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A theory is developed for the frequencies of the general ferromagnetic normal modes of a sample of arbi-
trary shape and size with both exchange and demagnetization energies included. The frequencies of the
modes of rectangular and circular films are calculated by casting the linearized equation of motion of the
magnetization into the form of an eigenvalue equation, which is solved by a variational method. The results
explain the experiments of Dillon, Besser, Sparks ef al., Freedman and Brundle, and Voltmer in detail
qualitatively and typically to within ~5-109, quantitatively for the mode spacings, with possible excep-
tions for the first few low-order modes in some samples, for which several contributions to the line spacings
are difficult to estimate accurately. Pinning the surface spins has little effect on the frequencies and in-
tensities of magnetostatic modes (with negligible exchange energy). The theory has implications concerning
the main-resonance position in finite films, and together with experiments, further verifies Portis’s mode-
spacing theory. A simple physical explanation of the results is given, and the relation of the results for

for finite films to those for infinite films is given.

1. INTRODUCTION

N this first paper of a series on ferromagnetic reso-
nance in thin films and disks, a theory is developed
for the frequencies of the ferromagnetic normal modes
of these systems. In Paper II, the linewidths of the
modes will be calculated, and in Paper III, a theory of
pinning! will be presented. The effect of an inhomoge-
neous internal field H; and saturation magnetization M,
on the frequencies of high-order modes and a source of
the inhomogeneous H; and M, will be considered in
Paper IV. Experimental results will be presented and
discussed in Paper V by P. Besser and M. Sparks.
The normal modes of an infinite ferromagnetic system
are ordinary spin waves having magnetization

M=M3+m, 1

where 2 is a unit vector along the z axis and the small
transverse microwave component m is a plane wave:
m« exp(ik-r). For a finite sample, spin waves with
wavelengths \=2x/k short with respect to the sample
dimensions can be used as approximate normal modes,
but the approximation is poor when X is not small with
respect to the sample dimensions. The function m(r)
is then determined by the size and shape of the sample.
When the exchange energy is negligible, as it is for slow
variations of m as a function of r, these modes are
called magnetostatic modes. When the microwave
demagnetization energy is negligible, the modes will
be called exchange modes. In both cases it is assumed
that the sample is sufficiently small that electromagnetic
propagation is negligible.

Very briefly, the state of the theoretical and experi-
mental results for magnetostatic and exchange modes
prior to the present series of papers and that of Sparks
et al.? was the following: Only exchange modes had been
observed in metallic films,® the linewidths being too
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large for the magnetostatic modes to be resolved. The
frequencies of the exchange modes were fairly well
understood in terms of the theories of Kittel,* Wigen,
Kooi, and co-workers,? and Portis,? but the intensities
were not understood.

Only magnetostatic modes had been observed in thin
disks of ferromagnetic insulators since the disks were
far too thick for the exchange modes to be resolved.
Dillon® had explained his observation of magnetostatic
modes in thin disks of yttrium iron garnet (YIG) and
manganese ferrite in terms of Walker’s theory” for the
modes in spheroids. The major difficulty with the inter-
pretation was that the theoretical values of the mode
intensities were zero except for the Kittel uniform-
precession mode, whereas many strongly excited modes
were observed. As a result of the recent success of Mee
and co-workers® in growing single-crystal YIG films
having linewidths AH=1 Oe, the magnetostatic, ex-
change, and mixed modes can be observed in a single
thin film. No theories existed for the frequencies or
intensities of these modes in finite films.

White and Solt,? Dillon,® and others had studied the
magnetostatic modes experimentally. Walker” cal-
culated the frequencies of the magnetostatic modes in a
spheroid, and Fletcher and Kittel,'® Damon and Esh-
bach, and Akhiezer and co-workers!? extended the cal-
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culations to an infinite circular cylinder, an infinite film
(infinite in two directions, but having a finite thickness)
in parallel resonance,'® and an infinite film in perpen-
dicular resonance, respectively. Gann' and others' had
included exchange and demagnetization energies in
studies of the long-wavelength modes in infinite films.
Many investigators had studied exchange modes in
metallic films.?

In the present paper a theory is developed for the
frequencies of the general ferromagnetic normal modes
of a sample of arbitrary size and shape with both
demagnetization and exchange energies included. De-
tailed calculations are given for the frequencies of the
modes of rectangular and circular films, both thin and
thick. For the case of no explicit pinning of the spins on
the surface of a rectangular film, the present results are
simply related to those of an infinite film in perpen-
dicular and in parallel resonance (where the infinite-
film results are known). The infinite-film results there-
fore can be used to visualize the results for finite films
(Secs. 5 and 9). A simple physical model which explains
the result intuitively in given in Sec. 7.

The theoretical results for the frequencies explain
qualitatively the detailed experimental observations
by Besser,'® Dillon,® Sparks ef al.,? Brundle and Freed-
man,’® and Voltmer!® of the ferromagnetic-resonance
frequencies in thin and thick films and disks. Quantita-
tively, the calculated spacings between modes agree
with the small amount of existing experimental data
for thick films (thickness SS3 u) within ~5-109, with
possible exceptions for the first few spacing of the low-
order modes, as discussed in Sec. 4. The qualitative
features of the results for thin films (S<Z3 u) are ex-
plained by the theory,? but the quantitative agreement
for thin films of YIG is not expected to be good be-
cause the variation of H; across the thickness of the
film may be rather large, and the functional form of
H; is unknown.

According to Portis’s theory® of the low-order ex-
change modes, m is large only in the interior of the film,
rather than extending across the full thickness. This was
verified by measurements? of the magnetostatic splitting
of the first exchange mode in a film ~1 u thick, which
were interpreted according to the present theory. The
spacing of these magnetostatic modes corresponded to a
thickness approximately one-half as large as that ob-
tained from optical measurements and from the spacing
of the high-order modes. Nonzero slopes of the disper-
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sion curves of the even, higher-order modes (Fig. 13)
observed by Besser!® are further evidence for Portis-
type modes.

It is well known that the frequency of the main-
resonance mode in a finite film is shifted slightly from
that of the Kittel uniform-precession mode (k=0) in an
infinite film. The present theory indicates that this
shift is a consequence of the microwave demagnetization
field (giving the wq term to be discussed in detail) and
a shift in the weighted average of the static internal field
H ;. See Sec. 6. Other factors such as anisotropy, strain,
etc., could also effect the shift, of course.

The normal modes are quite sensitive to slight
changes in the sample shape. This was demonstrated
dramatically by Dillon® in experiments in which one or
both surfaces of a circular disk were ground to form
plano-convex or double-convex samples. Both of these
samples showed one large resonance line and three or
four smaller lines, in contrast to a series of 27 distin-
guishable lines in a well-defined series observed in a
double-plano sample. The plano-convex and double-
convex samples resemble a spheroid, for which only one
mode—the uniform precession—is excited by a uniform
microwave field. For the double-plano sample, formally
quantizing the radial wave vector in the infinite-circu-
lar-film results gives a series of modes with large inten-
sities, as observed. See the Appendix and Sec. 8. The
two sets of m for the spheroid and the circular disk are
quite different. For one set of modes in a spheroid,
m~prei»* for the mth mode, where p*=x2+4? and
¢=tan"(y/x). The most closely corresponding modes
for the circular disk have m~J,(k,p)e*"¢ cosk,z, where
k,7o is the first zero of J, and 0<k,<=/S.

Similarly, the eigenfunction m and intensities for a
long rectangular cylinder are expected to be drastically
different from those of a long ellipsoidal cylinder. Thus
the suggestion of Wolfram and De Wames* that the
eigenvectors for a “flat ellipse are possibly more realistic
than the plane-wave solutions . . .” for double-plano
samples is untenable. Wolfram and De Wames also
concluded that in finite samples, such as circular and
rectangular films, the main-resonance mode should be
the uniform precession and that previous considerations
of pinning*? were incorrect. Their conclusions were
based on the fact that the pure magnetostatic modes
(exchange constant D=0 and no pinning mechanism)
in an infinite elliptical cylinder magnetized along its
axis had large precession amplitudes at the surface of
the cylinder. (This is true also for the case of a sphe-
roidal sample.”) The conclusions are incorrect because
no pinning mechanism was included in their model cal-
culation and the uniform-precession microwave de-
magnetization field and the internal field are constant
throughout the infinite elliptical cylinder. It is easy to
show by direct substitution into the equations of motion
(6) that the uniform precession is not a normal mode of
a finite disk or film, a result which is not surprising since
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the internal field and the microwave demagnetization
field are quite inhomogeneous near the edges of the disk
or film, thus making the precession amplitudes small
there since the edge spins are off resonance, roughly
speaking. The direct optical observation of magneto-
static modes by Dillon and co-workers!®» shows directly
that the uniform precession is not a normal mode of a

finite disk.

2. PINNING OF SURFACE SPINS

The common concept of surface-spin pinning is the
following: The variation of the transverse magnetiza-
tion m across the thickness of the film is described by a
single cosinusoidal function

m=myg cosk g’

(for the even modes), where the 2’ axis is perpendicular
to the plane of the film. The pinning conditions which m
satisfies at the surfaces of the film are assumed to be

dm
am~+b— =0.
daz'

The surface spins are said to be pinned if b=0, or
unpinned if a=0.

Even though this concept of pinning can be quite
useful, it should be emphasized that there are cases in
which it can cause confusion. First of all, the true bound-
ary conditions are those which the potential satisfies at
2'=- . The fields must satisfy continuity conditions
at the sample surfaces, but the problem of determining
m and the normal-mode frequencies cannot be solved
as a problem with fixed boundary conditions on m at the
film surfaces. Thus the name “pinning condition,”
rather than boundary condition, was used above.

Mathematically, for the magnetostatic-mode problem
(D=0), specifying the usual electromagnet “boundary
conditions” (the vanishing of the potential at infinity
and the continuity of normal B and tangential H) de-
termine the solutions to (2) and (3). For the exchange-
mode problem [h=0 in (2)7], specifying a pinning con-
dition at each surface of an infinite film determines the
solutions. With both h and D included, specifying both
the electromagnetic boundary conditions and the pin-
ning conditions at each surface determines the solutions.
See Sec. 9.

Second, it is now apparent that in most thin films the
surface of the film cannot be considered as a mathe-
matical plane, but must be considered as a region of
finite thickness e.1” For the large-%,» modes having wave-
lengths approaching e the variation of m in the surface

16a T F. Dillon, Jr., L. R. Walker, and J. P. Remeika, in Pro-
dings of the International Conference of Magnetism, Nottingham,
1964 (The Institute of Physics and The Physical Society, London,
1965), pp. 369-373.
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Rev. B 1, 3869 (1970).
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layer becomes important in determining both the
intensities and frequencies of the modes, and the con-
cept of a sharp mathematical boundary surface be-
comes meaningless. In the present paper, only the case
of a perfectly sharp surface is considered. Effects of a
surface layer of nonzero thickness are considered in
subsequent papers in the present series. Third, for an
inhomogeneous internal field, 7 does not vary cosinus-
oidally, and the concept of a constant wave vector k.
loses meaning.

Finally, it is easy to show that the single cosine func-
tion considered above is not a solution to (6) when both
exchange and demagnetization energies are included.
In particular, Benson and Mills!® suggested that a
rounding of m near the surface to make dm/dz'=0 at the
surface is important in some cases. For example, con-
sider a wave of the form

m=mof coswz’— (w/k,) exp[ —k.(Z'+35)]1},

where S is the film thickness. If 2,>>w, then over most
of the volume of the sample m=m, cosrz’, which is a
pinned mode. But the small decaying exponential term
rounds off m near the surface at = —21S and makes
dm/dz' =0 at z’=—1S, which is the unpinned condi-
tion. The point is that specifying the degree of pinning
at the surfaces determines m everywhere when m is a
single cosinusoidal function, but not when it is the sum
of more than one function.

Fortunately, a large number of ferromagnetic-
resonance experiments in thin films can be explained in
terms of a single cosinusoidal or single decaying-
exponential function. However, this is not the case in
general, especially where intensities are concerned, and
it is important to distinguish between pinned modes and
modes with pinned intensities. The former have m=0
at the surfaces, and the latter have intensities cor-
responding to single cosinusoidal functions with m=0
at the surfaces. This will be discussed further in Sec. 9.

3. VARIATIONAL EXPRESSION FOR
FREQUENCIES

The equation of motion of the magnetization M is

aM

where M is given by (1), H=H2+h-4{AV?M is the
total effective field, £ is a unit vector along the z axis, A
is the exchange constant, H;=H,,,—47N,M, is the
internal field, H,pp is the applied field, and NV, is the
demagnetization factor for the z axis. The microwave
demagnetization field h is determined by the relations

V-b=V-:(h+4mm)=0, VXh=0. 3)
Walker” and others'®~? studied magnetostatic modes by

18 H, Benson and D. L. Mills, Phys. Rev. 188, 849 (1969).
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solving these equations with no exchange (A=0) by
eliminating m and solving the potential problem for ¢,
where h= V. By eliminating h rather thanm we obtain
an eigenvalue equation, which is solved by a variational
method. The eigenvalue equation can be obtained from
(2) and (3) as follows: Linearizing (2) by setting M,
equal to the saturation magnetization M ;, dropping the
small termsm Xh and m X AV’m, and assuming exp(iwt)
time dependence gives

—ihy~+ (Hi—AV2)im,= Om., @
—hot+ (Hi—AV)m,= iQm,
where H;=H;/M, and O=w/|y|M,. The demagnetiza-
tion field h can be eliminated from (4) by setting
h=WVy. This reduces (3) to —V%=47rV-m, whose
infinite-space Green’s-function solution is ¢¥= GV-m,
where the Green’s operator G is defined as

1
§/(n)= dl‘l‘ f(ry). )

r—r|

all space

Substituting h=VgGV-m into (4) and writing the
results in terms of the circular variables, m*=m,4-1im,
gives the eigenvalue equation

_.%.a-i- ga-i— :|[m+]
—H4-AV+-Lo-go+ Im—

7)o

where 0*=9/9x3-19/dy. It was verified that spin
waves, the lowest-order magnetostatic modes in a
sphere, and all of the magnetostatic modes in infinite
films in both parallel and perpendicular resonance are
solutions of (6).

The § functions in the demagnetization terms d+m*
resulting from the discontinuities of m+ at the surfaces
of the sample give rise to integrals over the surfaces.
These surface terms will not be considered explicitly
since it is easier to use an integration by parts and treat
the surface sources and bulk sources together. The §
functions and derivatives of § function at the surface
from the exchange term V?wm* are dropped. The effect
of exchange on the surface spins is discussed in Sec. 6
and in Ref. 17. The present variational method allows
us to study the effect of this and other pinning mech-
anisms, as discussed in Sec. 9.

The general eigenvalue equation (6) for the fre-
quencies of the normal modes can be simplified by
dropping the off-diagonal terms (which couple m*t
and m™) in the matrix operator, which is equivalent to
neglecting the third Holstein-Primakoff transforma-
tion!®? for ordinary spin waves. This gives the circular-

|:FL-—AV2—%8+Q6‘
207Go~

19T, Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
® M. Sparks, Ferromagnetic Relaxation Theory (McGraw-Hill
Book Co., New York, 1964).
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precession-approximation?! result
(H:—AV2—10t Qo) mt+ = Om*. (7

The circular-precession approximation is discussed in
Sec. 6. Benson and Mills'8 have carried out a variational
calculation without neglecting the off-diagonal matrix
elements in considering the effects of exchange on the
Damon and Eshbach!! surface waves.

Since the operator in (7) is Hermitian, the normalized
diagonal matrix element {}, is a variational expression
for the nth eigenvalue Q,:

Q.20 =(H;—AV:—19TGo™), (8)
where the average (€) of any operator £ is defined as

e [ morc |

sample

dr|iiat]?, (9)

where * denotes the complex conjugate. Since (8) is a
variational expression, {, will be a very good approxi-
mation to Q, if the trial function #,* is a fairly good
approximation to the true m,*; i.e., if M, "=m, +vf,
where »<<1, then (,=Q,+0(@?), where O(»?) is of the
order of »2.

The general result (8) can be written as

Bp= I7|<Hi>+wexc+wd, (10)
where
wexo= | 7| M (AV?) (11)
and
wa=—}|v|M(0+Go™)
1
=—3lv| M, ar n‘m(r)*/ dry +———
sample all space lr—rli
X5 iyt (ry) / / dr |m,. |2 (12)
sample

with 9y =(8/9x1) —i(d/dy1). Equation (12) can be
simplified by integrating the r; integral by parts and
using

1 1
= dq—_ ;

\r"'rli 27 all space q

et (ri—r)

(13)

This gives

[y, f q¢
wa= dq—
472 all space q2

2

/ dr mn+eiq .r /
sample

/ drlmt|2, (14)
sample

where ¢.2= g¢,>+¢,% The approximationé made in ob-
taining this general result were the linearization of the
equations of motion, the circular precession approxima-

2 See Sec. 3.3 and p. 69 of Sparks (Ref. 20).
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tion, and the wvariational characterization of the
eigenvalues.

In Sec. 4, the variational characterization (10) of the
eigenvalues will be used in a very simple way to obtain
the first-order approximation to the normal-mode fre-
quencies. Simple trial functions containing no adjust-
able parameters are used. The choice of the trial func-
tions is motivated by physical intuition, by general
considerations of the number of nodes in the function,
by analogy with infinite film results, and by the fact
that the solution should be a standing-type wave rather
than a travelling-type wave.

It should be mentioned that the general results of the
present section can be used as the starting point in more
sophisticated analyses. See the reference by Benson and
Mills for several examples.’® Care should be exercised in
calculations involving adjustable parameters. For ex-
ample, for A=0 the main-resonance mode is not the
mode having the lowest value of w. Thus the best func-
tion in a class of trial functions cannot be obtained by
adjusting the parameters in the trial function to mini-
mize &, in general. As another example, the best func-
tion in the set

m=cos(n—p)w/S

cannot be obtained by setting d&,/dp=0 with &, given
by (10). This is because sources of the surface spin
pinning, such as an inhomogeneous 3/, have not been
included in deriving (10), and these sources, rather than
d&a/dp=0, will determine the value of p.

Other standard precautions for variational character-
izations of eigenvalues should be observed. For example,
care must be exercised in the selection of the trial func-
tions. The choice of the trial functions was discussed in

Fi1c. 1. Schematic illustration show-
ing fields, angles, and coordinate
systems used in the text. The axis of
quantization is z, and the 2z’ axis is
normal to the film surface.
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the two previous paragraphs. As an example of a diffi-
culty which could arise, in perpendicular resonance m*
could be chosen as ~exp(—£.z), corresponding to a
surface mode. However, the infinite-film!? and infinite-
cylinder results for magnetostatic modes indicate that
if surface modes exist they are more likely to be asso-
ciated with the small edge of the sample than with the

large face.

4. FREQUENCIES FOR RECTANGULAR FILMS

Consider a thin rectangular film having width W
along the #" axis, length L along the 9’ axis, and thick-
ness .S along the 2z’ axis. Since the normal modes are
expected to have 0, 1, 2, ... nodes along the «/, y’,
and 2’ axes, and ™ is sinusoidal for an infinite film, and
we want standing waves for a finite film, we choose the
trial function in (8)-(14) as

Wt =mg cos(kex’ —Fnm) cos(kyy’ —Ln,m)

Xcos(k,z —3n.m), (15)

where =0 or 1 for modes even or odd in &', ¥/, or 2.
Note that z’ is normal to the plane of the film and z is
along the equilibrium position of M, as illustrated in
Fig. 1.

The values of the &’s are chosen to give the appro-
priate number of nodes. It is assumed that the spins are
pinned at the edges of the sample (at #'==41WW and
y'==3L); thus k,=nwr/W and n, =Nyr/L, where
nw,nL=1,2,3---. The optical observation of magneto-
static modes by Dillon and coworkers'® and the ob-
servations®2:15.16 of large numbers of intense resonance
modes indicate that this assumption gives better agree-
ment with experiment than does the assumption that

Ly}

. A
2 /l ,
| N,
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dm/dz =0 at the small edges. Theoretically, it is ex-
pected that m will be small near the small edges because
the static and microwave demagnetization fields there
will be different from those in the bulk of the sample
away from the edges. Thus these edge spins are off reso-
nance, roughly speaking. This is analogous to the
Wigen-Kooi-type*!? and Portis-type®!” pinning of m
along the 2’ direction.

The intensities depend on the form of m,* as well as
the pinning, as discussed in Sec. 2. For the higher-order
modes (large values of nw and 1) the assumed sinus-
oidal variation is expected to be fairly accurate over a
large fraction of the sample volume, by analogy with
the results for an infinite film. For the low-order modes,
the deviation of m,™ from the assumed form probably is
not small. The resulting deviation in the frequency is
reduced by the variational characterization of the eigen-
frequencies, as already mentioned. The values of &,/ for
arbitrary pinning at z’=-415 are

ko= (ns—p)/S, (16)
where ng=1,2,3, ... and p ranges from O (pinned) to 1
(unpinned). The calculations will be carried out for
pinned modes (p=0 and m+~cosr/S, sin2x/S, cos3r/S,
...) and for umpinned modes** (p=1 and m*t~1,
sinw/S, cos2x/S, sin3w/S, ...). Comparing the two
results with experimental results gives information
about pinning, as discussed in Sec. 9.

Substituting (15) into (11) gives

wexe= || DE2, an

where k*=k.2+k,*+k.? and D=AM,. This result and
the value of (H;) will be discussed in Sec. 6. Substituting
(15) and (14) and evaluating the integrals over r gives

l’)’ IMSSWL Qg2
wg=————— / dq—GoGy G, (18)
47"2[2’ all space 92

where

2 S/2
I,=— / ds' cos?k,'s’,
—s/2

_ 1<sm%(qj—k])L, (—I)W sin%(q,-—l—kj)Lj)z (19)
"o\ L(g—ky)L; 3(qitki)L; ’

for j=«/,9', 4, and Ly=W, L,=L, and L, =S. The
factor of ¢2=q.?+¢,® in (18) can be written in the
primed basis as ¢.>=qe’—2¢q. COSOy, sinb,, where
g®= qy*+ g C08%0+ g2 sin%0 and 6, is the angle
between M, and the normal to the film surface, as
illustrated in Fig. 1. By using this expression for g.?
and the fact that G; is an even function of g¢;, (18) can
be reduced to

|y | M. SWL g6
wg=—————— / dq—G.Gy Gy . (20)
471’213' all space 92

2 Note that “pinned modes” and “unpinned modes’ refer to
the pinning of the spins at the large surfaces of the films at
2’ =31S. For both the pinned and unpinned modes, the spins are
pinned at the small edges of the film at &’ ==3W and y'==£3L.
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Writing the terms in (19) gives

Go= %F[:%(q::’ “kx’)I/V:]_i_%F[%((Ix"*“kx’)W]
—cross terms,

21

where F(£)=sin?{/£% By sketching G and F it is easy
to see that neglecting the cross terms in G and Gy
gives ~109, error for ky=m/W and less for higher
values of k.. Neglecting these cross terms and using the
fact that the integrand in (20) is even in ¢,» and in g,
reduces (20) to

|v|MSWL qe®
ol I
47"212’ all space 92

XF[5(gy —ky)L1G. -

In evaluating the integrals in (22) for the unpinned
modes, first consider the modes with k,,=7%,=0.
The value of I, is 2, and the definition of G, gives
G.=2F(%q.S). Approximating F(£)=sin%/£ in the
¢ and ¢, integrals by

F(e)==1, for |§|<3r

(22)

=~0, for |&|>ir (23)
reduces (22) to
|y | MSWL qo? sin?1g.S
wd=——-“—f dq"‘g*, (24)
4’ o ¢ (3¢5)°

where the volume Q is defined by |qo —Fko | <7/W and
| gy —ky | <m/L, as illustrated in Fig. 2. Using dq
=(2x/W)(2w/L)dg.» and replacing ¢»* and ¢,* by
their values k.2 and k2 at the center of dq, as illustrated
in Fig. 2, gives

ky?+ky? cos®0mtq.? sind,,

g tks?
sin?3¢,S
(3g=8)*

where k2=k,2+k,? is the square of wave vector in the
plane of the film. Evaluating the integrals gives one of
our central results:

wdgl'ylMSSf dqy

(25)

wa=22m |y | M s sin?0,, 421 | v | M o(cos?0m—cos?¢’ sin0m)

1

Xl:l— *(1—6"”5)] , for mt(z)=21 (26)
kS

where cos?¢p’ =k, %/ (k»2+k,?). In Ref. 2, the approxi-

mation (23) was used for the ¢, integral, thus giving a

tan—! factor in place of the factor in brackets in (26).

Making the replacement

2 T 2 1
—tan~!'-— —|:1— —(1-—-6_f)] )
™ o f

where f=FkS, in Ref. 2 gives the results of the present
paper.
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Next consider the unpinned modes with k. >w/S.
The same approximation of dropping the cross terms in
G in (21) can now be used for G... Thus, the volume Q
in (24) is that for which |go—ko|<n/W, |g,—ky|
<w/L, and |gs—k.|<w/S. The integrand ¢s*/q? is
nearly constant over the volume Q, and its value is
(ky 2 4-kar cos?0m+k.? sin?,,)/k2. Thus (24) gives

ky?+ko? cos®0m+k. % sin%l,,
> . @2n

wd=27r|'y]Ms(
B2

The factor in the parenthesis in (27) is equal to sin26j for
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parallel and perpendicular resonance, but not for reso-
nance at an arbitrary angle 6,,. Here 6, is the angle be-
tween k and 2. The values of wq in (26) and (27) for the
special cases of parallel and perpendicular resonance
and the corresponding results for circular films are listed
in Sec. 10.

For pinned o0dd modes, the analysis leading to (27)
is unchanged, and (27) is valid for these modes. For the
pinned ever modes, the integrand in (22) is large in
two regions, one near ¢,=%, and the other near ¢.=0.
The former gives a contribution to wa equal to (27).
For the latter, consider the value of G, in (19) in

~

A ~ I
qz' /
2
w
2
L
T
S
2, .2,,2)V
/(qz|+ kx|+kyl)
. T ;__“_"____: _ L ;\
e Ml
W\ [E="— =7 |
~ I‘(qzu
| pd dy:
//
| ~
7~ kx'
Kyt
){ y
Volume Q— |

F16. 2. Volume Q in q space in which the wg integrand in (24) is large. The average value (g.2+k.2+k, 512 of ¢ in the
differential volume element dq is shown in the figure.
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Main -resonance mode
Main branch
Higher branches

k,Zw/S

Kz =0~

\I\

S/
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T_k,Z2w/s

k,237w/S
k2547r/S

k=2
[ 2m/S LK
w/S 21/ S 3w/ S 47/S F1c. 3. Sketch of the dispersion relations
sz-,r/ S for the unpinned ferromagnetic modes in
(a) a thin film in perpendicular resonance
showing the various branches for an
infinite film (solid lines) and the indi-
witw vidual modes for a finite film (points):
d exc (a) for no exchange; (b) schematic effect
of exchange.
kz,=3m/S
kz =2mw/S
A L ! 1 f
m/S 27/S 3n/S 4T/ S
kz: w/ S ( b )

perpendicular resonance with %;S<&w. From (19),
G.=8/k.2S? for q,=0; thus (22) gives

8 I'Y l M, ks
i | . (28)
kz2S —o0 q:2+kf2
Evaluating the integral and using k,=#ngr/S gives
8 ksS
wd=—l’yiM.,— (29a)
T N2

for the contribution for the even pinned modes from
the region near ¢,=0 when %2;5<w in perpendicular
resonance. The joining of this result (29a) onto the
results for k,.5>>7 will be illustrated in Sec. 5 (Fig. 4).

In perpendicular resonance for the pinned main-
branch modes, the result for arbitrary £,S is

S M S<2 — ) (29b)
W= —m|y|Ms —tan~ —
= ¢ (8/72)k,S

™ ™

for pinning, i.e., for m~cos(rz/S). In evaluating the

g integral leading to (29b) the approximation

1<sin%(q,/+7r/5) n sin%(q,r—r/S))2
2\ 3qa+7/S 3(g.—7/S)
2
~— for |g.|<
8 (w2/8)S
=0  otherwise

was made. Thus (29b) is to be compared with

2 T
wa=m |y Mska<~ tan“1—~>

T ky

for the unpinned case. For k5, (29b) is 8/x%=0.8106
times smaller than the result for the unpinned main-
branch modes.

Consider the errors in (26) resulting from the follow-
ing approximations used in evaluating the integrals:
the neglect of the cross terms in (21), the approximation
(23) used in the g,» and g, integrals, and the replace-
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ment of ¢,? and g,-% in (24) by their values k? and &,?
at the center of dq. For large values of nw and ny
[defined above Eq. (16)], say, S3, the approximation
are all satisfied fairly well, and the expected errors in wqg
are £10%,. The greatest error, for nz=nwy=1, may be
considerably greater than 109, because of the replace-
ment of ¢,* and ¢,% by k»? and k.2 The integrals for
the first few modes could be evaluated numerically for
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the particular film being investigated if greater ac-
curacy were required. If such evaluations are made, the
change in k. as a function of 2.5 (Sec. 5) should be
taken into account in the 7, and dq integrals in (18).
Also, the mode dependence of (H,;) (Sec. 6) may ac-
count for part of the large spacings of the low-order
modes, including that between the main resonance
and the weakly excited highest-field mode.2 Other

“d
/kz=1r/ S
Nk =5#/S
k =4xw/S
. _ / k =3%/S
el k =27/$ ks
= | | : |
w/S 2w/ S 3r/S 4w/ S

Fi1G. 4. Sketch of the disper-
sion relations for the pinned (a)
ferromagnetic modes in a thin
film in perpendicular resonance
showing the nonzero slopes of U)d +wexc
the odd modes: (a) for no ex-
change; (b) schematic effect
of exchange.

k= 27/S
k,=m/S
kp=4m/S
k
| ! ! L f
T /S 2n/S 3w/S 4w/ S

(b)
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factors affecting the over-all accuracy of the results are
the deviation of m* from the assumed form (15), the
approximation used in accounting for the noncircular
precession of the magnetization (in Sec. 6), the in-
homogeneity in H; across the thickness of the sample
(see Paper IV of the present series), the change in k.
as a function of k,S (Sec. 5), anisotropy, strain, local
spin pinning, line shifts (associated with linewidths),
and possibly mode clamping effects.?s These higher-
order effects have been discussed elsewhere.

5. DISPERSION RELATIONS FOR FINITE
AND INFINITE FILMS

Damon and Eshbach!! obtained the dispersion rela-
tion for an infinite film (W and L infinite, but S finite)
in parallel resonance with no exchange, and Akhiezer
and co-workers!? obtained the corresponding results
for an infinite film in perpendicular resonance. It will
now be shown that the infinite-film results are closely
related to the present results for finite films in the case
of no pinning at the large surfaces of the films (at
2= 415) and have implications concerning the pinning?
conditions for the trial function for finite films.

The dispersion relations for the normal modes in an
infinite film in both perpendicular and parallel reso-
nance are formally the same as those for ordinary spin
waves (infinite medium):

o/ |v|=[H:H+202)]*, Hr=H+Dk?, (30)
w/|v|=H1+64, (31)

where 0, is the angle between k and £, and (31) is the
circular-precession?! approximation to (30). The effect
of exchange has been included formally by adding Dk?
to H, as discussed in Sec. 6. For ordinary spin waves all
three components of k are continuous, and it is con-
venient to consider w as a function of |k| with sin?6;
as a parameter which varies continuously from 0 to 1
to give a continuous set of curves.?” For an infinite film
of finite thickness .S, (30) and (31) are still valid and k.
and &, are still continuous, but k.- has discrete values
(for given values of k.- and k).

In perpendicular resonance in an infinite film, w is a
function of &, and of k;= (k,2+k,*)!/2 Thus, it is con-
venient to consider w as a function of k2, with different
curves for the different discrete values of k.. These
discrete values of %, for the even modes are given by
the roots of the equation!?:2¢

&)d= 27I'Ms Sil’l20k s

q=3%k.S. (32)

The corresponding result for the odd modes is
tang= —gq/3ksS. The roots of both these equations can
be written as

tang:%ka/Q)

k.= (ns—p)r/S, (16)

% M. Sparks, Quart. Appl. Math. (to be published).
% M. Sparks, Solid State Commun. (to be published).
% For example, see Fig. 3.2 of Sparks (Ref. 20).
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where ng=1, 3, 5, ... for the even modes, ng=2, 4, 6,

... for the odd ones, and the values of p range between

0 (pinned) for k~>k, and 1 (unpinned) for ks;<k..
By using (16), (31) and

sin®0=ks2/ (ks 2+ k.7, (33)

it is easy to obtain the dispersion curves, which are
sketched as solid curves Fig. 3(a). Formally replacing
the continuous variable k; by a discrete set (such as
kf=0.767r/r0, 1.7671'/7’0, 2.757I'/7’0' o (nj—0.25)1l'/7’0, e
which corresponds to pinning at the small edges of a
circular film—see Sec. 10) and retaining the infinite-film
values of %, from (16) gives a discrete set of points in
place of each curve, as illustrated in Fig. 3(a). The
curves such as those in Fig. 3 are useful in visualizing
the results such as (26) and (27), as discussed in Sec. 10.
Figure 3 (and Figs. 4 and 12) are sketches, not exact
plots.

We now show that this formal procedure of replacing
curves by an appropriate set of discrete points gives
agreement with the results of the variational calculation
for two limiting cases of &,S for unpinned modes (but
not for pinned ones). First consider perpendicular
resonance and the top curve in Fig. 3(a), which cor-
responds to #g=1 in (16). For the case of kS,
we can set tang=¢ in (32), which gives ¢*= kS, or

k.=[(2/m)k;S]?1/S. (34)

In passing, note that k.<<m/S; therefore, m* is nearly
constant (i.e., unpinned) across the thickness of the film
for this case of k;S<m and ns=1. This result and the
result below that m* is nearly pinned for £.S>>w and
ns=1 are explained physically in Sec. 7. Substituting
(34) and (33) into (31) gives

/|| =Hi+mM S 35)

in agreement with (44a) in the limit £;5<1.

In the other limit of 2;S>>7 (still with ng=1), (32)
gives ¢==r/2, or k.=w/S; therefore, k*>>k.2. With this
result, (31) and (33) give ws=22r|y|M,, in agreement
with (44a) in the limit £,5>>1. The agreement of the two
results in the limit £,5>>1 is not surprising since both the
variational-calculation and modified-infinite-film results
are expected to be accurate in this limit. However, it
appears that the errors in the modified-infinite-film
results should be rather large for the low-order modes
[#1 and nw small—see Eq. (16)], and the errors in the
variational expression also are expected to be large for
these modes as discussed in Sec. 4. The most accurate
results for the low-order modes should be those obtained
from numerical evaluations of the integrals in Sec. 4;
the variational calculation takes into account the
sources of the microwave demagnetization field in the
finite sample, while the formal application of the
infinite-film results to a finite film implies replacing
integrals over one half cycle of a sine wave by integrals
from —oo to . For the other curves in Fig. 3, results
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[z-main branch (k,=7/S)
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F16. 5. (b) Enlarged view of the protion of Fig. 4(a) near the origin. (a) Intensities and spacings of several of the modes shown in (b).

(44b) are already in a form which shows its equivalence
to (31).

Further disadvantages of the modified-infinite-film
results are that these results are incorrect for pinned
modes, the effect of changing the amount of pinning at
the small edges of the sample cannot be obtained from

F16. 6. Dispersion relations for
the magnetostatic modes of an
infinite film in parallel resonance
reproduced from Fig. 3 of the paper
by Damon and Eshbach (Ref. 11).
The single sheet which intersects
the wa—£k, plane above the line
marked A-C is a surface-mode
sheet and the others are bulk-mode
sheets.

the theory, the important effects of an inhomogeneous
H; (discussed in Sec. 6) are not included, the effect of
the deviation of 7 from that of an infinite film is not
contained]in the theory, and there is no direct way to
improve the accuracy of the results. The usual infinite-
film results!:!? apply only to the unpinned modes in
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rectangular samples in the limiting cases of 6,,=0 and
w/2. However, Sparks has solved the infinite-film
problem in circular-cylindrical coordinates and applied
the results formally to finite circular films.?*

The series of modes having the smallest value of %,
will be called the main series, or modes of the main
branch (see Fig. 3). The main-branch mode having the
smallest value of k; will be called the main-resonance
mode. The other branches (marked k,=7/S, 27/S, ...
on the low-frequency section of Fig. 3) will be called
higher branches. The value of %, for a given branch in-
creases by 7/S as k; goes from 0 to « for an infinite
film, as marked at the top and bottom of Fig. 3. We
mention in passing that in an infinite film in per-
pendicular resonance with no explicit pinning mech-
anism the modes with k;S<ngsm are unpinned, and those
with k;S>>ngm are pinned. The same result is expected

SPARKS 1

to be true in finite films. In particular, the modes with
ksS>>nsm are expected to be pinned even in the absence
of an inhomogeneous M, antiferromagnetic surface
layer, surface anisotropy, etc. This is of no consequence
in experiments performed to date since only modes
with %k;S<m have been observed.

The dispersion relation for pinned modes in per-
pendicular resonance are similar to those of unpinned
modes (Fig. 3) except that the even higher-order
branches have nonzero slopes at 2;= 0 according to (29).
Figure 4 illustrates this result. Figure 5(b) is an en-
larged view of the low-&; portion of Fig. 4. The mode
intensities in Fig. 5(a) are discussed in Secs. 8-10, and
the effect of Portis pinning?® is discussed in Sec. 7.

The dispersion relation for parallel resonance cannot
be displayed as a single set of curves (as in Fig. 3 for
perpendicular resonance) because the frequency is a

“q

m/S 2w/S 3w/s 4mw/s m&zm=mdeFng%¢m
- curves (for an infinite film) in (a) are
(a) kxl - kZ > reproduced from Fig. 4 of the paper by
Damon and Eshbach (Ref. 11). The
points are for a finite film: (a) for no
exchange; (b) schematic effect of

exchange.

wq + Wexc

2mw/S
(b)

3mwr/S
ky'=ky, — =

4m/S
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Fi1c. 8. k., =0 plane of Fig. 6 showing the
infinite-film results as solid curves and
the finite-film results as points. Curve
(a) is for no exchange (all modes degen-
erate) and (b) schematically illustrates
the effect of exchange.
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function of cos?¢’=k2/(k2+k,?) as well as ky and &,
It can be represented by sets of curves in (w,ka k)
space, as shown in Fig. 6, which is reproduced from the
paper of Damon and Eshbach.! The intercepts of these
surfaces with a plane of constant %, gives w as a func-
tion of ks for this value of k,, as illustrated in Fig. 7
for the smallest value of k,,=m/L. The intersections of
the surfaces with the plane of constant k. gives wasa
function of k, for this value of k., as illustrated in
Fig. 8(a) for k., =0.

In view of the fair agreement between the theoretical
results of Secs. 4 and 5 with the infinite-film results, it
appears likely that the frequencies of the surface modes
in finite films can be approximated by replacing the
continuous variables %k, and %, by the same discrete
set used for the bulk modes. This gives the results il-
lustrated schematically in Fig. 9(a) for the surface
modes for the case of k;=£k,. The experimental results
of Brundle and Freedman'® have been analyzed?* using
this method, and it has been suggested that several
low-field modes in Fig. 3 of Ref. 2 are surface modes.?

In both parallel and perpendicular resonance, the
magnetostatic modes having k;<k. are nearly un-
pinned, and those having k£/2>k., are nearly pinned.!!*?
In parallel resonance the magnetostatic modes having
k;<k, also show a change in symmetry (even or odd
functions of x, where x=0 at the center of the film)
as the angle ¢=tan"!(%,/k.) changes. Here the applied
field is along z, and the x axis is normal to the plane of
the film. From the results of Damon and Eshbach!!
[their Fig. 7 and Egs. (20), (11), (16), and (17)] it can
be shown that for 0<k,&Km/S, m for the main-branch
changes from m=~sin(rx/S) (unpinned, odd) for
k. Zka/Qu, to m=~1 (unpinned, even) for k,/n/Qu
Zk&Ln/S, to m==cos(rx/S) (pinned, even) for k. >>m/S.

kyl:ky

Here Qp=H;/4wM ;. For the main branch in the limit of
k,— 0, m==sin(rx/S) for k,&r/S, and m~ cos(rx/S)
for k,>>w/S. These results are illustrated schematically
in Fig. 10.

The higher branches show corresponding symmetry
changes at k.~2k,/n/Qpu for small values of %,. Note
that k,<k,/+/Qx is the region in which the surface
states exist, and k, Sk,n/Qy is the region in which bulk
modes are excited when k; is small and the applied
microwave field is independent of x. For k;S<Z1, the
surface modes extend across the sample, i.e., they do not
cling tightly to the surface, and they have large in-
tensities. Thus for k,S<m, the magnetostatic modes

wT/S

F16. 9. Magnetostatic surface modes with k,=0 in an infinite
film in parallel resonance. The solid curve (a) (for an infinite film
with no exchange) is reproduced from Fig. 3 of the paper by
Damon and Eshbach (Ref. 11). It is speculated that the points
should represent the magnetostatic surface-mode frequencies in
a finite film. Curve (b) schematically illustrates the effect of
exchange.
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Fi1c. 10. Schematic illustration of the change from unpinned to pinned surface conditions as ks increases through ky==/S
and of the change of symmetry of the magnetization at k,/k.=2\/Qy for ksS<Kr. Here Qu=H;/4xM,.

which are strongly excited by a constant applied micro-
wave field are surface modes when £, Zk,/+/Qg and are
main-branch bulk modes when %,S%,/+/Qux.

For k;S>>m, the surface modes cling tightly to the
surface, ! while the main-branch bulk modes have
m~cos(rx/S). Thus the bulk modes have the largest
intensites for all values of k./k, when k;5>>7. The con-
tradictory conclusions of Wolfram and De Wames!
were based on computer calculations for specific cases
which were incorrectly generalized.

6. EFFECTS OF EXCHANGE, NONCIRCULAR
PRECESSION OF MAGNETIZATION, AND
INHOMOGENEOUS H;

First consider the effect of exchange on the normal-
mode frequencies in an infinite film (W and L infinite,

but thickness .S finite) in perpendicular resonance. The
solutions to (6) with no exchange (A=0) are products of
sine waves for rectangular coordinates and are circular-
cylindrical functions [Eq. (49)] for circular-cylindrical
coordinates. Since —VmE=k*n% in both cases (k?
=k,24 k.2 for circular films?), —V? can be replaced by
k? in (6), and the solutions for A=0 are also solutions
for As£0. Consequently, it might appear that an exact
solution could be obtained for an infinite film by
formerly replacing ; by H;+ Ak? in the solution for the
case A= 0; symbolically

H;— H+Ak2. (36)

26 Since k?=k,2+4k.2, it might appear that the exchange energy
is independent of the number ! of azimuthal nodes. However, the
values of %, are determined by the zeroes of J;(k#o), and these
zeroes depend on the value of L
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F16. 11. Schematic illustration of the microwave magnetization m showing only the values of m which are one-half wavelength apart :
(a) for an ordinary spin wave (infinite medium); (b) for a finite film with 2,=0 and \,/2>>S; (c) for a finite film with k,==/S and
A:/2>>S; (d) for a finite film with k. =37/2S and A\,/2>>-S. The plus and minus signs signify magnetic sources of demagnetization field
h for equivalent slab samples as discussed in the text.
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However, this formal procedure neglects the effect of
exchange on the pinning conditions at 3’ =4S, as dis-
cussed in Sec. 9.

In some simple cases, which fortunately include most
cases of present interest to experimentalists, the effects
of exchange are intuitively clear. For example, for an
infinite film in perpendicular resonance with A=0,
dmt/dz=0 at z= =415 when k;S<r for the main branch
or when k;<<k, for the higher branches. A simple argu-
ment!” indicates that exchange also tends to make the
slope small at the boundary for long-wavelength modes
(k.a<<1, where a is the lattice spacing). Thus exchange
does not tend to change the boundary conditions at
z==1S, and it is reasonable to expect that the formal
replacement (36) will give accurate results for the
normal-mode frequencies. In this particular case, the
magnetization mt also will be relatively unchanged from
that for A=0. For the other extreme of %;,5>>= for the
main-resonance mode, or k>>k, for the higher-branch
modes, m+==20 at z= 1.5, rather than dm*/dz=0, when
A=0. In this case the exchange does change the bound-
ary conditions at z= =435, and m* will be changed from
its form for A=0. (See Sec. 9).

For an infinite film, this change in m* can be sub-
stantial, but the frequencies are relatively unchanged
from those in (30) (away from the crossovers).?#1* This
is not surprising since the physical arguments of Sec. 7
indicate that the demagnetization contribution to w
still should be ~ 27y M ;, and the exchange contributions
should be of the order of Dk?since the modes still can be
characterized by the number of nodes in 7% and first-
order changes in m* tend to give second-order changes
in w in general. From (36) it is seen that the central
effect of exchange on the dispersion curves is obtained
simply by adding Dk?*=D (k.*+k*) to all curves. The
term Dk,? increases the value of the £;=0 intercepts,
and the term Dk,? adds a quadratic factor to the curves,
as illustrated in the (b) parts of Figs. 3, 4, and 7-9.

In passing, it should be mentioned that k. is
imaginary for a surface wave. That is,

)2 J~exp[— |k |2].

Thus, the exchange term Dk? becomes D(ks2—|k.|?%).
For pure exchange surface waves (demagnetization
energy neglected), this result is correct.?” However,
formally adding D(k>—|k.-|?) to the energy of the
magnetostatic surface waves!! gives an incorrect result.
For example, k2= |k, |? for a DE surface wave propa-
gating in the direction perpendicular to the applied
field; thus D(k;2— |k.-|?)=0, and this wave would have
no exchange-energy contribution to its frequency, which
is incorrect. The form of m* for magnetostatic waves is
changed considerably when exchange is added, as dis-
cussed in Sec. 9, and the result is that the dispersion

mt~exp[i(i| k.

27 M. Sparks, J. Appl. Phys. 41 (1970); Phys. Rev. (to be
published).
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curve does bend up with increasing %; as illustrated
schematically in Fig. 9(b).

Next consider the effect of the noncircular precession
of the spins. For infinite-medium spin waves, the dis-
persion relation is given by (30), and the circular-
precession approximation?! to (30) is (31). The error
introduced by making this approximation is zero at the
bottom of the manifold (i.e., at ;=0) and is maximum
at the top of the manifold (6x,=7/2). See Fig. 3.2 of
Ref. 20. The error at 6,=m/2 decreases as Hr increases,
i.e., as either H; or Dk? increases. For YIG at 9.40
GHz and room temperature in perpendicular resonance
with Dk?=0, the error in the applied field at the top of
the band is 2.6% (2593+1750 Oe without the approxi-
mation and 248141750 Oe with the approximation)
and the error in the width of the manifold is 14.79,
(763 Oe without the approximation and 875 Oe with
the approximation).

In order to account for the noncircular precession
approximately in -the present case of a finite sample,
the circular precession result (10) can be formally re-
placed by (30) with H7=(H ;)4 ®exe- In the limit as L
and IV approach infinity and H ;= const, this procedure
gives accurate results. Although (30) is not exact for
finite films, it is expected to be within the over-all
accuracy of ~5-109, of the theory for YIG at X band
or higher frequencies. Without any correction for
noncircular precession, the errors are fairly small, as
discussed above, and the corrected result (30) gives
accurate results in several limiting cases (e.g., ®a<K875
Oe, or ny and ny>1).

In general there will be inhomogeneities in H; across
the thickness®517 S and along the radius 7y (or length
and width) of the film. These inhomogeneities change
the values of (H;) and of Gg¢=wa/|v|. The inhomo-
geneity across .S can give rise to Wigen-Kooi-type pin-
ning?® (near the surfaces) or to Portis-type pinning® (in
from the surfaces). The Portis-type pinning changes the
exchange and internal field terms in w, as is well known.?
It also changes wq since the effective thickness Sess over
which m is large is less than S (see Fig. 12 below), and
it makes the slope of w versus k; nonzero at k;=0 for
even modes, as discussed in Sec. 7. The inhomogeneity
in H; across S, as well as sources of the inhomogeneity,
will be considered further in Paper IV.

It is difficult to calculate accurately the effects on w
of the inhomogeneity since it is difficult to calculate
both the spatial dependence of H;(r) and the effect of
the inhomogeneity on m. However, the qualitative
features can be determined as follows: To be concrete,
consider the variation in H; along 7y for the magneto-
static modes in perpendicular resonance in a circular
film with S/27, Z+%. The value of demagnetization field
Hp=4rM ,—6Hp, where H;=H,,,—Hp, near the
center of the film is fairly constant. For example, the
value of Hp inside the thin disk along its axis is

Hp(0)=24xM [1—(S/2r5)] (36")
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for sufficiently large values of H.pp to hold M, approxi-
mately along 2.

At the edge of the disk in the center plane [i.e., at
p= (x24y?)12=r, and 2=0], Hp=27xM,, and at p=r,
and z=+1S, Hp=23wM,. Most of the reduction in the
size of Hp from its center value (36") to its edge value
occurs within the range 7y—2SZp<re. In order to
obtain a guide in estimating the sizes of (6H p) and &g,
the variation in Hp will be approximated by

Hp(p)—Hp(0)=25wM, exp[ — (ro—p)/ST (36”)

The value §7M, at p=r, was chosen as the average of
the values given above for z=0 and z=4S. The value
of Hp from (36”) (with $wM, replaced by 2xM, to
account for 2=0) fits the numerical results of Fig. 13 of
Ref. 28 for z2=0 and S/7,=0.2 to within ~109}, or
better for all p.

Just as the Portis-type pinning changes Sest for the
low-order modes, it is reasonable to expect that the in-
homogeneity in H; along 7 will change the effective
radius 7esr over which m is large for the low-order
modes. The reason for the reduced effective radius is
that the spins near p=7, see different values of H; and
h from those in main bulk of the film; thus the ampli-
tude of m near p=r, is expected to be small since these
edge spins are off resonance, roughly speaking.

The microwave demagnetization factor &g can be
written as

C:?d=6:’d(7'o)+5‘:’d,

where @4(ro) is the value of &g when 7=7, formally,
and daq is the shift resulting from the reduced effective
radius. The size of 6w can be estimated roughly by re-
placing 7o in (27), (44), etc., by 7es and formally esti-
mating the size of 7.¢r as the value of p at the turning
point at which

HD (7’eff> —HD (0) =J}d—|—Dk2 (36”’)

The values of the left- and right-hand sides of (36"")
are calculated for 7ets=7o—2S, using the approximation
(36"). If Hp(rets) —Hp(0)<a-+DE2 a larger value of
7err is chosen, and the process is repeated until self-
consistency is obtained. For example, for 2r,/S=15,
ress=r9—2S, and DE? negligible, (36”) gives Hp(7.:r)
—Hp(0)=118 Oe and (53) gives @g=114 Qe for the
main-resonance mode. For 7.=r,—2.03S, both
Hp(ress) —Hp(0) and @,=2115 Oe, as the self-consistent
value of @g. The value of @4(7,) is 86 Oe, giving 60,229
Oe, as a rough estimate. For the high-order modes
(large ky), ®a=22wM ,, and 7.s=2ry; therefore, §&=20. For
the low-order, higher-branch modes @;&K2rM,, and
6wqa==0.

In order to obtain a simpler, but somewhat less accu-
rate, approximation to d@q for the uniform precession in
perpendicular resonance, @q in (53) or (44a) is expanded

28 R. I. Joseph and E. Schlsmann, J. Appl. Phys. 36, 1579
(1965). . .
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in the small-kxS limit, giving @a~kpS~S/rerr. With
7eit=2r9—2S and 1/(ro—25)=2(1/ro)[14(2S/re)], this
gives @¢=wq(ro)[1+(2S/70)]; i.e.,

004=2(25/ro)wa(ro) (36""")

for the main-resonance mode. For the example above
with 25/ro=4/15 and @4(r))=86 Oe, (36"") gives
0wg==23 Oe, which is within the expected accuracy of
the previous value of 29 Oe.

A very rough guide in determining the values of
(6Hp) can be obtained as follows: For the main-reso-
nance mode, the weighting factor |m,*|% in (H,) is
large near the center of the disk, where Hp=Hp(0),
and is small near the edges. Thus (Hp) is slightly less
than Hp(0), and (36) and (36”) give ($Hp)=gm,
X (S/2ry)(4rM,), where gn, is slightly greater than 1.
For example, a rough numerical evaluation of the
integral (H,) using the curves in Figs 12 and 13 of
Ref. 28 for (S/2r¢)=0.1 (the smallest value given)
gives gn~21.1. The weighting factor was taken as
[J0(0.76m/7ts) 2, where 7e;t=0.75r,. The high-order
modes have many oscillations along 7o, and [p|m,™ |2 ]2
is sinusoidal over most of the sample. Therefore the
weighted average,

r0
<Hi>~/ dpp|ma*|?H;,
0

is approximately equal to the unweighted average, |

ro
"’/ de,,'.
0

With (36”) this gives
<5HD> =g(S/27’0) (47TM3) , (36/////)

with g=g,s=27/4 for the high-order modes. This result
(36""""), with g=gu, is valid for the main-resonance
mode. For the low-order higher-branch magnetostatic
modes, the value of g in (36””) is approximately 1 since
wa+DE*=0, making 7.¢; smaller than that of the main
resonance so that Hp is closer to H(0).

For a YIG disk (4rM,=1750 Oe) with S/2r,=+%,
(36"""") gives (8Hp)=2130 Oe for the main-resonance
mode and 205 Oe for the higher-order modes. The value
of gmr was taken as 1.1. In general, (6H p) and &, for the
main-resonance mode both are approximately propor-
tional to (S/2#o)(4rM,), and they have approximately
the same values. In the present example with .S/2r,=+%,
the values are ®=2115 Oe and (6H p)=2130 QOe. Notice
that (6H p), @4, and 8&q all reduce the value of the field
for resonance H,pp.

Consider the general effects of (§H p) and 6&4 on the
spacings of the magnetostatic modes in perpendicular
resonance. Since the values of g in (36”””/) range between
~1 and ~7/4, it is convenient to write

(0Hp)=(S/2ro) (4 M )+ (g—1)(S/2ro) (4 M), (37)
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F1e. 12. Schematic illustration of the
magnitude of the microwave magneti-
zation m for the first and third modes of
Portis (Ref. 5) illustrating that the ef-
fective thickness Serr of the film, which

J
N~
—1

determines the magnetostatic mode spac-
ing, is less than the physical thickness S

for the Portis-pinned modes.

The first term shifts the fields for resonance of all modes
down by (S/2r,) (4rM,) in the circular-precession ap-
proximation. The second term in (37) has little effect on
the highest-field modes (the low-order higher-branch
modes), while it shifts the high-order modes [having
wa(ro)=22wM,] to lower field, thus increasing the width
of the normal-mode manifold by ~2(S/2r,) (4rM,)
and increasing the spacings between the low-order
main-branch modes and between the main-resonance
mode and the highest-field modes.

The term 8&q also is approximately equal to zero for
the highest-field modes and increases the spacing
between the main-resonance mode and the highest-field
mode. But it does not change the width of the manifold,
and it reduces the spacings between the low-order main-
branch modes, thus partially cancelling the (larger) in-
crease caused by (6Hp). For the example above with
S/2ry=+% and 47 M ,=1750 Oe, the value of the largest
increase in spacing (between the main-resonance mode
and the highest-field mode) is (0.1)+5(1750)+292240
Oe, as a rough estimate.

7. INTUITIVE EXPLANATION OF RESULTS

All of the results of Secs. 4 and 5 can be understood
intuitively by considering a simple model of a square
film of dimensions LX LX.S in perpendicular resonance.
In order to understand the behavior of wg, first recall
that for an ordinary spin wave with wave vector k
along the x axis the value of wq is 27|v|M, in the
circular-precession approximation.?! This can be under-
stood intuitively as follows.?®

2 C, Kittel (private communication). Also See Figs. 2.7 and
2.8 of Sparks (Ref. 20).

In Fig. 11(b), the values of m at half-wavelength
intervals are represented by arrows. The vertical lines
mark the positions at which m, changes sign. Since the
vertical region marked A resembles an infinite film, it is
reasonable to expect that h=~—4xm.£ is a good ap-
proximation to the microwave demagnetization field
for this spin wave. And h~ —m.,% implies that wg is
proportional to M, and is independent of k. To see this
we simply add the two equations in (4), which gives
wmt= (w;+ Dk)m+— | y| Mht, where —V? has been
replaced by k2. Setting

bt=—Cm,+1(0)= —3C(m*t+m")

and making the circular-precession approximation of
neglecting m~ gives w|y|=H;+Dk*+3CM.,.

The analogous situation in a finite film with k,=0 is
illustrated in Fig. 11(b). The magnitude of the de-
magnetization field of the region B (considered as a
rectangular sample of constant magnetization m) is
less than 4wm. because the surface poles, marked with
+ and —, do not extend to infinity. From elementary
electromagnetic theory, it is easy to show that the
demagnetization field [ determined by (3)] in the center
of the rectangle B is

S/2

L2 N4
dz / ay .
—si2 Jorp LENHy ]

Neglecting z in the denominator (since \/43>S/2 for
A=L and L>S), evaluating the integrals, and setting
AL gives h~ —m,(S/L)2. Thus wq is proportional to
M (S/L) for k;S<Km, in agreement with (44a).

From a similar argument we can see that wg
~(S/L)2M, for the higher-branch unpinned modes

h=—m.(S/L)¢



1 FERROMAGNETIC RESONANCE

Intensity ——»=

IN THIN FILMS. I.

THEORY - 3849

1 Resonance, Portis pinning

even modes

—«—— p|3l4 pal|ddy

odd modes
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kg

(b)

F1c. 13. Sketch of intensities (a) and dispersion relations (b) for Portis-pinned modes (in perpendicular resonance).

with k;<k,: Figure 11(c) represents m*=sinky«'
Xsinmz'/S for the same value of k. as in Fig. 11(d).
The demagnetization field in the center of region C is
clearly smaller than that in the center of region B be-
cause there are now positive and negative surface poles
on each end of the region C+ D. The nonzero contribu-
tion to the field at the center of region C depends on
the difference between the distance d,. to the positive
poles and the distance d_ to the negative poles, which
gives an extra power of (S/L) in wq; thus wa~ (S/L)*M ,,
in agreement with (44b). A similar argument shows
that wg~ (S/L)*M , for the other higher-branch modes
also. Since S/L<1 for thin films, the demagnetization
contribution wg to the frequency is much smaller for
the higher-branch modes than for the main-branch
modes.

Next consider the pinned modes. Figure 11(b)
represents a mode with m*~cosnz/S (as well as one
with mt(z)~1); therefore, wa~ (S/L)M , for this mode.
Figure 11(c) represents a mode with m*~sin2wrz/S;
therefore, wa~ (S/L)2M , for this mode. The mode with
mt~sinkx cos3nz/S is illustrated schematically in
Fig. 11(d). The net positive value of the surface poles at
the right of the region E4F+D is ~% of that of the

region B of Fig. 11(b). The net magnetization in the
region E+F+D is also ~3 of that in the region B;
thus wg~ (3)2(S/L)M ;. From this model, it is seen that
when £S<1, wa~ (1/1g)%(S/L)M ; for the even pinned
modes, and wg~ (S/L)2M s for the odd pinned modes,
in agreement with (29) and (44b). Note that the slope
of wq as a function of k; has the same #g dependence as
do the intensities I, (see Sec. 8), e.g., I, and slope
~1/ng? for even pinned modes, I, and slope=0 for
odd pinned modes, etc.

For the modes with very large values of &, (k.>/S
and k.>>k.), the region B (or C, D, etc.) is a thin plate,
for which h= —4rm,£. These modes therefore have
wa=2m|y| M, [in agreement with (44a) for k/>m/S].
Thus the modes with large values of %, would cluster
near the top of the magnon manifold in perpendicular
resonance if wex. were negligible. This argument also in-
dicates that the spacing of the modes decreases as k.
increases (until Dk,? becomes large).

Note that the demagnetization energy decreases with
decreasing inverse aspect ratio S/L, while the exchange
energy increases with decreasing thickness S. Thus, in
the usual resonance experiment in which the frequency
is fixed and the applied field Hapyp is varied, the higher-
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-~ ” Fic. 14. Schematic illustration of m
analogous to that of Fig. 11, but for
parallel resonance: (a) for the main-

_— resonance mode; (b) for a mode with k

— nearly parallel to the applied field 2Hqpp

—_— -~ and k. >>w/S.
m
(a) (b)

Point Aon Fig.6
k=(0,0,0)

branch modes become more widely spaced (larger dif-
ferences in Happ) and the main-branch modes become
more closely spaced as the film thickness is decreased.

From the same simple physical arguments used above
to explain the theoretical results, it is easy to predict
the effect of Portis pinning.? Recall that if the satura-
tion magnetization M ; varies across the film thickness
as M,=M,—AMf(z'), where AM<<M, and | f(z')]| =1,
the value of m* for the modes with DE2Z27xAM is
large only near the center of the film. In particular,
Portis® has shown that if M, is parabolic in 2’ [i.e.,
f&)=(2'/S)?], then m*(z") has the form of simple-
harmonic-oscillator functions (rather than sinusoidal
functions) for the low-order modes, as illustrated sche-
matically in Fig. 12.

The first few even modes which are Portis® pinned
have relative intensities 1, 3, £, %, etc., and their ex-
change energies are proportional to (zs—%). We have
numbered the first mode as ng=1. With ng=0 for the
first mode, the familiar result is (#s+3%). By using the
fact that the slopes of wq as a function of ks at ky=0 are
proportional to the intensities, the dispersion relation
can be sketched, as in Fig. 13. If f(2") has a functional
form different from (2z/.5)2, the results are similar in
general, but the intensities and slopes will differ from
those of Portis.

The results for parallel resonance and oblique reso-
nance (arbitrary 6,,) also can be obtained by the same
type of physical model used above for perpendicular
resonance. Very briefly, for the main-resonance mode
[see Fig. 14(a) and point 4 on Fig. 6] the frequency is
simply that of a thin film in parallel resonance, i.e.,
wi227 |y | M s in the circular-precession approximation.
For k, very large, the region marked by dark lines in

Point Bon Fig.6
k= (0,0, 7/S)

Fig. 14(b) resembles a thin film in perpendicular reso-
nance, for which ws=20. For k, very large, the region
marked by dark lines in Fig. 15. resembles a thin film in
parallel resonance; thus, ws=2w|v|M,. Figures 14(a)
and 15 illustrate that w,~2x|y|M, for all k, when
k.= 0. See point C on Fig. 6.

In an infinite film in perpendicular resonance with no
explicit surface pinning mechanism, the main-branch
modes are nearly unpinned when k;<w/S and are
nearly pinned when %k >w/S, as discussed in Sec. 5.
This result can be understood by considering Fig. 11(b).
The field outside of the film along the z axis (with x=0
in the center of region B) from the + and — sources
shown in the figure drops off in a characteristic distance
which is approximately equal to the spacing between the
+’s and —’s, i.e., y~exp(—Fksz), roughly. Since ¥ and
dy/dz are continuous at the surface, the slopes of ¥
(and m) at the surface are small when $\>>.5, and they
are large when 3A<XS. In other words, the surface spins
are approximately unpinned for k;<w/S and are ap-
proximately pinned for k2>w/S.

8. INTENSITIES OF MODES

The power I, into the #th normal mode at resonance
(i.e., the intensity of the mode) for a sample in a
spatially constant microwave field hys= A, ¢£ is

aM,,
In=—<]drh,f- ) =gwnhrfcnfdrm,n, 37
dt timeav

where we have written the x component of M,, as ¢,#.5.
In this section, g is a generic constant (which is in-
dependent of ¢,, 7.,,, etc.). Since the energy density is
proportional to ¢,*#.,?, the power out of a mode with
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Fic. 15. Schematic illustration of m as in Fig. 14: (a) for a mode with k in the plane of the film and perpendicular
to 2Hpp for the case of £,>>w/S; (b) and (c) effect of increasing &.

relaxation frequency 1/7, and energy E, is

E, cn?
—_ =g_

Tn Tn

AT Mg?. (38)

Equating (37') and (38) gives the equilibrium value

of ¢n:
Cn=g7nwn(hrf/dr mzn//dr mzn2> .

With this value of ¢, (37') gives
2
/ / ar my,? (39)

/ ar mzn

for the intensity of the #th mode, where AH,=g/7, is
the linewidth of the #th mode. This result shows that
in the usual experiment at fixed frequency (and varying
H,,p), the intensities of the modes are proportional to
| S dr man|?/AH ,, when m., is normalized as

Sdrmy2=1.

Consider a rectangular film. For the pinned even
modes, (39) gives

n

W 2
In=ghrf2
AH,

4
[,=————
ns*nwinr?AH,

even pinned modes  (40)

and for the unpinned even modes on the main branch
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Point E on Fig.6
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(39) gives

g
I,=——

nW2nL2AH,,
even unpinned main-branch modes. (41)

The intensities of all odd modes and of the unpinned
higher-branch modes are zero since J'drmz,=0 for
these modes.

For a circular film in a constant microwave field in
perpendicular resonance, /,=0 for all modes with
azimuthal number /520 in (49). For =0, m,=Jo(k,p)
Xcos(k.z2—%n.m). Using

70
/ dp pT #ksp) =1 PLT ko) T 3(yro)]
0
and

7 1
f do o (k) =gl
0

P

in (39) gives

I.=g (42)

1 / J12(koro)
kAH T o*(koro)+J 1 (kpr 0)) ’

Since we are considering only modes which are pinned
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at r=ro, Jo(k,79)=0, and (42) reduces to

I,= main-branch modes with /=0.
k,2AH ,

The approximate results for 7, given above should be
quite good for the higher-order modes in a given series,
the integral of ., in (39) being controlled by the num-
ber of half-sine-waves in ., since pairs of positive
and negative half-sine-waves integrate to zero. How-
ever, the intensities of the first few modes in a given
series may differ considerably from the theoretical
values since the integral of m,, depends more strongly
on the detailed shape of #,, than does w,: A difference
e in the trial function #i,* from the true function m,*
gives an error in the frequency which is proportional to
€ but the error in 7, is proportional to e.

9. EFFECT OF PINNING ON
FREQUENCIES AND INTENSITIES

The effect of pinning at the small edges of film was
considered in Secs. 4 and 6. We now consider the pin-
ning at the large faces (' ==%S). The frequencies and
intensities of pinned and unpinned exckange modes are
quite different.* However, the frequencies and intensi-
ties of magnetostatic modes are relatively insensitive to
the amount of surface spin pinning, as discussed else-
where.?* This insensitivity can be understood intuitively
as follows.

First, it is easy to see that pinned sine waves are not
solutions to (6), or to (2) and (3), when the exchange
constant A=0. This can be proved by direct substitu-
tion and can be understood intuitively as follows:
Consider, for example, a perpendicular-resonance mode
with %£;5<«1. The argument in the last paragraph of
Sec. 7 shows that dh/dz==20 at z==%S. When A=0, m
is proportional to h; thus dm/dz=0 at =%, and the
mode is not pinned. This is an example of a general
result that imposing a pinning condition, such asm=0,
on the magnetostatic-mode problem with A=0 over-
determines the boundary conditions at z’=-4-1S, and
no solution exists. In this case it is necessary to include
the exchange interaction even though Dk*K<wg.
(Mathematically, the exchange term is a singular per-
turbation.) Then the solutions to (2) and (3) in an infi-
nite film are linear combinations of terms containing
three wave vectors,* in contrast to the exchange case
or the pure magnelostatic case (A=0 and no explicit
pinning) for which only one wave vector is required.
For a given ky, the three values of k.2 are easily found
by substituting #,,m, ~cosk»z" into (2) and (3). The
result is that the three values of k. are simply the roots of
the dispersion relation  k2XQ2=F*(Qu-+AE2) (Qu+Ak?
+-sin%x), where Q=w/4r|yv|M,, Qu=H/47M,,
A=A/4r, and sin?6, = (k2+k,2)/k?, which is obtained
by squaring both sides of (30) and multiplying by &2.

SPARKS 1

In perpendicular resonance, kb =Fk, and k2=Fk2-+k.2,
where 2’ and z are always the axes normal to the plane
of the film and along H,, respectively. In parallel reso-
nance, k» =k, ky =ky, and k, =k.. The resulting values
of k. for magnetostatic modes in perpendicular reso-
nance are Rms, kg, and k.4, where

knd=k (Qr*+Qr —07) (P —Qp?) 7,

ke==+[(Q—Qn)/A]"2, ikug==i[ (Q+Qu)/K]V2.
(43b)

(43a)

The first wave vector ks is the usual magnetostatic-
mode wave vector.? Solving (43a) for Q gives
Q[ Qp (Qu—+sin?6r) /2=Q,,,, which is just the fre-
quency of a pure magnetostatic mode.? Since
Q=Qu+Ak? for an exchange mode, (43b) shows that
kg is the wave vector for an exchange wave which has
the same frequency as the magnetostatic wave. The
frequency of a wave f(r) will be defined as the preces-
sional frequency for a magnetization having m~ f(r),
the Zeeman frequency being positive and the exchange
frequency being positive for oscillating waves [ negative
a= (d*m,/dz'?)/m,] or negative for decaying waves
(positive ). The wave frequency Qg for the £ wave is
Qp =+, and that of the ik,, wave is Q0= —Qms-
The ks and kg waves can be admixed freely to satisfy
the surface pinning conditions (such as m=0 or
dm/ds' =0, for example) since the wave frequencies are
the same. The decaying ik,, wave is far off frequency
(2= —Quns7 +Qus) since o is positive, and its amplitude
is negligible.

Since A(7/S)*<1 for magnetostatic modes, the kg
wave must have many oscillations in order to make its
frequency Qn-+Akz® equal to the magnetostatic-wave
frequency Qms. Thus the intensity is controlled by the
term coskmsz since coskgz integrates to zero approxi-
mately. In other words, the inlensities of the magneto-
static modes are the same as those of the pure magneto-
static modes (having A=0 and no explicit pinning). The
field h is essentially unaffected by the addition of the
coskgz wave since the source (V-m) of h oscillates
rapidly, thereby integrating to . zero approximately.
Thus, ¢ and dy/dz are still continuous at 3==41S when
the kx wave is added.

Next consider parallel resonance. For surface modes
with %,=0, the values of k,=k., obtained from the
solution of the dispersion relation, are k,=1ks,, ky, and
k_, where ko, ==k, and Aky2=— (Qg+3)E (GF4+OD)12,
The frequency Q., of the ik, wave is simply the fre-
quency of the pure magnetostatic surface wave.! The
frequencies of the k. waves are Q. =-4Q,.% The de-
caying k_ wave is off frequency, and its amplitude is
negligible. The oscillating %, wave has the same fre-

% The following results in this and the next paragraph were
obtained by analogy with the results for perpendicular resonance,
except for the values of k. and @, which were calculated directly.
See Ref. 24. :
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quency as the surface wave, and a linear combination
of these two waves is chosen to satisfy the surface pin-
ning conditions. As in perpendicular resonance, the
intensity is controlled by the magnetostatic wave since
the rapidly oscillating k2, wave integrates to zero
approximately.

For the bulk modes with %,=0 in parallel resonance,

solving the dispersion relation for &, gives Ak (y)?=—Qx
—3E[Qa+3) — (Quop>—22) ]2 for the two extra waves,
both of which are decaying in the present case. Here
Qiop?=02x*+Q2y. The third wave vector ks is just the
Damon and Eshbach! bulk-mode wave vector. The
three frequencies are Qms, Laee=0ms, and Qy5=—0ns,
where Q. is the Damon and Eshbach frequency,
thaee=Fk ), and tk,,5=Fk . The ik, b wave is off fre-
quency, and its amplitude is negligible. A linear combi-
nation of the degenerate ks and 7k 4., waves is chosen
to satisfy the surface pinning conditions. The second
(ikaec) wave is decaying, in contrast to the results of
the previous two cases, because the frequency must be
lowered from Qtop to Ums and a positive o (decaying wave)
lowers the frequency. This ik4.. wave changes m only
very near the surfaces, where it rounds off m to zero at
x==43S.
[_fSeveral experimental results can be explained in
terms of these theoretical results. Sparks and co-
workers? observed that the higher-branch magneto-
static modes in a 12.4-y-thick YIG film had very small
intensities (roughly 700 times smaller than that of the
main-resonance mode). It is likely that the surface
spins were pinned since a surface roughness as small as
~200 A should pin the spins,? for example. Single-sine-
wave pinned modes would have large intensities [ ~%
that of the main resonance, as in Fig. 5(a)] in contrast
to the small observed intensities. The two-wave solu-
tions discussed above should have small intensities, in
agreement with the experimental results. Although the
results above indicate that pinning the magnetostatic
modes at a shape surface should not give rise to the
large intensities and nonzero slopes of w versus &y of
the single-wave pinned modes, the pinned exchange
modes and mixed modes are expected to have large in-
tensities and nonzero slopes, as in Figs. 5 and 13.

The experimental results? also indicated that for
thinner films (for which the higher-branch modes were
exchange modes) the higher-branch modes had large
intensities, as expected for pinned exchange modes.
Later experiments by Besser!s indicate that some of the
YIG films presently available may be of such high
quality that the exchange modes are not pinned. The
theoretical results also explain the fact that surface
modes have been observed!®s! under conditions for
which the surface spins are expected to be pinned.'” It
might have been expected that making m=0 at the

L F. A, Pizzarello and J. H. Collins, in Fifteenth Annual Con-
ference on Magnetism and Magnetic Materials, Philadelphia,
1969 (unpublished); J. Appl. Phys. (to be published).
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surface would have essentially eliminated the surface
modes, but the two-mode results above indicate that
this is not the case. It is reasonable to expect that the
result for other geometries, such as spheroids, should be
similar. For example, pinning the surface spins in a
spherical sample should not make large changes in the
frequencies or intensities of the observed magnetostatic
modes,®® which have large amplitudes at the surfaces
in general in the absence of explicit pinning.

The results indicate that the basic idea of Benson and
Mills®® of a two-wave solution is essentially correct for
magnetostatic waves. (Their “rounder function”
1—az? can be replaced by an exponential wave, giving
a two-wave solution.) However, the added wave is an
oscillating wave, rather than a decaying one, in some
cases as discussed above.

Several conclusions of Wolfram and De Wames,
based on incorrect generalizations of computer solutions
for m, and w for several specific values of kS, Qu, etc.,
contradict the present results. The kg or k. wave, not
the ik, or k— wave, is the important one for satisfying
the boundary conditions, and the amount of the kg or
ky wave in m is large away from the crossovers in
general. In their semi-infinite-medium calculation of the
lifetimes of surface modes, their solution satisfies the
surface conditions only at certain isolated instances of
time since a travelling wave m,~exp(ik,x) (with im-
plicit expiwt time dependence) cannot satisfy their pin-
ning condition dm,/dx=0 at x=0 for all times. It is
misleading to consider m as an admixture of bulk and
surface waves simply because one k. is imaginary and
another is real. For example, the ikq.. wave above
rounds off m to zero at the surface, while surface waves
have large values of m at the surface.

10. SUMMARY OF THEORETICAL RESULTS

The result of the variational calculation for the fre-
quencies of the ferromagnetic normal modes of a thin
film is

|-‘°—| = L)+ D))+ D4 230) T2,
Y

where H=~H.,,—Hp [Sec. 6] and @s=wa/|v|. The
results for wq in rectangular films are as follows: For the
unpinned modes with arbitrary 6,,, wg is given by (26)
and (27) for the main-branch and higher-branch modes,
respectively [Sec. 4]. For perpendicular resonance, 6y,
=0, #'=x, y'=1y, and 2'=z; thus (26) and (27) give

(43c)

1
wdx=27rlles[1— - —kfﬂ ,
E,S

main branch, unpinned (44a)
wdl=21r|'y]Ms sin20k,

higher branches, unpinned (44b)
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where sin20,=k,;%/k% For parallel resonance, 8,=90°
and (26) and (27) give

1
watj =2y | M =2 || 1, coszqs'[l— — - >] ,
kS

main branch, unpinned (45a)

wan=2m|v| M siny,

higher branches, unpinned (45b)
where
sin20k= (ky,2+kz,2)/k2
and
cos?d’ =k 2/ (ko2 ky?).

For single-wave-vector pinned odd modes, wq is given
by (27) [or (44b) or (45b) for 6,=0 or 90°, respec-
tively], and for pinned even modes, with %;S<r, wa
is given by (see Sec. 4)

wa= (8/m) |y | M sksS/ns*. (292)

For a circular film in parallel resonance with /=0
(no azimuthal nodes in #+), it is shown in the Appen-
dix that Eqs. (44) are valid if k; is replaced by the radial
wave vector k£, and wg for the main-resonance mode is
multiplied by [1—(27,/k;S)]/7x, where 7, is the factor
in the bracket in (44a). For the usual case of £;S«<1,
this correction factor for the main-resonance mode in
a circular film is approximately equal to 0.67. For a
rectangular film, the values of &, are

ky=(x/L)[n*+ (L*/W*)nw*]'2, (40)

where nr, nw=1, 2, 3, .... For a circular film, the
values of k, for /=0 are

Ero/w=0.76, 1.76, 2.75, ...(n—0.25), ..., (47)

which are the roots of Jo(k,70) =0, with 7o as the radius
of the film.

The essential features of these theoretical results,
most of which are illustrated in Figs. 3-9 and 13, are
the following: (a) The modes can be conveniently
divided into branches, which correspond to different
values of k.. The different modes on a given branch
have different values of &; (Sec. 4). (b) All of the low-
order modes (small ;) on a given branch have approxi-
mately the same value of wexc=2Dk.-%, which is propor-
tional to 75%/S? and is independent of F, where F is a
face dimension such as the radius or length. (c) The
modes on a given branch have different amounts of
demagnetization energy %|vy|was in general, as seen in
Figs. 3-9. (d) The slope of w as a function of ks at the
origin is nonzero for the main branch, which implies
that wg~S/F. (e) The modes on the main branch be-
come more closely spaced in frequency as ks increases,
corresponding to the flattening of wq as a function of %y,
as seen in Figs. 3-9.

32 The case of /50 is considered elsewhere: M. Sparks, Solid
State Commun. (to be published).
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For single-wave-vector unpinned modes: (f) The
higher branches have zero slope at the origin, which
implies that wa~S?/F? for small values of &y. Thus the
low-order higher-branch modes are much more closely
spaced in frequency than are the low-order main-branch
modes. (g) The intensity of the main-resonance mode is
large, and the intensities of the other main-branch
modes decrease as k; increases. The intensities of all
higher-branch modes with &<k, are theoretically ap-
proximately zero.

For single-wave-vector pinned modes: (h) The slope
of wq was a function of ks and the values of I, are largest
for the main branch, and they decrease rather slowly
for the higher branches for the pinned even modes. The
values of 7, and the slope of wg at the origin are much
smaller (wg~S?/F?and I,=0) for the pinned odd modes
on the higher branches. These formal results are for a
single wave vector m*. The frequencies and intensities
of magnetostatic modes (but not exchange modes) are
expected to be relatively independent of surface-spin
pinning; the results for k;<Kk. (or for kS >k.) are
approximately the same as the single-wave-vector
results for unpinned (or for pinned) modes. See Sec. 9.

The effects of an inhomogeneity in H; across z’ are
discussed briefly in Sec. 6 and in more detail in
Paper IV. The effects of the inhomogeneity in H; along
7o (or W and L) are difficult to calculate accurately,
but the following results may be useful as a rough esti-
mate of the effects on (H;) and @g=wa/|v| for the mag-
netostatic modes. The value of (H;) in (43c) can be
written as

<Hi>=HEDD—47rMs+<5HD> ,
where
(6Hp)=g(S/2ro)(4rM). (36"

For the main branch, g increases from a value slightly
larger than 1 for the main-resonance mode to a value of
g=27/4 for the high-order modes. For the low-order
higher-branch magnetostatic modes, g=21.

The approximate value of é@q4 for the main-resonance
mode can be obtained by the method of Sec. 6, or with
somewhat less accuracy from the relation

0w (25/70)63,1(7’0) . (36”//)

For the high-order modes and for the low-order higher-
branch modes, §&4=20. These two terms (3Hp) and 6@q¢
increase the width of the normal-mode manifold, in-
crease the spacings of the low-order main-branch modes,
and increase the spacing between the main-resonance
mode and the highest-field modes.
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APPENDIX: FREQUENCIES FOR
CIRCULAR FILMS

It can be shown?* that the exact solutions of the
Walker potential problem” for ¢ inside of an infinite
film for perpendicular resonance in circular-cylindrical
coordinates is

Y=Ju(kop) cos(kz—%n.m)e"?, (48)
where J, is the Bessel function of integer order # and
7,=0 or 1 as in (15). As the trial function for a finite
disk-shaped film we choose the #t+ obtained from (48)
by therelation m+=x"0"y, where ¥~ is a constant and 9+
is defined under (6). By using

dteind=(n/p)e= D¢, 3T (ko) =koe™ T (kop) ,
where the prime denotes the derivative with respect to
the argument, and setting /=#n—1, it is easy to
show that

mt=x"k, exp(—ile)Ji(k.p) cos(k.z—3nm). (49)

Substituting (49) into (14) and using exp(iq-r)

= exp(ig,p cosp+1iq.2) and

27
/ dep eier cosdg—ilé = Zwil]l(QPP)
0

gives
l 0% I 2‘{s q 2 S/2 2
wag= / dq—t / dz cos(k.z—3nm)eie=
™ 92 —8/2
70 2 70
X / dp pJ 1(qep)J 1(Kop) ( [ dp pJ *(kep)
0 0

S/2 -1
X/ dzcos2(kzz—%mr)> . (50)

—8/2

To simplify the arithmetic, first consider the case of
no azimuthal nodes in m, i.e., /=0; these are the only
modes which couple to a spatially constant microwave
field. For the first case of k,&n/S and k,7>>1 we use
the approximations

Jo(§) =cos(¢—im)/(Gm§)"* for £S2m

and
Sin(QF —kp)ro

for ko1
2(go—k,)

0
/ dp cosk,p cosq.p==
0

to obtain

2

=~

7o? /Sin(Qp_kﬁ)70)2 1)

70
dp pJ o(kop) T o(q,p)
-/;1 e 7"2kn2\ (q;a_k/z)ro
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Using (51), (23), and

70 70
/ do 9 (k) =0T o)+ T2 I
0

TKp

(for kro>>1) in (50) gives

l'ylMsroS/’ . g, sin?2q,S
————— q—

2wk, Joo gt (30S)?
where Q, is the volume defined by |g,—k,| <m/2r,.

Approximating g,2 by its average k,* over Q, and using
dq==2xk,(m/r0)dg. in (52) gives

(52)

wde =

1 sin%g.S

gtk (3¢:5)°

wac= |7|M8k,,25/ dq:

~2aya0] 1- k—1§<1— ] o

P

for this case of k. Kw/S and kro>1.

* We now show that (53) is a fairly good approximation
even for the lowest-order mode which is pinned at
r=ry, i.e., for k,ro=2.4, where 2.4 is the first zero of J,.
When ¢,=0, the value of the p integral in (50) is

2

J*(2.4)
Yo~ .
(2.4)2

r0
/ dp pJ o(kep)
0

7»02
= k_pzj (ko) =

Since (k,p)'/2Jo(k,p) has no zeros between p=0 and
p=ro and the function (g,0)!/27o(¢g,p) has many oscilla-
tions between p=0 and p=7, when ¢, >2.4/r,, the p
integrand in (50) is a rapidly decreasing function of g,
when ¢>2.4/r,. Thus

2 J2(24)
(24
0 for gre>2.4.

ro*  for q,r0<2.4

70
/ dp pT (ko) To(4,0)
0

lie

With this result and

0 2.4p
f dp p]02<—> =%7’02J12(2.4) )
0 7o
g,* sin*3¢.5

|y|M.S /
dq ,
wk,? Joy  ¢* (3¢:5)?

where Qs is the volume defined by ¢,<2.4/7o. Evaluat-
ing theintegrals gives

[OF Toid 27r['YIMs(1_27'n/f)

for the main-resonance mode in a circular film. Here
f=k,S and r,=1—f"[1—exp(—f)]. For the usual

(50) gives

wac=

(54)
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case of <1 for the main-resonance mode, the value of
wq from (54) is ~0.67 times as large as that from (53).
The exact solution? for the infinite-film problem in
circular-cylindrical coordinates for no exchange (D= 0)
is given by (30) with
sin260,=k,%/ (k2 +k.?), (55)
where k. is given by (32) (or the corresponding result for
odd modes) with %, replaced by %,. For pinning at the
edges of the film (o= 0), the values of %, are given by the

SPARKS 1

roots of the equation
Jz(k,,?’o) = 0 .

Thus, the values of %, are different for modes having
different values of azimuthal number I. For /=0, this
gives the values k,=0.76m/ry, 1.767/r,, ... listed in
Sec. 5. Considering the other values of / offers an ex-
planation? of the observation of Dillon® that the first,
second, ..., fifth modes in a sample containing a small
imperfection on its edge contained one, two, ..., five
lines, respectively.
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Ferromagnetic Resonance in Thin Films. II. Theory of Linewidths

M. Sparks*
Science Center, North American Rockwell Corporation, Thousand Oaks, California 91360
(Received 28 July 1969)

The ferromagnetic-resonance linewidth AH from two-magnon processes in thin films is calculated. The
results are quite different from those in spheroidal samples in general, since both the densities of states and
the scattering Hamiltonians are different. It is shown that it should be possible to choose the radius and
thickness of a ferromagnetic insulator thin film in such a way to make the frequency of the main-resonance
mode lie well below the frequencies of all other magnetic modes. The resulting small AH’s make the films
important for studying ferromagnetic-resonance linewidths and afford a useful low-loss system. For scat-
tering centers (such as pits and scratches on the surface of the sample or etch pits extending through the
sample thickness) which are smaller than the film thickness, the results are similar to those of Sparks,
Loudon, and Kittel (SLK) for a spherical sample. A modification of the SLK result is given which removes
the divergence in AH at parallel resonance and also makes AH go smoothly to zero at perpendicular reson-
ance. For scattering centers which are larger than the film thickness, AH has a rather large maximum at
an angle approximately one-half way between perpendicular and parallel resonance, in contrast to the
small-scattering-center result of a maximum at parallel resonance. In addition to these results for the
main-resonance mode, it is shown that the mode-number-»# dependence of the two-magnon linewidths of
exchange modes (having negligible microwave demagnetization energy) varies in a rather complicated
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way from AH~n3 for small # to AH~n? and AH~n for intermediate # to AH~n? for large #.

1. INTRODUCTION

ECENTLY, Mee and co-workers! have succeeded

in growing single-crystal thin films of yttrium iron
garnet (YIG) ranging in thickness from ~0.5 to 40 p.
Since bulk films can be ground to a thickness as small
as 15 u, single-crystal YIG films with any thickness
greater than ~0.5 p are now available. These films
promise to become important ferromagnetic-resonance
systems for the following reasons: It is possible to choose
the thickness S and the radius R of a film in such a way
that there are no magnetic modes degenerate with the
main-resonance mode of the film. The resulting small
linewidths AH should be important for applications re-
quiring low-loss materials, and linewidth mechanisms

* Present address: The RAND Corp., Santa Monica, Calif.,
90406.
1. E. Mee, J. L. Archer, R. H. Meade, and T. N. Hamilton,
Appl. Phys. Letters 10, 289 (1967); J. E. Me¢e, IEEE Trans.
G-3, 190 (1967).

which were heretofore masked by the large two-magnon
process could be investigated in resonance experiments,
as discussed elsewhere.?

The density of degenerate states can be controlled
experimentally over a vast range from zero to very large
values. It may be possible to study such interesting
effects as mode clamping,? comparison of the relaxation
frequencies of wave packets and standing waves, line-
widths of surface waves on the YIG-substrate interface
and on the YIG-air interface, interaction of magnetic
and acoustic surface waves, effect of the nonzero relaxa-
tion frequencies of the degenerate modes, and com-
parison of golden-rule relaxation frequencies with
normal-mode relaxation frequencies.

The ferromagnetic-resonance linewidth arising from
two-magnon scattering in bulk-type samples (e.g.,
spheroids and thick disks) has been considered by

2 M. Sparks, Phys. Rev. Letters 22, 1310 (1969).
3 M. Sparks, Quart. Appl. Math (to be published).



