL

4m-2I,
dq—FP, (q, —k. )W]

2ll space q

&&FL-'(q' —k')LjG*" (22)

In evaluating the integrals in (22) for the unpinned
modes, 6rst consider the modes with k, = g, =0.
The value of I, is 2, and the definition of G, gives
G, =2F(—,'q, S). Approximating F(&)=—sin'$/P in the

q, and q„ integrals by

F(f)=1, for—0, for
reduces (22) to

lv IM,SWL

4m2

qg2 sin2gq, S
dq

q' (-,'q, S)'

(23)

(24)

where the volume Q is delned by l q, —k, l
(~/W and

lq„.—k„.l(n/L, as illus-trated in Fig. 2. Using dq

=(27r/W)(2'/L)dq, and replacing q, ' and q„' by
their values k, ' and k„' at the center of dg, as illustrated
in Fig. 2, gives

(op= ly lM,s
k„'+k, ' cos'9 +q,' sin'g

dqz'

sin'2q, S
X , (25)

(-,'q, S)'

where kP—=k '+k„' is the square of wave vector in the
plane of the film. Evaluating the integrals gives one of
our central results:

~e=2s lylM, sin'8 +2s lylM, (cos'0 —cos'p'sin'8 )

1
1— (1—e ~Is), for m+(s') —1 (26)

kgS

where cos'p'—=k, '/(k, '+k„'). In Ref. 2, the approxi-
mation (23) was used for the q, integral, thus giving a
tan ' factor in place of the factor in brackets in (26).
Making the replacement

2 7r 2 j-
—tan '—~— 1 ——(1—e r)

f f f-
where f=krS, in Ref. 2 g—ives the results of the present
paper.

Writing the terms in (19)gives

G. = -;F[-;(q..—k..)W]+-;F[-;(q„+k„)W]
+cross terms, (21)

where F($)=—sin'$/P. By sketching G and F it is easy
to see that neglecting the cross terms in G, and G„
gives 10% error for k, =~/W and less for higher
values of k, . Neglecting these cross terms and using the
fact that the integrand in (20) is even in q, and in q„
reduces (20) to
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Next consider the unpinned modes with k,))~/S.
The same approximation of dropping the cross terms in
G, in (21) can now be used for G. . Thus, the volume Q
in (24) is that for which ~q,.—k,

~

(s./W, ~q„—k„.
~

/L, .and ~q, —k,
~

(s./5. The integrand qg'/q' is
nearly constant over the volume Q, and its value is—(k„'+k, cos'8 +k,' sin'8 )/O'. Thus (24) gives

The factor in the parenthesis in (27) is equal to sin'8& for

parallel and perpendicular resonance, but not for reso-
nance at an arbitrary angle 8 . Here 81, is the angle be-
tween lr and s. The values of ~d in (26) and (27) for the
special cases of parallel and perpendicular resonance
and the corresponding results for circular films are listed
in Sec. 10.

For pinned odd modes, the analysis leading to (27)
is unchanged, and (27) is valid for these modes. For the
pinned even modes, the integrand in (22) is large in
two regions, one near q, =k, and the other near q, = 0.
The former gives a contribution to ~z equal to (27).
For the latter, consider the value of G, in (19) in

qz

27r
W

2 2 2 t/2~(q i+ k„i+ k„i)

eh

I

qz'

.r
d

q

kyi

Volume Q

FIG. 2. Volume Q in q space in which the cos integrand in (24) is large. The average value (q, '+k s+k„')'Is of q in the
differential volume element dq is shown in the figure.
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Main —resonance mode

Main branch
I Higher bra nches

kz:Tr/ S

k, = 2m/S

kz= &~/S

kz=" 47r/S

~d+~exc

7T/S

k,=~/S
owl S ~~1 S 4'/S Fro. 3. Sketch of the dispersion relations

for the unpinned ferromagnetic modes in
a thin 61m in perpendicular resonance
showing the various branches for an
infinite film (solid lines) and the indi-
vidual modes for a finite 61m (points):
(a) for no exchange; (b) schematic eGect
of exchange.

k,™O

27i/ S 5vr/ S 4'/ S

k, =wl S

dgg
q, '+kg'k, 'S

Evaluating the integral and using k, =n87r/S gives

perpendicular resonance with krS«s. . From (19), q, integral leading to (29b) the approximation
G, =8/k, sS' for q, =0; thus (22) gives

1/sinrs(q, +s./S) sin-', (q, —s'/S) l
'

8I&Im, " k, '
G)d: (28) 2k -', q, , y~/S -', (q.—~/S) )

8 kgS
us= —Iy IM.

7r Q.2
(29a)

otherwise

was made. Thus (29b) is to be compared with

for the contribution for the even pinned modes from
the region near q, =0 when kyS«x in perpendicular
resonance. The joining of this result (29a) onto the
results for krS))vr will be illustrated in Sec. 5 (Fig. 4).

In perpendicular resonance for the pinned main-
branch modes, the result for arbitrary PALS is

8 /2
CO/: 7I I'r I3E kfSI —tan ' - (29b)

Es. (8/s')krS

for pinning, i.e., for m cos(s.s/S). In evaluating the

t2
~.=—~

I v I
~,krsl —tan-

krSP

for the unpinned case. For krS((s, (29b) is 8/s'= 0.8106
times smaller than the result for the unpinned rnain-

branch modes.
Consider the errors in (26) resulting from the follow-

ing approximations used in evaluating the integrals:
the neglect of the cross terms in (21), the approximation
(23) used in the q, and q„. integrals, and the replace-
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ment of q,' and q„' in (24) by their values 0, 2 and k„'
at the center of dq. For large values of ng and ng
Ldefined above Eq. (16)], say, )3, the approximation
are all satisfied fairly well, and the expected errors in co&

are &10%.The greatest error, for nz, ——ns ——1, may be
considerably greater than 10% because of the replace-
ment of q ' and q„' by k, ' and k„'. The integrals for
the first few modes could be evaluated numerically for

the particular film being investigated if greater ac-
curacy were required. If such evaluations are made, the
change in k, as a function of &AS (Sec. 5) should be
taken into account in the I; and dg integrals in (18).
Also, the mode dependence of (H;) (Sec. 6) may ac-
count for part of the large spacings of the low-order
modes, including that between the Inain resonance
and the weakly excited highest-field mode. ' Other

FIG. 4. Sketch of the disper-
sion relations for the pinned
ferromagnetic modes in a thin
film in perpendicular resonance
showing the nonzero slopes of
the odd modes: (a) for no ex-
change; (b) schematic eRect
of exchange.

~d +~exc

m/S 2~/ S 3n /S 4w/ S

2m/ S 3m/S 4m/ S
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factors affecting the over-all accuracy of the results are
the deviation of ns+ from the assumed form (15), the
approximation used in accounting for the noncircular
precession of the magnetization (in Sec. 6), the in-
homogeneity in B; across the thickness of the sample
(see Paper IV of the present series), the change in k,
as a function of krS (Sec. 5), anisotropy, strain, local
spin pinning, line shifts (associated with linewidths),
and possibly mode clamping effects." These higher-
order effects have been discussed elsewhere. '4

S. DISPERSION RELATIONS FOR FINITE
AND INFINITE FILMS

tanq= rskrS/q, q—= rsk,S. (32)

The corresponding result for the odd modes is
tang= —g/rskrS. The roots of both these equations can
be written as

k, = (ns p)rr/5, — (16)

s3 M. Sparks, Quart Appl. Math. .(to be published).
~ M. Sparks, Solid State Commun. (to be published).
2~ For example, see Fig. 3.2 of Sparks (Ref. 20).

Damon and Eshbach" obtained the dispersion rela-
tion for an infinite film (W and L infinite, but 5 finite)
in parallel resonance with no exchange, and Akhiezer
and co-workers" obtained the corresponding results
for an infinite film in perpendicular resonance. It will
now be shown that the infinite-film results are closely
related to the present results for 6nite films in the case
of no pinning at the large surfaces of the films (at
z'= + sr 5) and have implications concerning the pinning'
conditions for the trial function for finite films.

The dispersion relations for the normal modes in an
infinite film in both perpendicular and parallel reso-
nance are formally the same as those for ordinary spin
waves (infinite medium):

pp/
~ y ~

= [Hr(Hr+2oieg"', Hr =H;+ Dk' (30)

oi/ t y ~
=Hr+ pie, toe ——2m-M, sin'Oi, , (31)

where ei is the angle between Ir and z, and (31) is the
circular-precession" approximation to (30). The effect
of exchange has been included formally by adding Dk'
to H;, as discussed in Sec. 6. For ordinary spin waves all
three components of k are continuous, and it is con-
venient to consider co as a function of ~k~ with sin'Hi,

as a parameter which varies continuously from 0 to 1
to give a continuous set of curves. "For an infinite film
of finite thickness S, (30) and (31) are still valid and k,
and k„are still continuous, but k, has discrete values
(for given values of k and k„).

In perpendicular resonance in an infinite film, o~ is a
function of k, and of kr=—(k,'+k„')'". Thus, it is con-
venient to consider co as a function of k~ with different
curves for the different discrete values of k, . These
discrete values of k, for the even modes are given by
the roots of the equation" '4

where nq= 1, 3, 5, . . . for the even modes, nq= 2, 4, 6,
. . . for the odd ones, and the values of p range between
0 (pinned) for kr))k, and 1 (unpinned) for kr«k, .

By using (16), (31) and

»n'4= kf /(kf +k ) (33)

in agreement with (44a) in the limit krS(&1.
In the other limit of kP»s- (still with no= 1), (32)

gives q
—s./2, or k, =s./5; therefore, krs»k, '. With this

result, (31) and (33) give ~q=2~~y~M„ in agreement
with (44a) in the limit kP))1.The agreement of the two
results in the limit k~S)&1 is not surprising since both the
variational-calculation and modified-infinite-film results
are expected to be accurate in this limit. However, it
appears that the errors in the modified-infinite-film
results should be rather large for the low-order modes
[nz, and nir small —see Eq. (16)), and the errors in the
variational expression also are expected to be large for
these modes as discussed in Sec. 4. The most accurate
results for the low-order modes should be those obtained
from numerical evaluations of the integrals in Sec. 4;
the variational calculation takes into account the
sources of the microwave demagnetization field in the
finite sample, while the formal application of the
in6nite-film results to a 6nite film implies replacing
integrals over one half cycle of a sine wave by integrals
from —~ to ~. For the other curves in Fig. 3, results

it is easy to obtain the dispersion curves, which are
sketched as solid curves Fig. 3(a). Formally replacing
the continuous variable kr by a discrete set (such as
kg= 0 76rr/. rp, 1.76 /harp, 2.75s/rp' ' ' (nr —0.25)m/rp,
which corresponds to pinning at the small edges of a
circular film—see Sec. 10) and retaining the infinite-film
values of k, from (16) gives a discrete set of points in

place of each curve, as illustrated in Fig. 3(a). The
curves such as those in Fig. 3 are useful in visualizing
the results such as (26) and (27), as discussed in Sec. 10.
Figure 3 (and Figs. 4 and 12) are sketches, not exact
plots.

Ke now show that this formal procedure of replacing
curves by an appropriate set of discrete points gives
agreement with the results of the variational calculation
for two limiting cases of kqS for unpinned modes (but
not for pinned ones). First consider perpendicular
resonance and the top curve in Fig. 3(a), which cor-
responds to ne 1 in (16)——. For the case of krS(&s-,
we can set tang —

q in (32), which gives q'=skrS, or

k.= [(2/n') krS]"'~/S. (34)

In passing, note that k.((vr/5; therefore, rn+ is nearly
constant (i.e. , unpinned) across the thickness of the film

for this case of kyS«m and n, =1.This result and the
result below that m+ is nearly pinned for k~5))x and
n, =1 are explained physically in Sec. 7. Substituting
(34) and (33) into (31) gives

(35)
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Intensity
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&& XI

k = Bm/S

k)

(a) (b)
Fzo. 5. (b) Enlarged view of the protion of Fig. 4(a) near the origin. (a) Intensities and spacings of several of the modes shown in (b).

(44b) are already in a form which shows its equivalence
to (31).

Further disadvantages of the modi6ed-in6nite-61m
results are that these results are incorrect for pinned
modes, the effect of changing the amount of pinning at
the small edges of the sample cannot be obtained from

the theory, the important effects of an inhomogeneous
H; (discussed in Sec. 6) are not included, the effect of
the deviation of nz from that of an infinite film is not
contained/in the theory, and there is no direct way to
improve the accuracy of the results. The usual infinite-
film results"" apply only to the unpinned modes in

FrG. 6. Dispersion relations for
the magnetostatic modes of an
infinite 61m in parallel resonance
reproduced from Fig. 3 of the paper
by Damon and Eshbach (Ref. 11).
The single sheet which intersects
the eoq

—k„ plane above the line
marked A-C is a surface-mode
sheet and the others are bulk-mode
sheets.
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rectangular samples in the limiting cases of 8 =0 and
s/2. However, Sparks has solved the infinite-film
problem in circular-cylindrical coordinates and applied
the results formally to Gnite circular films. '4

The series of modes having the smallest value of k,
will be called the main series, or modes of the muin
branch (see Fig. 3). The main-branch mode having the
smallest value of kf will be called the main-resonance
mode. The other branches (marked k, = s-/5, 2s/5, . . .
on the low-frequency section of Fig. 3) will be called
higher branches. The value of k, for a given branch in-
creases by 7r/S as kr goes from 0 to ~ for an infinite
film, as marked at the top and bottom of Fig. 3. We
mention in passing that in an infinite film in per-
pendicular resonance with no explicit pinning mech-
anism the modes with kfS«nq~ are unpinned, and those
with kfS))nam are pinned. The same result is expected

to be true in finite films. In particular, the modes with
kJS))ngx are expected to be pinned even in the absence
of an inhomogeneous M„antiferromagnetic surface
layer, surface anisotropy, etc. This is of no consequence
in experiments performed to date since only modes
with kfS«x have been observed.

The dispersion relation for pinned modes in per-
pendicular resonance are similar to those of unpinned
modes (Fig. 3) except that the even higher-order
branches have nonzero slopes at kr ——0 according to (29).
Figure 4 illustrates this result. Figure 5(b) is an en-
larged view of the low-kf portion of Fig. 4. The mode
intensities in Fig. 5(a) are discussed in Secs. 8—10, and
the eRect of Portis pinning is discussed in Sec. 7.

The dispersion relation for parallel resonance cannot
be displayed as a single set of curves (as in Fig. 3 for
perpendicular resonance) because the frequency is a

d+ uexc

z~/s
(a)

~~/s
kx =kz

FIG. 7. k„=o plane of Fig. 6. The solid
curves (for an infinite film) in (a) are
reproduced from Fig. 4 of the paper by
Damon and Kshbach (Ref. 11). The
points are for a finite film: (a) for no
exchange; (b) schematic effect of
exchange.

zm/s s7r/s

(b) kx'=kz
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Fro. 8. k, =0 plane of Fig, 6 showing the
infinite-film results as solid curves and
the finite-film results as points. Curve
(a) is for no exchange (all modes degen-
erate) and (b) schematically illustrates
the effect of exchange.

W %' W W ~ W W ~ W W W W W

function of cos'p'—=k 2/(k, '+k„') as well as kr and k. .
It can be represented by sets of curves in (&o,k, ,k, )
space, as shown in Fig. 6, which is reproduced from the
paper of Damon and Eshbach. "The intercepts of these
surfaces with a plane of constant k„gives co as a func-
tion of k, for this value of k„, as illustrated in Fig. 7

for the smallest value of k„=n./I. . The intersections of
the surfaces with the plane of constant k, gives co as a
function of k„ for this value of k, , as illustrated in

Fig. 8(a) for k, =0.
In view of the fair agreement between the theoretical

results of Secs. 4 and 5 with the infinite-film results, it
appears likely that the frequencies of the surface modes
in finite films can be approximated by replacing the
continuous variables k and k„by the; same discrete
set used for the bulk modes. This gives the results il-
lustrated schematically in Fig. 9(a) for the surface
modes for the case of kj=k„. The experimental results
of Brundle and Freedman" have been analyzed" using
this method, and it has been suggested that several
low-field modes in Fig. 3 of Ref. 2 are surface modes. '4

In both parallel and perpendicular resonance, the
magnetostatic modes having k~&&k, are nearly un-

pinned, and those having k~))k, are nearly pinned. ""
In parallel resonance the magnetostatic modes having
kr(&k, also show a change in symmetry (even or odd
functions of x, where x=0 at the center of the film)
as the angle p—= tan '(k„/k, ) changes. Here the applied
Geld is along s, and the x axis is normal to the plane of
the film. From the results of Damon and Eshbach"
)their Fig. 7 and Eqs. (20), (11), (16), and (17)) it can
be shown that for 0(k„&(~/5, m for the main-branch
changes from m= sin(m. x/5) (unpinned, odd) for
k, (k„+Qrr, to el=1 (unpinned, even) for k„/err
(k,«vr/5, to m= cos(mx/5) (pinned, even) for k,))vr/S.

Here Qrr=—H;/4n-M, . For the main branch in the limit of

k, ~0, m=sin(mx/5) for k„&&7r/5, and m cos(mx/5)
for k„))~/S. These results are illustrated schematically
in Fig. 10.

The higher branches show corresponding symmetry
changes at k,—k„/QQIr for small values of k„. Note
that k, (k„/QQrr is the region in which the surface

states exist, and k, )k„+QIr is the region in which bulk

modes are excited when ky is small and the applied
microwave field is independent of x. For kyS&1, the

surface modes extend across the sample, i.e., they do not

cling tightly to the surface, and they have large in-

tensities. Thus for kyS&&x, the magnetostatic modes

W ~ ~ W W

k~'= k~=0

FIG. 9. Magnetostatic surface modes with k, =0 in an infinite
film in parallel resonance. The solid curve (a) (for an infinite film
with no exchange) is reproduced from Fig. 3 of the paper by
Damon and Eshbach (Ref. 11). lt is speculated that the points
should represent the magnetostatic surface-mode frequencies in
a finite film. Curve (b) schematically illustrates the effect of
exchange.
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FIG. 10. Schematic illustration of the change from unpinned to pinned surface conditions as kr increases through ky =n /8
and of the change of symmetry of the magnetization at k„/k, =+Qrr for k&S«z. Here &rr =II;/4rrM, .

which are strongly excited by-a constant applied micro-
wave field are surface modes when k, (k„/QQrr and are
main-branch bulk modes when k, )k„/QQIr.

For kyg&&x, the surface modes cling tightly to the
surface, " while the main-branch bulk modes have
m cos(zx/S). Thus the bulk modes have the largest
intensites for all values of k,/k„when krS))z. . The con-
tradictory conclusions of Wolfram and De %ames"
were based on computer calculations for specific cases
which were incorrectly generalized.

6. EFFECTS OF EXCHANGE) NONCIRCULAR
PRECESSION OF MAGNETIZATION, AND

INHOMOGENEOUS H;

First consider the effect of exchange on the normal-
mode frequencies in an infinite film (W and L infinite,

H; ~H;+Ak'. (36)

"Since k'=k '+kP it might appear that the exchange energy
is independent of the number / of azimuthal nodes. However, the
values of k, are determined by the zeroes of J&(k,ro), and these
zeroes depend on the value of l.

but thickness S finite) in perpendicular resonance. The
solutions to (6) with no exchange (A= 0) are products of
sine waves for rectangular coordinates and are circular-
cylindrical functions LEq. (49)] for circular-cylindrical
coordinates. Since —V'm+=k'm+ in both cases (k'
= k, '+k, ' for circular films" ), —V' can be replaced by
k' in (6), and the solutions for A=O are also solutions
for A.&0. Consequently, it might appear that an exact
solution could be obtained for an infinite film by
formerly replacing H, by H;+Ak' in the solution for the
case A= 0; symbolically
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SX

(a}

S

lr

Ak= kx

D

(c) k= I;x x + kzz

S

;i 71 ~ 57Tx+ z

FIG. 11.Schematic illustration of the microwave magnc tization m showing only the values of m which are one-half wavelength apart:
(a) for an ordinary spin wave (infinite medium); (b) for a finite film with k, =0 and X /2»S; (c) for a finite Glm with k, =n./S and
),/2»S; (d) for a finite film with k, =3m/2S and X /2& S. The plus and minus signs signify magnetic sources of demagnetization field
h for equivalent slab samples as discussed in the text.
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However, this formal procedure neglects the eRect of
exchange on the pinning conditions at s' =&~S, as dis-
cussed in Sec. 9.

In some simple cases, which fortunately include most
cases of present interest to experimentalists, the eRects
of exchange are intuitively clear. For example, for an
infinite film in perpendicular resonance with h.=0,
drn+/ds —0 at s = +2iS when kzS«vr for the main branch
or when ky«k, for the higher branches. A simple argu-
ment'~ indicates that exchange also tends to make the
slope small at the boundary for long-wavelength modes
(k,u«1, where a is the lattice spacing). Thus exchange
does not tend to change the boundary conditions at
s ——~~5, and it is reasonable to expect that the formal
replacement (36) will give accurate results for the
normal-mode frequencies. In this particular case, the
magnetization m+ also will be relatively unchanged from
that for A=0. For the other extreme of k~5))x for the
main-resonance mode, or k~))k, for the higher-branch
modes, m+—0 at s= &-,'S, rather than dm+/ds =0, when
4= 0. In this case the exchange does change the bound-
ary conditions at s= &~5, and m+ will be changed from
its form for 4=0. (See Sec. 9).

For an infinite film, this change in m+ can be sub-
stantial, but the frequencies are relatively unchanged
from those in (30) (away from the crossovers). '4 '4 This
is not surprising since the physical arguments of Sec. 7

indicate that the demagnetization contribution to co

still should be 2~yM„and the exchange contributions
should be of the order of Dk' since the modes still can be
characterized by the number of nodes in m+ and first-
order changes in m+ tend to give second-order changes
in a& in general. From (36) it is seen that the central
effect of exchange on the dispersion curves is obtained
simply by adding Dk'=D(k, '+kz2) to all curves. The
term Dk,' increases the value of the ky ——0 intercepts,
and the term Dkz' adds a quadratic factor to the curves,
as illustrated in the (b) parts of Figs. 3, 4, and 7—9.

In passing, it should be mentioned that k, is
imaginary for a surface wave. That is,

rn+-exp[i(i~k, ~)s']-exp[ —~k, ~s].

Thus, the exchange term Dk' becomes D(kz' —~k, ~').
For pure exchange surface waves (demagnetization
energy neglected), this result is correct. " However,
formally adding D(kz' ~k, .~') to the energy of the
magnetostatic surface waves" gives an incorrect result.
For example, kg= ~k, ~' for a DE surface wave propa-

gating in the direction perpendicular to the applied
field; thus D(kz' ~k, ~') =0, and this wave would have
no exchange-energy contribution to its frequency, which

is incorrect. The form of m+ for magnetostatic waves is

changed considerably when exchange is added, as dis-

cussed in Sec. 9, and the result is that the dispersion

"M. Sparks, J. Appl. Phys. 41 (1970); Phys. Rev. (to be
published).

curve does bend up with increasing kj as illustrated
schematically in Fig. 9(b).

Next consider the effect of the noncircular precession
of the spins. For infinite-medium spin waves, the dis-
persion relation is given by (30), and the circular-
precession approximation" to (30) is (31). The error
introduced by making this approximation is zero at the
bottom of the manifold (i.e., at Oi

——0) and is maximum
at the top of the manifold (01,

——~/2). See Fig. 3.2 of
Ref. 20. The error at e~ ——~/2 decreases as Hz increases,
i.e., as either H; or Dk' increases. For YIG at 9.40
6Hz and room temperature in perpendicular resonance
with Dk'= 0, the error in the applied held at the top of
the band is 2.6% (2593+1750 Oe without the approxi-
mation and 2481+1750 Oe with the approximation)
and the error in the width of the manifold is 14.7%
(763 Oe without the approximation and 875 Oe with
the approximation).

In order to account for the noncircular precession
approximately in the present case of a finite sample,
the circular precession result (10) can be formally re-
placed by (30) with Hz (H, )+co, , ——In the limit as L
and t'I/" approach infinity and H;= const, this procedure
gives accura, te results. Although (30) is not exact for
finite films, it is expected to be within the over-all
accuracy of 5—10% of the theory for YIG at X band
or higher frequencies. Without any correction for
noncircular precession, the errors are fairly small, as
discussed above, and the corrected result (30) gives
accurate results in several limiting cases (e.g. , co~&&875

Oe, or nz and ntr))1).
In general there will be inhomogeneities in H, across

the thickness' ' 'z S and along the radius ro (or length
and width) of the film. These inhomogeneities change
the values of (H, ) and of a&d—=~q/~y~. The inhomo-
geneity across 5 can give rise to Wigen-Kooi —type pin-
ning' (near the surfaces) or to Portis-type pinning' (in
from the surfaces). The Portis-type pinning changes the
exchange and internal field terms in co, as is well known. '
It also changes co~ since the eRective thickness S,gi over
which m is large is less than S (see Fig. 12 below), and
it makes the slope of co versus ky nonzero at k~ ——0 for
even modes, as discussed in Sec. 7. The inhomogeneity
in H, across 5, as well as sources of the inhomogeneity,
will be considered further in Paper IV.

It is difficult to calculate accurately the effects on ~
of the inhomogeneity since it is difficult to calculate
both the spatial dependence of H, (r) and the effect of
the inhomogeneity on m. However, the qualitative
features can be determined as follows: To be concrete,
consider the variation in H; along ro for the magneto-
static modes in perpendicular resonance in a circular
film with S/2ro& ,'0 The value —of.demagnetization field
HD—=4~%,—PHD, where H' H pp HD near the
center of the film is fairly constant. For example, the
value of H~ inside the thin disk along its axis is

(36')
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for suKciently large values of H,pp to hold M, approxi-
mately along z.

At the edge of the disk in the center plane (i.e., at
p =—(x'+y')'ip=rp and z=0$, Hz& 27r—M„and at p=rp
and s =~~S, HD—3m lf, . Most of the reduction in the
size of Ho from its center value (36') to its edge value
occurs within the range ro —2S &p(ro. In order to
obtain a guide in estimating the sizes of (5Hii) and &pq,

the variation in HD will be approximated by

H~(p) —Hri(0)=27t M, expL —(rp —p)//5 j (36")

The value —,'~M, at p = ro was chosen as the average of
the values given above for s =0 and s = -,'S. The value
of HD from (36") (with PpvrM, rePlaced by 2~M, to
account for z=0) fits the numerical results of Fig. 13 of
Ref. 28 for z=0 and S/rp=0. 2 to within 10% or
better for all p.

Just as the Portis-type pinning changes 5,« for the
low-order modes, it is reasonable to expect that the in-
homogeneity in H; along ro will change the effective
radius r,n over which m is large for the low-order
modes. The reason for the reduced effective radius is
that the spins near p =ro see different values of II; and
h from those in main bulk of the film; thus the ampli-
tude of m near p =ro is expected to be small since these
edge spins are off resonance, roughly speaking.

The microwave demagnetization factor cog can be
written as

pig =pid(r p)+5&og,

where pid(rp) is the value of ipse when r,«=rp formally,
and Ko~ is the shift resulting from the reduced effective
radius. The size of bead can be estimated roughly by re-
placing rp in {27), (44), etc., by r, ii and formally esti-
mating the size of r, fg as the value of p at the turning
point at which

H i) (r.«) —

Hi)�(0)

=pi~+Dk' (36"')

The values of the left- and right-hand sides of (36"')
are calculated for r,ff ——ro —2S, using the approximation
(36"). If Hii(r, «) —Hg&(0) (piq+Dk2, a larger value of
r, g~ is chosen, and the process is repeated until self-
consistency is obtained. For example, for 2rp/5=15,
r ff=rp 25, and Dk' negligible, (36") gives Hz(r, ff)—H~(0) =118 Oe and (53) gives ipse

——114 Oe for the
main-resonance mode. For r, fg

=ro —2.03S, both
HD(rg«) HD(0) and ipse

—115 Oe, as the self-consistent
value of &pq The value of ip. q(rp) is 86 Oe, giving K&q—29
Oe, as a rough estimate. For the high-order modes
(large kr), piq—2~M„and r,«—rp; therefore, Spy—0. For
the low-order, higher-branch modes cod(&2zM„and
8cod=0.

In order to obtain a simpler, but somewhat less accu-
rate, approximation to bend for the uniform precession in
perpendicular resonance, cpq in (53) or (44a) is expanded

'8 R. I. Joseph and E. Schlomann, J. Appl. Phys. 36, 1579
(1965).

in the small-kfS limit, giving pid krS 5/r, «. With
ff:rp 25 and 1/(rp —25)—(1/rp)L1+(25/rp)g, this

gives pid—ip&(rp) [1+(25/rp) j; i.e.,

bppg —(2S/r, )

ipse

(rp), (36'"')

for the main-resonance mode. For the example above
with 25/r, =4/15 and ipse(rp) =86 Oe, (36"") gives
b~g=23 Oe, which is within the expected accuracy of
the previous value of 29 Oe.

A very rough guide in determining the values of
{5Hii) can be obtained as follows: For the main-reso-
nance mode, the weighting factor ~m„+~' in (H, ) is
large near the center of the disk, where Hg):Hi)(0),
and is small near the edges. Thus (H~) is slightly less
than HD(0), and (36') and (36") give (PHD) =g „
X(5/2r, ) (4~M,), where g „ is slightly greater than 1.
For example, a rough numerical evaluation of the
integral (H;) using the curves in Figs 12 and 13 of
Ref. 28 for (S/2rp) =0.1 (the smallest value given)
gives g „—1.1. The weighting factor was taken as
LJp (0.767r/r, fi))', where r,« =0 75r, Th.e hi.gh-order
modes have many oscillations along rp, and Lp ~

m„+
~

'ji~'
is sinusoidal over most of the sample. Therefore the
weighted average,

dppim„+i'H;

is approximately equal to the unweighted average,

With {36")this give's

(36/III/)

(6H~) = (S/2rp) (47rM, )+ (g—1) (S/2rp) (4irM, ) . (37)

(PHD) g(5/2rp) (4~M,),
with g=gi„=7/4 for the high-order modes. This result
(36""'), with g=g „, is valid for the main-resonance
mode. For the low-order higher-branch magnetostatic
modes, the value of g in (36'"") is approximately 1 since
piq+Dk' —0, making r,«smaller than that of the main
resonance so that HD is closer to Hii(0).

For a &IG disk (t4~M, =1750 Oe) with /52r =pT,ix
(36""') gives (8Hii)—130 Oe for the main-resonance
mode and 205 Oe for the higher-order modes. The value
of g „was taken as 1.1. In general, {5Hii) and ~d for the
main-resonance mode both are approximately propor-
tional to (5/2rp) (4aM, ), and they have approximately
the same values. In the present example with S/2rp =1'x,
the values are pi~=115 Oe and (5Hii)—130 Oe. Notice
that (6H~), pig, and bcpd all reduce the value of the field
for resonance II pp.

Consider the general effects of (8Hii) and K&q on the
spacings of the magnetostatic modes in perpendicular
resonance. Since the values of g in (36""')range between

1 and 7/4, it is convenient to write
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FIG. 12. Schematic illustration of the
magnitude of the microwave magneti-
zation m for the first and third modes of
Portis (Ref. 5) illustrating that the ef-
fective thickness S,ff of the film, which
determines the magnetostatic mode spac-
ing, is less than the physical thickness S
for the Portis-pinned modes.

The first term shifts the fields for resonance of all modes
down by (S/2r, ) (4vrM, ) in the circular-precession ap-
proximation. The second term in (37) has little effect on
the highest-field modes (the low-order higher-branch
modes), while it shifts the high-order modes t having
&od(re) —2s-M,) to lower field, thus increasing the width
of the normal-mode manifold by 4s(S/2re)(4s. M,)
and increasing the spacings between the low-order
main-branch modes and between the main-resonance
mode and the highest-field modes.

The term b~d also is approximately equal to zero for
the highest-field modes and increases the spacing
between the main-resonance mode and the highest-field
mode. But it does not change the width of the manifold,
and it reduces the spacings between the low-order main-
branch modes, thus partially cancelling the (larger) in-
crease caused by (8Hii). For the example above with
S/2re=~'~ and 4sM, = 1750 Oe, the value of the largest
increase in spacing (between the main-resonance mode
and the highest-field mode) is (0.1)—,'s(1750)+29—40
Oe, as a rough estimate.

'7. INTUITIVE EXPLANATION OF RESULTS

All of the results of Secs. 4 and 5 can be understood
intuitively by considering a simple model of a square
film of dimensions L)(L&(S in perpendicular resonance.
In order to understand the behavior of co~, first recall
that for an ordinary spin wave with wave vector k
along the x axis the value of o~d is 2s. ~y~M, in the
circular-precession approximation. "This can be under-
stood intuitively as follows. "

"C. Kittel (private communication). Also See Pigs. 2.7 and
2.8 of Sparks (Ref. 20).

8/2 li/4
h = m. (S/L)9 ds d—y

8(s A)2 I (qk)'+y'+s']- '"
Neglecting s in the denominator (since li/4&)S/2 for
'k=L and L&)S), evaluating the integrals, and setting
k Lgives h —m, (S/L)x. T—hus coq is proportional to
M, (S/L) for kyS((s. , in agreement with (44a).

From a similar argument we can see that
(S/L)'M, for the higher-branch unpinned modes

L/2

In Fig. 11(b), the values of m at half-wavelength
intervals are represented by arrows. The vertical lines
mark the positions at which m changes sign. Since the
vertical region marked A resembles an infinite film, it is
reasonable to expect that h——4~m~ is a good ap-
proximation to the microwave demagnetization field
for this spin wave. And h —m,S implies that co~ is
proportional to M, and is independent of k. To see this
we simply add the two equations in (4), which gives
oem+= (~;+Dk')m+ —~y~Mk+, where —V' has been
replaced by k2. Setting

k+= —Cm, +i(0)= ',C(m++—m-)
and making the circular-precession approximation of
neglecting m gives ce~y~ =H;+Dk'+sCM. .

The analogous situation in a finite film with k, =0 is
illustrated in Fig. 11(b). The magnitude of the de-
magnetization field of the region 8 (considered as a
rectangular sample of constant magnetization m) is
less than 4~@A, because the surface poles, marked with
+ and —,do not extend to infinity. From elementary
electromagnetic theory, it is easy to show that the
demagnetization field /determined by (3)] in the center
of the rectangle 8 is
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In tensit y
~d+ ~exc

ance, Portis pinning

des

(a) (b)

Fro. 13. Sketch of intensities (a) and dispersion relations (b) for Portis-pinned modes (in perpendicular resonance).

ky«k, : Figure 11(c) represents sN+= sink, .g'

Xsinsz'/5 for the same value of k, as in Fig. 11(d).
The demagnetization Geld in the center of region C is
clearly smaller than that in the center of region 8 be-
cause there are now positive and negative surface poles
on each end of the region C+D. The nonzero contribu-
tion to the Geld at the center of region C depends on
the diBerence between the distance d+ to the positive
poles and the distance d to the negative poles, which

gives an extra power of (S/L) in ~q, thus cuq (S/L)'M„
in agreement with (44b). A similar argument shows
that cup (S/L)'M, for the other higher-branch modes
also. Since 5/L«1 for thin films, the demagnetization
contribution or& to the frequency is much smaller for
the higher-branch modes than for the main-branch
modes.

Next consider the pinned modes. Figure 11(b)
represents a mode with m+ cos7rz/S (as well as one
with m+(z) 1); therefore, coq (5/L)M, for this mode.
Figure 11(c) represents a mode with m+ sin2mz/5;
therefore, cog (S/I.)'M, for this mode. The mode with
sr'+ sink, x cos3s-z/5 is illustrated schematically in

Fig. 11(d).The net positive value of the surface poles at
the right of the region E+F+D is s of that of the

region 8 of Fig. 11(b). The net magnetization in the
region E+F+D is also rsof that in the region 8;
thus ceq (rs)'(5/L)M, . From this model, it is seen that
when kfS«1, ~q (1/Ns)'(5/L)M, for the even pinned
modes, and cod (S/L)'M. for the odd pinned modes,
in agreement with (29) and (44b). Note that the slope
of co~ as a function of kf has the same nq dependence as
do the intensities I„(see Sec. 8), e.g. , I„and slope

1/ns' for even pinned modes, I„and slope=0 for
odd pinned modes, etc.

For the modes with very large values of k (k ))s-/5
and k~)k, ), the region 8 (or C, D, etc.) is a thin plate,
for which h= —4~no i. These modes therefore have
tcq = 2s.

~
y ~

M, [in agr eement with (44a) for ks))7r/5].
Thus the modes with large values of k, would cluster
near the top of the magnon manifold in perpendicular
resonance if co, , were negligible. This argument also in-
dicates that the spacing of the modes decreases as k

increases (until Dk, ' becomes large).
Note that the demagnetization energy decreases with

decreasing inverse aspect ratio 5/L, while the exchange
energy increases with decreasing thickness S. Thus, in
the usual resonance experiment in which the frequency
is Gxed and the applied Geld II,pp is varied, the higher-



M. SPARKS

FIG. 14. Schematic illustration of m
analogous to that of Fig. 11, but for
parallel resonance: (a) for the main-
resonance mode; (b) for a mode with ir
nearly parallel to the applied 6eld zH, pp
and k,)&s./S.

{a}
Point Aon Fig. 6
k= (0,0, 0)

(b)
Point B on Fig. 6
k = (0,0, » TT/S)

branch modes become more widely spaced (larger dif-
ferences in H,») and the main-branch modes become
more closely spaced as the film thickness is decreased.

From the same simple physical arguments used above
to explain the theoretical results, it is easy to predict
the effect of Portis pinning. ' Recall that if the satura-
tion magnetization M, varies across the film thickness
as M.=Mo EMf(z'), wher—e AM«Mo and

~

f(z')
~

~1,
the value of nz+ for the modes with Dk'&2mhgf is
large only near the center of the film. In particular,
Portis has shown that if M, is parabolic in z [i.e.,
f(z') = (2z'/S)'], then m+(z') has the form of simple-
harmonic-oscillator functions (rather than sinusoidal
functions) for the low-order modes, as illustrated sche-
matically in Fig. 12.

The first few even modes which are Portis' pinned
have relative intensities 1, ~, 8, ~'~, etc., and their ex-
change energies are proportional to (isa ——,'). We have
numbered the first mode as ng= 1. With nq ——0 for the
first mode, the familiar result is (ms+ s) By using . the
fact that the slopes of cod as a function of k~ at ky

——0 are
proportional to the intensities, the dispersion relation
can be sketched, as in Fig. 13. If f(z') has a functional
form different from (2z'/S)', the results are siinilar in
general, but the intensities and slopes will differ from
those of Portis.

The results for parallel resonance and oblique reso-
nance (arbitrary 0 ) also can be obtained by the same

type of physical model used above for perpendicular
resonance. Very briefly, for the main-resonance mode
[see Fig. 14(a) and point A on Fig. 6j the frequency is
simply that of a thin film in parallel resonance, i.e.,
coq 27r

~ y ~
M,—in the circular-precession approximation.

For k, very large, the region marked by dark lines in

Fig. 14(b) resembles a thin film in perpendicular reso-
nance, for which cod—0. For k„very large, the region
Inarked by dark lines in Fig. 15. resembles a thin film in
parallel resonance; thus, ~oq=2z. ~y~M, . Figures 14(a)
and 15 illustrate that orq=2z. ~p~M, for all k„when
k, =0. See point C on Fig. 6.

In an infinite film in perpendicular resonance with no
explicit surface pinning mechanism, the main-branch
modes are nearly unpinned when kr(z/S and are
nearly pinned when ki»z. /S, as discussed in Sec. 5.
This result can be understood by considering Fig. 11(b).
The field outside of the film along the z axis (with x= 0
in the center of region 8) from the + and —sources
shown in the figure drops off in a characteristic distance
which is approximately equal to the spacing between the
+'s and —'s, i.e., f exp( —krz), roughly. Since P and
df/dz are continuous at the surface, the slopes of P
(and m) at the surface are small when sing&)S, and they
are large when ~~X&&S. In other words, the surface spins
are approximately unpinned for kr«z. /S and are ap-
proximately pinned for kr))7r/S.

8. INTENSITIES OF MODES

The power I„into the nth normal mode at resonance
(i.e., the intensity of the mode) for a sample in a
spatially constant microwave field h, &= h, &i is

dM„I„=— dr h, i — =geo h, fc„dr m, „, 37'
time a, v

where we have written the x component of M„as c„m „.
In this section, g is a generic constant (which is in-
dependent of c„, m, „,etc.). Since the energy density is
proportional to c„'m,„', the power out of a mode with
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~iopp

~PPH

Point Don Fig, 6
k =- (~/s, o, o)

on FIg. 6
& m/S, O)

s(v/S, O, O)

FIG. 15. Schematic illustration of m as in Fig. 14: (a) for a mode with k in the plane of the him and perpendicular
to sH,» for the case of k„»s/S; (b) and (c) effect of increasing k, .

relaxation frequency 1/r„and energy E„ is (39) gives

Cn
2

=g
Tn

dr m~n2. (38) I
m g 2e1.2AH„

Equating (37') and (38) gives the equilibrium value
of c„:

even unpinned main-branch modes. (41)

&n =grncpnl krt dr men

With this value of c„,(37') gives

Mn
2

I„=gh, ~' — dr m. n
AH„

drm, „' ~.

dl m, n (39)

The intensities of all odd modes and of the unpinned
higher-branch modes are zero since J drm, „=0 for
these modes.

For a circular film in a constant microwave 6eld in
perpendicular resonance, I„=0 for all modes with
azimuthal number /AO in (49). For l=0, m = Jp(k„p)
&& cos(k,s—st),s.). Using

for the intensity of the nth mode, where hH„= g/r„ is
the linewidth of the nth mode. This result shows that
in the usual experiment at 6xed frequency (and varying
H,»), the intensities of the modes are proportional to

~

j'dr m, „~ '/hH„, when m, „is normalized as

fdr m.„'=1.

and

dp pJp'(kpp) =-', ro'LJo'(k, ro)+Jt'(k, ro)]

r0 1
dp pJp(k,p) =g Jt(kyarp)—

9 kp

Consider a rectangular film. For the pinned even
modes, (39) gives in (39) gives

~&2+ ~2+1,2+Hn
even pinned modes (40)

Jts(k, ro)1
In= g

kp'AH„Jp'(kpro)+ Jr'(k pro)

(42)

and for the unpinned even Inodes on the main branch Since we are considering only modes which are pinned
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at r=rp, Jp(k rp)=0, and (42) reduces to

main-branch modes with /=0.

The approximate results for I„given above should be
quite good for the higher-order modes in a given series,
the integral of m „in (39) being controlled by the num-
ber of half-sine-waves in nz „since pairs of positive
and negative half-sine-waves integrate to zero. How-
ever, the intensities of the first few modes in a given
series may differ considerably from the theoretical
values since the integral of m „depends more strongly
on the detailed shape of m, „than does co

'. A difference
e in the trial function m„+ from the true function m„+
gives an error in the frequency which is proportional to
e2 but the error in I„is proportional to e.

9. EFFECT OF PINNING ON
FREQUENCIES AND INTENSITIES

The effect of pinning at the small edges of film was
considered in Secs. 4 and 6. We now consider the pin-
ning at the large faces (z'= &i2S). The frequencies and
intensities of pinned and unpinned exchange modes are
quite different. However, the frequencies and intensi-
ties of nsageetostatic modes are relatively insensitive to
the amount of surface spin pinning, as discussed else-
where. '4 This insensitivity can be understood intuitively
as follows.

First, it is easy to see that pinned sine waves are not
solutions to (6), or to (2) and (3), when the exchange
constant A. =O. This can be proved by direct substitu-
tion and can be understood intuitively as follows:
Consider, for example, a perpendicular-resonance mode
with kyS«1. The argument in the last paragraph of
Sec. 7 shows that dh/ds —0 at s= &-',5. When A. =0, m
is proportional to h; thus dm/ds =0 at s =&~iS, and the
mode is not pinned. This is an example of a general
result that imposing a pinning condition, such as m =0,
on the magnetostatic-mode problem with A=O over-
determines the boundary conditions at s'=&-,'S, and
no solution exists. In this case it is necessary to include
the exchange interaction even though Dk'(((co~.
(Mathematically, the exchange term is a singular per-
turbation. ) Then the solutions to (2) and (3) in an infi-
nite Qlm are linear combinations of terms containing
three wave vectors, " in contrast to the exchange case
or the pure magnetostaLic case (A. =O and no explicit
pinning) for which only one wave vector is required.
For a given ky, the three values of k,' are easily found
by substituting m„m„cosk, s' into (2) and (3). The
result is that Lhe three values of k are simPLy the roots of
Lhe disPersion reLati on k2Q' =k'(Qz+Xk') (Qqq+Xk'
+sin'8~), where Q—=a&/47r

I y I
M., Qz= FI~/47rM„—

h.—:A/4r, and sin'Hi ——(k,'+k„')/k', which is obtained
by squaring both sides of (30) and multiplying by k'.

In perpendicular resonance, k, =k, and kr2=k '+k„',
where s' and s are always the axes normal to the plane
of the 61m and along H;, respectively. In parallel reso-
nance, k, =k„k„=k„, and k, =k, .The resulting values
of k, for magnetostatic modes in perpendicular reso-
nance are k „k~, and ik„,~, where

2~k 2(Q 2+Q Q2) (Q2 Q 2)—1 (43a)

kz= +$(Q —Qz)/Ay ik„g[——+iL(Q/Qz)/Ay .
(43b)

The first wave vector k, is the usual magnetostatic-
mode wave vector. " Solving (43a) for Q gives
Q=[Qz(Qz+sin'Oi)]'"=—Q „which is just the fre-
quency of a pure magnetostatic mode. " Since
Q=Qz+Ak' for an exchange mode, (43b) shows that
k~ is the wave vector for an exchange wave which has
the same frequency as the magnetostatic wave. The
frequency of a wave f(r) will be defined as the preces-
sional frequency for a magnetization having m f(r),
the Zeeman frequency being positive and the exchange
frequency being positive for oscillating waves )negative
n—= (d'm /ds")/m, 'j or negative for decaying waves
(positive n). The wave frequency Qz for the kz wave is
Qz ——+Q „and that of the ik„,~ wave is Q,~= —Q, .
The k, and kz waves can be admixed freely to satisfy
the surface pinning conditions (such as m =0 or
dm/ds'=0, for example) since the wave frequencies are
the same. The decaying ik «wave is far off frequency
(Q = —Q,A +Q,) since n is positive, and its amplitude
is negligible.

Since h. (v./S)'((1 for magnetostatic modes, the kz
wave must have many oscillations in order to make its
frequency Qz+Akz' equal to the magnetostatic-wave
frequency Q, . Thus the intensity is controlled by the
term cosk, s since cosk~s integrates to zero approxi-
mately. In other words, Lhe intensities of the magneto
static modes are the same as those of the pure magneto
staLic modes (having h=o ond no expLicit pi.nning). The
field h is essentially unaffected by the addition of the
coskzs wave since the source (7' m) of h oscillates
rapidly, thereby integrating to zero approximately.
Thus, P and dP/ds are still continuous at s= &—,'S when
the k~ wave is added.

Next consider parallel resonance. For surface modes
with k, =O, the values of k, =—k, , obtained from the
solution of the dispersion relation, are k =ik,„,k+, and
k, where k,„=&k„and h,k~' ———(Qz+i2)&(~i+Q')'~'.
The frequency Q,„of the ik,„wave is simply the fre-
quency of the pure magnetostatic surface wave. "The
frequencies of the k~ waves are Q~=&Q,„.30 The de-
caying k wave is off frequency, and its amplitude is
negligible. The oscillating k+ wave has the same fre-

3 The following results in this and the next paragraph were
obtained by analogy with the results for perpendicular resonance,
except for the values of k and 0, which were calculated directly.
See R.ef. 24.
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quency as the surface wave, and a linear combination
of these two waves is chosen to satisfy the surface pin-
ning conditions. As in perpendicular resonance, the
intensity is controlled by the magnetostatic wave since
the rapidly oscillating k+ wave integrates to zero
approximately.

For the bulk modes with k„=0 in parallel resonance,
solving the dispersion relation for k gives Ak(~~ = —Q~——'+L(Qrr+ —') —(Q~

'—Q')]"' for the two extra waves,
both of which are decaying in the present case. Here
Qt,,~'—=QIr'+Qlr. The third wave vector k, is just the
Damon and Eshbach" bulk-mode wave vector. The
three frequencies are Q „Qd„=Q „and Q„,&= —Q „
where Q, is the Damon and Eshbach frequency,
ikq, .—=k(+~, and ik„~q=k( ~. The ik„, q wave is off fre-
quency, and its amplitude is negligible. A linear combi-
nation of the degenerate k, and ik~„waves is chosen
to satisfy the surface pinning conditions. The second
(ikz„) wave is decaying, in contrast to the results of
the previous two cases, because the frequency must be
lowered from Qt, ~ to Q, and a positive u (decaying wave)
lowers the frequency. This ikd„wave changes m only
very near the surfaces, where it rounds off m to zero at
x=~~S.

Several experimental results can be explained in
terms of these theoretical results. Sparks and co-
workers' observed that the higher-branch magneto-
static modes in a l2.4-p-thick PIG film had very small
intensities (roughly 700 times smaller than that of the
main-resonance mode). It is likely that the surface
spins were pinned since a surface roughness as small as

200 A should pin the spins, ' for example. Single-sine-
wave pinned modes would have large intensities j
that of the main resonance, as in Fig. 5(a)] in contrast
to the small observed intensities. The two-wave solu-
tions discussed above should have small intensities, in
agreement with the experimental results. Although the
results above indicate that pinning the magnetostatic
modes at a shape surface should not give rise to the
large intensities and nonzero slopes of cu eersls k~ of
the single-wave pinned modes, the pinned exchange
modes and mixed modes are expected to have large in-
tensities and nonzero slopes, as in Figs. 5 and 13.

The experimental results' also indicated that for
thinner films (for which the higher-branch modes were
exchange modes) the higher-branch modes had large
intensities, as expected for pinned exchange modes.
Later experiments by Besser" indicate that some of the
VIG films presently available may be of such high
quality that the exchange modes are not pinned. The
theoretical results also explain the fact that surface
modes have been observed"" under conditions for
which the surface spins are, expected to be pinned. "It
might have been expected that making m =0 at the

surface would have essentially eliminated the surface
modes, but the two-mode results above indicate that
this is not the case. It is reasonable to expect that the
result for other geometries, such as spheroids, should be
similar. For example, pinning the surface spins in a
spherical sample should not make large changes in the
frequencies or intensities of the observed magnetostatic
modes, ' ' which have large amplitudes at the surfaces
in general in the absence of explicit pinning.

The results indicate that the basic idea of Benson and
Mills' of a two-wave solution is essentially correct for
magnetostatic waves. (Their "rounder function"
1—nz' can be replaced by an exponential wave, giving
a two-wave solution. ) However, the added wave is an
oscillating wave, rather than a decaying one, in some
cases as discussed above.

Several conclusions of Wolfram and De Wames, '4

based on incorrect generalizations of computer solutions
for m and co for several specific values of k~5, QII, etc.,
contradict the present results. The k~ or k+ wave, not
the ik„«or k wave, is the important one for satisfying
the boundary conditions, and the amount of the k@ or
k+ wave in m is large away from the crossovers in
general. In their semi-infinite-medium calculation of the
lifetimes of surface modes, their solution satisfies the
surface conditions only at certain isolated instances of
time since a travelling wave nz, exp(ik, x) (with im-
plicit expi~t time dependence) cannot sa, tisfy their pin-
ning condition dm /dx=0 a,t x=0 for all times. It is
misleading to consider m as an admixture of bulk and
surface waves simply because one k, is imaginary and
another is real. For example, the ik~„wave above
rounds off m to zero at the surface, while surface waves
have large values of m at the surface.

10. SUMMARY OF THEORETICAL RESULTS

The result of the variational calculation for the fre-
quencies of the ferromagnetic normal modes of a thin
film is

~-=2~IvI~ (I ~
—Icos)

kgS

main branch, unpinned (44a)

= f((H, )+Dk') ((H;)+Dk'+2cod)]"' (43c)
lvl

where H; H,» HD [Sec. 6]—and c—o~= coq/~yt.
—The

results for ~d in rectangular films are as follows: For the
unpinned modes with arbitrary 0, a&z is given by (26)
and (27) for the main-branch and higher-branch modes,
respectively LSec. 4]. For perpendicular resonance, 0
="0, x'=x, y'=y, and s'=a; thus (26) and (27) give

' F. A. Pizzarello and J. H. Collins, in Fifteenth Annual Con-
ference on Magnetism and Magnetic Materials, Philadelphia,
1969 (unpublished); J. Appl. Phys. (to be published).

Mg&=27l ~'r ~M sin gp,

higher branches, unpinned (44b)
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where sin'0l, ——ky'/k'. For parallel resonance, 8 =90',
and (26) and (27) give

~.ii =2~lvl3f. —2~171~ cosV 1— (1 s—pals)

kgS

ted ~ i
=2s'

l
'r

l
3-'f, s111 9s,

main branch, unpinned (45a)

where

and

higher branches, unpinned (45b)

sin'gs ——(k„'+k.') /k'

cos'p' =k, '/(k, '+k„') .

For single-wave-vector pinned odd modes, co~ is given

by (27) [or (44b) or (45b) for 8 =0 or 90', respec-
tivelyj, and for pinned even modes, with krS«n, ppd

is given by (see Sec. 4)

.= (8/ ) l, l
M.k,s/n, (29a)

For a circular film in parallel resonance with 1=0
(no azimuthal nodes in m+), ss it is shown in the Appen-
dix that Eqs. (44) are valid if ky is replaced by the radial
wave vector k, and coq for the main-resonance mode is
multiplied by [1—(2r„/k~S)j/r„, where r is the factor
in the bracket in (44a). For the usual case of kIS«1,
this correction factor for the main-resonance mode in
a circular 61m is approximately equal to 0.67. For a
rectangular 61m, the values of ky are

k~
—(s./I )[u12+ (I2/gI2)u~2 11/2 (46)

For single-wave-vector unpinned modes: (f) The
higher branches have zero slope at the origin, which
implies that tps S'/F' for small values of ky. Thus the
low-order higher-branch modes are much more closely
spaced in frequency than are the low-order main-branch
modes. (g) The intensity of the main-resonance mode is
large, and the intensities of the other main-branch
modes decrease as ky increases. The intensities of all
higher-branch modes with k+&k, are theoretically ap-
proximately zero.

For single-wave-vector Pinned modes: (h) The slope
of +q was a function of ky and the values of I„are largest
for the main branch, and they decrease rather slowly
for the higher branches for the pinned even modes. The
values of I„and the slope of cvq at the origin are much
smaller (ted ~S'/F' and I„=0) for the pinned odd modes
on the higher branches. These formal results are for a
single wave vector m+. The frequencies and intensities
of magnetostatic modes (but not exchange modes) are
expected to be relatively independent of surface-spin
pinning; the results for ky«k, (or for ky))k, ) are
approximately the same as the single-wave-vector
results for unpinned (or for pinned) modes. See Sec. 9.

The effects of an inhomogeneity in II; across s' are
discussed briefly in Sec. 6 and in more detail in
Paper IV. The effects of the inhomogeneity in Il; along
rp (or W and L) are difficult to calculate accurately,
but the following results may be useful as a rough esti-
mate of the effects on (H, ) and tp~=—cpd/ l y l

for the mag-
netostatic modes. The value of (H,) in (43c) can be
written as

where n~, n~=1, 2, 3, . . .. For a circular Glm, the
values of k, for /= 0 are

k,rp/+=0. 76, 1.76, 2.75, . . . (n —0.25), . . . , (47)

where
(H;) =H.„4~iV,y(~Hn—),

(bH&) =g(S/2rp) (4~M ) . (36 )

which are the roots of Jp(k, rp) = 0, with rp as the radius
of the 61m.

The essential features of these theoretical results,
most of which are illustrated in Figs. 3—9 and 13, are
the following: (a) The modes can be conveniently
divided into branches, which correspond to different
values of k,. The different modes on a given branch
have different values of ky (Sec. 4). (b) All of the low-
order modes (small ky) on a given branch have approxi-
mately the same value of or,„—Dk, ', which is propor-
tional to ns'/S' and is independent of F, where F is a
face dimension such as the radius or length. (c) The
modes on a given branch have different amounts of
demagnetization energy hl pl cps in general, as seen in
Figs. 3—9. (d) The slope of cp as a function of k~ at the
origin is nonzero for the main branch, which implies
that Ms S/F (e) The mode. s on the main branch be-
come more closely spaced in frequency as ky increases,
corresponding to the Qattening of ~q as a function of ky,
as seen in Figs. 3—9.

»The case of t&0 is considered elsewhere: M. Sparks, Solid
State Commun. (to be published).

For the main branch, g increases from a value slightly
larger than 1 for the main-resonance mode to a value of

g
—7/4 for the high-order modes. For the low-order

higher-branch magnetostatic modes, g—1.
The approximate value of 6~~ for the main-resonance

mode can be obtained by the method of Sec. 6, or with
somewhat less accuracy from the relation

(36/ Il /)

For the high-order modes and for the low-order higher-
branch modes, Kpd—0. These two terms (8Hn) and Rv~

increase the width of the normal-mode manifold, in-
crease the spacings of the low-order main-branch modes,
and increase the spacing between the main-resonance
mode and the highest-field modes.
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sin'Hs= k '/(k '+k ') (55)

where k, is given by (32) (or the corresponding result for
odd. modes) with kr replaced by k, . For pinning at the
edges of the film (rs ——0), the values of k, are given by the

case of f«1 for the main-resonance mode, the value of
toe from (54) is 0.67 times as large as that from (53).

The exact solution'4 for the infinite-film problem in
circular-cylindrical coordinates for no exchange (D=0)
is given by (30) with

roots of the equation

Jt(krro) =0.
Thus, the values of k, are different for modes having
different values of azimuthal number /. For l=0, this
gives the values k, =0.76rr/ro, 1.76s/ro, . . . listed in
Sec. 5. Considering the other values of l offers an ex-
planation'4 of the observation of Dillon' that the first,
second, . . . , fifth modes in a sample containing a small
imperfection on its edge contained one, two, . . . , five
lines, respectively.
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Ferromagnetic Resonance in Thin Films. II. Theory of Linewidths
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The ferromagnetic-resonance linewidth AH from two-magnon processes in thin films is calculated. The
results are quite different from those in spheroidal samples in general, since both the densities of states and
the scattering Hamiltonians are different. It is shown that it should be possible to choose the radius and
thickness of a ferromagnetic insulator thin film in such a way to make the frequency of the main-resonance
mode lie well below the frequencies of all other magnetic modes. The resulting small DH's make the films
important for studying ferromagnetic-resonance linewidths and afford a useful low-loss system. For scat-
tering centers (such as pits and scratches on the surface of the sample or etch pits extending through the
sample thickness) which are smaller than the film thickness, the results are similar to those of Sparks,
Loudon, and Kittel (SLK) for a spherical sample. A modification of the SLK result is given which removes
the divergence in AH at parallel resonance and also makes AH go smoothly to zero at perpendicular reson-
ance. For scattering centers which are larger than the film thickness, AH has a rather large maximum at,
an angle approximately one-half way between perpendicular and parallel resonance, in contrast to the
small-scattering-center result of a maximum at parallel resonance. In addition to these results for the
main-resonance mode, it is shown that the mode-number-n dependence of the two-magnon linewidths of
exchange modes (having negligible microwave demagnetization energy) varies in a rather complicated
way from AH~n' for small I to AH~e' and DH n for intermediate n to QH~n' for large n.

l. INTRODUCTION

ECENTLV, Mee and co-workers' have succeeded
in growing single-crystal thin films of yttrium iron

garnet (YIG) ranging in thickness from 0.5 to 40 tt.
Since bulk films can be ground to a thickness as small
as 15 p, single-crystal YIG films with any thickness
greater than 0.5 p are now available. These films

promise to become important ferromagnetic-resonance
systems for the following reasons: It is possible to choose
the thickness S and the radius R of a film in such a way
that there are no magnetic modes degenerate with the
main-resonance mode of the film. The resulting small
linewidths 5H should be important for applications re-
quiring low-loss materials, and linewidth mechanisms

*Present address: The RAND Corp. , Santa Monica, Calif. ,
90406.

' J. E. Mee, J. L. Archer, R. H. Meade, and T. N. Hamilton,
Appl. Phys. Letters 10, 289 (1967); J. E. Mee, IEEE Trans.
MAGA, 190 (1967).

which were heretofore masked by the large two-magnon
process could be investigated in resonance experiments,
as discussed elsewhere. '

The density of degenerate states can be controlled
experimentally over a vast range from zero to very large
values. It may be possible to study such interesting
effects as mode clamping, ' comparison of the relaxation
frequencies of wave packets and standing waves, line-
widths of surface waves on the YIG-substrate interface
and on the YIG-air interface, interaction of magnetic
and acoustic surface waves, effect of the nonzero relaxa-
tion frequencies of the degenerate modes, and com-
parison of golden-rule relaxation frequencies with
normal-mode relaxation frequencies.

The ferromagnetic-resonance linewidth arising from
two-magnon scattering in bulk-type samples (e.g. ,
spheroids and thick disks) has been considered by

' M. Sparks, Phys. Rev. Letters 22, 1310 (1969).' M. Sparks, Quart. AppL Math (to be published).


